Bibliography
Preparatory:
Hartshorne:Chapt. IV (section 4 on Elliptic curves excluded)
Mumford: Curves and their Jacobians
Harris and Morrison: Moduli of curves (Facts about moduli of stable curves as in
Chapter 1 Section A, and Chapter 3 Section A)
For the courses:
GEOMETRY OF MODULI OF HIGHER SPIN CURVES:
J. HARRIS and I. MORRISON: Moduli of curves, Springer
ARBARELLO, CORNALBA, GRIFFITHS, HARRIS: Geometry of algebraic curves I
(1985) and II (2011), Springer
G. FARKAS: Birational aspects of the geometry of M_g, Surveys in
Differential Geometry Vol 14 (2010), 57110.
G. FARKAS: Koszul divisors on moduli spaces of curves, American Journal of
Math. 131(2009), 819867.
G. FARKAS and K. LUDWIG: The Kodaira dimension of the moduli space of Prym
varieties, JEMS 12(2010), 755795.
STABLE CANONICALLY POLARIZED VARIETIES:
J. KOLLAR AND S. MORI: Birational geometry of algebraic varieties, Cambridge
Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998
C. D. HACON AND S. J. KOVACS: Classification of higher dimensional algebraic
varieties, Oberwolfach Seminars, Birkhauser Boston, Boston, MA, 2010
J. KOLLAR AND S. J. KOVACS: Log canonical singularities are Du Bois, J.
Amer. Math. Soc. 23 (2010), no. 3, 791813
S. J. KOVACS: Young person's guide to moduli of higher dimensional
varieties, Algebraic geometrySeattle. Part 2, Proc. Sympos. Pure Math.,
vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 711743.
S. J. KOVACS AND K. SCHWEDE: Hodge theory meets the minimal model program: a
survey of log canonical and Du Bois singularities, preprint,
2009.?arXiv:0909.0993v1 [math.AG]
