Aviso: Se está a ler esta mensagem, provavelmente, o browser que utiliza não é compatível com os "standards" recomendados pela W3C. Sugerimos vivamente que actualize o seu browser para ter uma melhor experiência de utilização deste "website". Mais informações em webstandards.org.

Warning: If you are reading this message, probably, your browser is not compliant with the standards recommended by the W3C. We suggest that you upgrade your browser to enjoy a better user experience of this website. More informations on webstandards.org.


November 9 November 10 November 11 November 12 November 13
09:00 - 09:30 Registration
M. Fernández (L) M. Fernández (L) W A. Veneziani (L)
09:30 - 10:30 A. Reali (L) o
10:30 - 11:00 Coffee Break Coffee Break Coffee Break r Coffee Break
11:00 - 12:30 A. Reali (L) M. Fernández (L) A. Veneziani (L) k A. Veneziani (L)
12:30 - 14:00 Lunch Lunch Lunch s Lunch
14:00 - 15:30 A. Reali (L) A. Reali (CT) M. Fernández (CT) h A. Veneziani (CT)
15:30 - 16:00 Coffee Break Coffee Break Coffee Break o
16:00 - 17:30 A. Reali (CT) M. Fernández (CT) A. Veneziani (CT) p

(L) Lecture

(CT) Computational Tutorial

Lecture Topics

  • Miguel Ángel Fernández (Abstract)
  • Lecture 1: The non-linear coupled problem.
    Lecture 2: Stiff Dirichlet-Neumann coupling.
    Lecture 3: Projection based and Robin-Neumann splitting schemes.

    Partitioned solution strategies: example of implementation (master/slave paradigm with PVM);
    Numerical evidence of the added-mass effect (2D exampled using FreeFem++).

    Based semi-implicit scheme (2D example using FreeFem++);
    Explicit Robin-Neumann schemes (2D example using FreeFem++);
    Partitioned implementation using independent fluid and solid solvers (master/slave paradigm with PVM).

    Download material

  • Alessandro Reali (Abstract)
  • Lecture 1: Motivation and introduction to IGA; basics of B-Splines and NURBS; basic IGA implementation ingredients.
    Lecture 2: IGA applications in structural mechanics and biomechanics.
    Lecture 3: IGA collocation methods.

    CT1: Practical implementation of IGA in a simple 1D Matlab code.
    CT2: Practical implementation of IGA in a simple 2D Matlab code, with some examples and extensions.

    Download material

  • Alessandro Veneziani (Abstract)
  • Lecture 1: Reduced models for the cardiovascular system: from 3D to lumped parameter models. Implementation ingredients.
    Lecture 2: Geometrical multiscale modeling of the circulatory system.
    Lecture 3: Data assimilation techniques in computational hemodynamics.

    CT1: Numerical solution of 1D models, fundamentals and networks.
    Numerical solution of geometric multiscale models with partitioned methods (3D/1D, 3D/0D);
    An example of data assimilation in 2D: variational estimation of cardiac conductivities. Download material