Abstracts of IWANASP, September 10 - 12, 2008, Ericeira, Portugal

REMARKS ON FOURIER COEFFICIENTS AND OSCILLATORY INTEGRALS

JAMES LYNESS

Mathematics and Computer Science Division, Argonne National Laboratory and School of Mathematics, University of New South Wales

9700 S. Cass Ave., Argonne, IL 60439 USA

E-mail: lyness@mcs.anl.gov

A mid-nineteenth century result, used by Poisson in his proof of the Euler-Maclaurin summation formula (also an asymptotic expansion) is what is now known as the Fourier coefficient asymptotic expansion. (FCAE). In modern terms, this may be stated as follows: When f(x) is analytic in a region containing [a, b], we have

$$\int_{a}^{b} f(x)e^{ikx}dx = -e^{ikb}\left\{\frac{i}{k}f(b) + \frac{i^{2}}{k^{2}}f'(b) + \dots + \frac{i^{p}}{k^{p}}f^{(p-1)}(b)\right\}$$

$$+ e^{ika}\left\{\frac{i}{k}f(a) + \frac{i^{2}}{k^{2}}f'(a) + \dots + \frac{i^{p}}{k^{p}}f^{(p-1)}(a)\right\} + \frac{i^{p}}{k^{p}}\int_{a}^{b}f^{(p)}(x)e^{ikx}dx.$$

$$(1)$$

This is trivial to prove and can be useful for evaluating a Fourier coefficient for large values of k. In this talk, I *discuss* extensions of this simple formula to one valid for: (1) an integrand having an algebraic singularity at an end-point:

$$I_1 = \int_a^b f(x)(x-a)^\alpha \exp[ikx]dx;$$

(2) an oscillatory integral

$$I_2 = \int_a^b f(x) \exp[ikg(x)]dx;$$

where both f and g are analytic in [a, b].