Abstracts of IWANASP, September 10 - 12, 2008, Ericeira, Portugal

PERIODIC SOLUTIONS OF CONTINUOUS AND DISCRETIZED NON-LINEAR WEAKLY-SINGULAR VOLTERRA EQUATIONS WITH FINITE MEMORY

CHRISTOPHER T.H. BAKER^{1,2} & YIHONG SONG ³

¹ Department of Mathematics, University of Chester, ² School of Mathematics, University of Manchester. ³ Department of Mathematics, Suzhou University

¹ Parkgate Road, Chester, CH1 4BJ, ² Alan Turing Building, Manchester, M13 9PL (Christopher Baker [presenter]) and ³ Suzhou University, Jiangsu 215006, P. R. China (Yihong Song) E-mail: ¹ c.baker@chester.ac.uk, ² cthbaker@ma.man.ac.uk, ³ songyihong@suda.edu.cn

We are motivated by the nonlinear Volterra integral equation

$$\mathbf{x}(t) = \int_{t-\tau}^{t} \mathbf{k}(t,s) \mathbf{f}(s,\mathbf{x}(s)) \mathrm{d}s, \quad \text{for } t \in \mathbb{R} \text{ with } \tau > 0, \ \mathbf{x}(t) \in \mathbb{R},$$
(1)

studied under certain conditions on $k(\cdot, \cdot)$ and $f(\cdot, \cdot)$ that ensure the existence of periodic solutions $x(\cdot)$. When k(t, s) is continuous, it is possible to pick quadrature formulae so that the solutions of discretized version of (1), of the form

$$x(n) = \sum_{j=n-N}^{n} k(n,j) f(j,x(j)), \quad N \in \mathbb{N}, \quad x(n) \in \mathbb{R},$$
(2)

have corresponding periodic solutions $x(\cdot)$. We show how such results can be extended to the case of a weakly-singular kernel k and a modified discretization.