|
e de Sistemas |
Este capítulo poderia perfeitamente ser apenas chamado Resolução de Equações, já que podemos encarar um sistema como um caso particular de uma equação, no sentido lato. Mas, nesse caso, a generalidade do título, poderia sugerir um âmbito global, fora do alcance de uma cadeira elementar de Análise Numérica.
O objectivo deste capítulo é simplesmente, de apresentar os métodos mais usuais para aproximar a solução de equações em R ou a solução de sistemas em Rn.
Podemos separar, quer as equações, quer os sistemas, em dois grupos: Lineares e Não Lineares.
Equações |
|
Sistemas |
|
Já no caso de trabalharmos com Equações (ou Sistemas) Não Lineares, os Métodos Directos só nos são possíveis, ou familiares, para casos muito particulares como é o caso da "fórmula resolvente para a equação do segundo grau", já conhecida na Antiguidade.
Mas já as fórmulas resolventes para as equações de terceiro ou quarto grau, apesar de existirem, não nos são familiares, devido à sua complexidade (com efeito resistiram 2000 anos, até que, no sec. XVI, Tartaglia e Cardan as deduziram). Se trabalharmos com equações algébricas de grau superior ao quarto, essa fórmula resolvente já não é possível como foi provado no sec. XIX graças aos trabalhos de Galois e Abel.
Por estas razões torna-se imprescindível obter outros métodos, não directos, para podermos chegar à solução destas equações não lineares. Isso será possível através dos Métodos Iterativos.
Primeiro, retomamos o assunto da Álgebra Linear acerca de Métodos Directos para Sistemas Lineares, mas do ponto de vista numérico, dado que nas aplicações é muito frequente encontrar sistemas de grande dimensão, onde convém optimizar o número de operações realizadas e evitar problemas de condicionamento ou estabilidade, que podem levar a grandes erros.
II.1 - MÉTODOS DIRECTOS para Sistemas Lineares
II.2.1 - MÉTODOS ITERATIVOS para Equações Não Lineares
MÉTODOS ITERATIVOS para Sistemas