Publications and Preprints
- G. Negro, D. Oliveira e Silva, B. Stovall and J. Tautges,
"Exponentials rarely maximize Fourier extension inequalities for cones".
Preprint at arXiv:2302.00356.
Submitted.
- G. Negro, D. Oliveira e Silva and C. Thiele,
"When does exp(-τ) maximize Fourier extension for a conic section?".
Preprint at arXiv:2209.03916.
Submitted.
- E. Carneiro, G. Negro and D. Oliveira e Silva,
"Stability of sharp Fourier restriction to spheres".
Preprint at arXiv:2108.03412.
Submitted.
- F. Gonçalves, D. Oliveira e Silva and J. P. Ramos,
"New sign uncertainty principles".
Preprint at arXiv:2003.10771.
To appear in Discrete Analysis.
- R. Mandel and D. Oliveira e Silva,
"The Stein-Tomas inequality under the effect of symmetries".
Preprint at arXiv:2106.08255.
To appear in Journal d'Analyse Mathématique.
- G. Negro and D. Oliveira e Silva,
"Intermittent symmetry breaking and stability of the sharp Agmon-Hörmander estimate on the sphere".
Proc. Amer. Math. Soc. 151 (2023), no. 1, 87–99.
arXiv:2107.14273.
- V. Kovač, D. Oliveira e Silva and J. Rupčić,
"Asymptotically sharp discrete nonlinear Hausdorff-Young inequalities for the SU(1,1)-valued Fourier products".
Q. J. Math. 73 (2022), no. 3, 1179–1188.
arXiv:2109.06532.
- D. Oliveira e Silva, C. Thiele and P. Zorin-Kranich,
"Band-limited maximizers for a Fourier extension inequality on the circle".
Exp. Math. 31 (2022), 192-198.
arXiv:1806.06605.
- B. Bruce, D. Oliveira e Silva and B. Stovall,
"Restriction inequalities for the hyperbolic hyperboloid".
J. Math. Pures Appl. 149 (2021), 186-215.
arXiv:2007.06990.
- F. Gonçalves, D. Oliveira e Silva and J. P. Ramos,
"On regularity and mass concentration phenomena for the sign uncertainty principle".
J. Geom. Anal. 31 (2021), no. 6, 6080-6101.
arXiv:2003.10765.
- D. Oliveira e Silva and R. Quilodrán,
"Global maximizers for adjoint Fourier restriction inequalities on low dimensional spheres".
J. Funct. Anal. 280 (2021), no. 7, 108825.
arXiv:1909.10230.
- D. Oliveira e Silva and R. Quilodrán,
"Smoothness of solutions of a convolution equation of restricted-type on the sphere".
Forum Math. Sigma 9 (2021), Paper No. e12, 40 pp.
arXiv:1909.10220.
- F. Gonçalves, D. Oliveira e Silva and S. Steinerberger,
"A universality law for sign correlations of eigenfunctions of differential operators".
J. Spectr. Theory 11 (2021), no. 2, 661-676.
arXiv:1903.06826.
- V. Kovač and D. Oliveira e Silva,
"A variational restriction theorem".
Arch. Math. (Basel) 117 (2021), 65-78.
arXiv:1809.09611.
- E. Carneiro, D. Oliveira e Silva, M. Sousa and B. Stovall,
"Extremizers for adjoint Fourier restriction on hyperboloids: the higher dimensional case".
Indiana Univ. Math. J. 70 No. 2 (2021), 535-559.
arXiv:1809.05698 .
- G. Brocchi, D. Oliveira e Silva and R. Quilodrán,
"Sharp Strichartz inequalities for fractional and higher order Schrödinger equations".
Anal. PDE 13 (2020), no. 2, 477-526.
arXiv:1804.11291.
- D. Oliveira e Silva and R. Quilodrán,
"A comparison principle for convolution measures with applications".
Math. Proc. Cambridge Philos. Soc. 169 (2020), no. 2, 307-322.
arXiv:1804.10463.
- E. Carneiro, D. Oliveira e Silva and M. Sousa,
"Sharp mixed norm spherical restriction".
Adv. Math. 341 (2019), 583-608.
arXiv:1710.10365.
- E. Carneiro, D. Oliveira e Silva and M. Sousa,
"Extremizers for Fourier restriction on hyperboloids".
Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), no. 2, 389-415.
arXiv:1708.03826.
- V. Kovač, D. Oliveira e Silva and J. Rupčić,
"A sharp nonlinear Hausdorff-Young inequality for small potentials".
Proc. Amer. Math. Soc. 147 (2019), no. 1, 239-253.
arXiv:1703.05557.
- D. Oliveira e Silva,
"A variational nonlinear Hausdorff-Young inequality in the discrete setting".
Math. Res. Lett. 25 (2018), no. 6, 1993-2015.
arXiv:1704.00688.
- D. Oliveira e Silva and R. Quilodrán,
"On extremizers for Strichartz estimates for higher order Schrödinger equations".
Trans. Amer. Math. Soc. 370 (2018), no. 10, 6871-6907.
arXiv:1606.02623.
- D. Oliveira e Silva,
"Nonexistence of extremizers for certain convex curves".
Math. Res. Lett. 25 (2018), no. 3, 973-987.
arXiv:1210.0585.
- E. Carneiro, D. Foschi, D. Oliveira e Silva and C. Thiele,
"A sharp trilinear inequality related to Fourier restriction on the circle".
Rev. Mat. Iberoam. 33 (2017), no. 4, 1463-1486. arXiv:1509.06674
- D. Oliveira e Silva and C. Thiele,
"Estimates for certain integrals of products of six Bessel functions".
Rev. Mat. Iberoam. 33 (2017), no. 4, 1423-1462. arXiv:1509.06309
- D. Foschi and D. Oliveira e Silva,
"Some recent progress on sharp Fourier restriction theory".
Anal. Math. 43 (2017), no. 2, 241-265.
arXiv:1701.06895.
- F. Gonçalves, D. Oliveira e Silva and S. Steinerberger,
"Hermite polynomials, linear flows on the torus, and an uncertainty principle for roots".
J. Math. Anal. Appl. 451 (2017), no. 2, 678-711.
arXiv:1602.03366.
- E. Carneiro and D. Oliveira e Silva,
"Some Sharp Restriction Inequalities on the Sphere".
Int. Math. Res. Not. IMRN (2015), no. 17, 8233-8267. arXiv:1404.1106
- D. Oliveira e Silva,
"Extremals for Fourier restriction inequalities: Convex arcs".
J. Anal. Math. 124 (2014), 337-385. arXiv:1210.0583
- M. Christ and D. Oliveira e Silva,
"On trilinear oscillatory
integrals".
Rev. Mat. Iberoam. 30 (2014), no. 2, 667-684. arXiv:1107.2495
- A. Guedes de Oliveira and D. Oliveira e Silva,
"Note on the integer geometry of bitwise XOR".
European J. of Combin. 26 (2005), no. 5,
755-763.
Survey Articles
- D. Oliveira e Silva,
"Global maximizers for spherical restriction".
Real Analysis, Harmonic Analysis, and Applications. Oberwolfach Rep. No. 31/2022.
- D. Oliveira e Silva and R. Quilodrán,
"A sharp inequality in Fourier restriction theory".
Boletim da SPM "Matemáticos Portugueses pelo Mundo" 77 (2019), 133-150.
- D. Oliveira e Silva,
"Inequalities in nonlinear Fourier analysis".
CIM Bulletin 38-39 (2017), 31-35.
- D. Oliveira e Silva,
"Recent developments in sharp restriction theory".
Real Analysis, Harmonic Analysis, and Applications. Oberwolfach Rep. No. 34/2017.
- L. Grafakos, D. Oliveira e Silva, M. Pramanik, A. Seeger and B. Stovall,
"Some Problems in Harmonic Analysis".
arXiv:1701.06637.
Theses