The AdS/CFT Correspondence and Sasaki-Einstein Geometry I: Overview

Dario Martelli (Swansea)

Based on work with:
Gauntlett, Maldacena, Sparks, Tachikawa, Waldram, Yau

Instituto Superior Técnico, Lisbon, Portugal,
June 29 - July 1, 2009
Outline

1. AdS/CFT correspondence and branes at singularities
2. Sasaki-Einstein geometry
3. Basic checks: symmetries, volumes
4. More advanced checks: moduli spaces and “counting” BPS operators
5. Volume minimisation and a-maximisation
6. Some examples
7. AdS$_4$/CFT$_3$ correspondence
8. Beyond the realm of Sasaki-Einstein geometry
The AdS/CFT correspondence

<table>
<thead>
<tr>
<th>Maldacena conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{AdS}_5 \times S^5$ dual to $\mathcal{N} = 4$ $U(N)$ super-Yang-Mills (1997)</td>
</tr>
</tbody>
</table>

Our aim: Study the AdS/CFT correspondence for $0 < N < N_{\text{max}}$ → beautiful interplay with geometry
The AdS/CFT correspondence

Maldacena conjecture

- $\text{AdS}_5 \times S^5$ dual to $\mathcal{N} = 4 \ U(N)$ super-Yang-Mills (1997)
- $\text{AdS}_4 \times S^7$ dual to $\mathcal{N} = 8 \ U(N)_1 \times U(N)_{-1}$ (ABJM 2008)

Our aim: Study the AdS/CFT correspondence for $0 < N < N_{\text{max}}$ → beautiful interplay with geometry
The AdS/CFT correspondence

Maldacena conjecture

- $\text{AdS}_5 \times S^5$ dual to $\mathcal{N} = 4$ $U(N)$ super-Yang-Mills (1997)
- $\text{AdS}_4 \times S^7$ dual to $\mathcal{N} = 8$ $U(N)_1 \times U(N)_{-1}$ Chern-Simons-matter (ABJM 2008)

Our aim:

- Study the AdS/CFT correspondence for $0 < \mathcal{N} < \mathcal{N}_{\text{maximal}}$ → beautiful interplay with geometry
D3-branes at cone singularities

- **Supersymmetric** gauge theories can be engineered placing N D3 branes transverse to a three-fold *conical* singularity X_6

![Diagram of D3 branes and cone]

- For AdS/CFT applications we require that there is a Ricci-flat cone metric $ds^2(X_6) = dr^2 + r^2 ds^2(Y_5)$ [Sometimes it does not exist [Gauntlett, DM, Sparks, Yau]]
Gravity solutions

- The “near-horizon” type IIB supergravity solution is: $\text{AdS}_5 \times Y_5$
- If $Y_5 = S^5 / \Gamma$ is an orbifold, various fractions of supersymmetry can be preserved
- If Y_5 is a smooth Sasaki-Einstein manifold the solution is non singular and preserves $\mathcal{N} = 1$ supersymmetry (8 supercharges)
Gravity solutions

- The “near-horizon” type IIB supergravity solution is: $\text{AdS}_5 \times Y_5$
- If $Y_5 = S^5/\Gamma$ is an orbifold, various fractions of supersymmetry can be preserved.
- If Y_5 is a smooth Sasaki-Einstein manifold the solution is non-singular and preserves $\mathcal{N} = 1$ supersymmetry (8 supercharges).

Gauge theories

- When $X_6 = \mathbb{C}^3/\Gamma$ the gauge theory is the orbifold projection $\mathcal{N} = 4/\Gamma$: a “quiver” gauge theory with gauge group $U(N_1) \times \cdots \times U(N_n)$ [Douglas-Moore].
- When $X_6 = C(Y_5)$ it is harder to identify the gauge theory. If the singularity is toric there are powerful techniques (e.g. brane tilings) for deriving the gauge theory. These are again of quiver type.
Supersymmetric gauge theories

Quivers

- Constructed from microscopic open string d.o.f. on D3-branes
- $\mathcal{N} = 1$ SYM with gauge group $G = U(N_1) \times \cdots \times U(N_n)$
- Coupled to bi-fundamental chiral fields X_i ("matter")
- Full Lagrangian $\mathcal{L} = \mathcal{L}_{YM} + \mathcal{L}_{\text{kin}} + W$

node $= U(N)$ \hspace{1cm} arrow $= (\bar{N}, N)$ chiral field X_i \hspace{1cm} W $=$ polynomial in X_i
M2-branes at cone singularities

- **Supersymmetric** (gauge?) theories should be obtained placing \(N \) \(\text{M2} \) branes transverse to a four-fold **conical** singularity \(X_8 \) [reduce to D2 in the type IIA limit]

\[ds^2(X_8) = dr^2 + r^2 ds^2(Y_7) \]

so that \(Y_7 \) is an **Einstein** manifold
The “near-horizon” 11d solution is $\text{AdS}_4 \times Y_7$. There are more possibilities for Y_7 now:

<table>
<thead>
<tr>
<th>\mathcal{N}</th>
<th>Y_7</th>
<th>$X_8 = C(Y_7)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>weak G_2</td>
<td>$\text{Spin}(7)$</td>
</tr>
<tr>
<td>2</td>
<td>Sasaki-Einstein</td>
<td>Calabi-Yau</td>
</tr>
<tr>
<td>3</td>
<td>tri-Sasakian</td>
<td>hyper-Kähler</td>
</tr>
<tr>
<td>>3</td>
<td>S^7/Γ</td>
<td>\mathbb{C}^4/Γ</td>
</tr>
</tbody>
</table>
M2-branes at cone singularities

- Until 2008 the dual of $\text{AdS}_4 \times S^7$ was not known! ABJM (inspired by BLG) proposed an $\mathcal{N} = 6$ Chern-Simons-matter theory.

- It can be written as an $\mathcal{N} = 2$ quiver theory.

$$\begin{align*}
\text{node} &= U(N) \text{ CS term at level } k_i \\
k_1 &= -k_2 = k \\
W &= \text{polynomial in } X_i
\end{align*}$$

Chern-Simons quivers

- $\mathcal{N} = 2$ CS with gauge group $G = U(N_1) \times \cdots \times U(N_n)$.

- Coupled to bi-fundamental “chiral” fields X_i (“matter”).

- Full Lagrangian $\mathcal{L} = \mathcal{L}_{\text{CS}} + \mathcal{L}_{\text{kin}}^{\text{matter}} + W$.

- Relation to 4d $\mathcal{N} = 1$ [more in the second talk].
M2-branes at cone singularities

- $\mathcal{N} = 1$: squashed \tilde{S}^7 is an example. Dual Chern-Simons theory proposed by [Ooguri-Park]. Essentially a less-supersymmetric completion of the ABJM theory

- $\mathcal{N} = 3$: tri-Sasakian metrics abundant. Examples of Chern-Simons quiver duals proposed by [Jafferis-Tomasiello]

Weak G_2 ($\mathcal{N} = 1$) is too hard. Tri-Sasakian ($\mathcal{N} = 3$) is “too easy”. The Sasaki-Einstein ($\mathcal{N} = 2$) case is again the most interesting to study
Sasaki-Einstein geometry

- Sasaki-Einstein/related geometry allows to make checks of the AdS/CFT correspondence and predictions in the field theory

- Useful characterizations of a Sasakian manifold \mathcal{Y}:
 1. The metric cone $ds^2(X) = dr^2 + r^2 ds^2(Y)$ is Kähler
 2. Locally the metric can be written as a “fibration”

$$ds^2(Y) = ds^2(B) + (d\psi + P)^2$$

where B is Kähler
Sasaki-Einstein geometry

- Sasaki-Einstein/related geometry allows to make checks of the AdS/CFT correspondence and predictions in the field theory

- Useful characterizations of a Sasakian manifold \mathcal{Y}:
 1. The metric cone $ds^2(\mathcal{X}) = dr^2 + r^2ds^2(\mathcal{Y})$ is Kähler
 2. Locally the metric can be written as a “fibration”
 $$ds^2(\mathcal{Y}) = ds^2(\mathcal{B}) + (d\psi + P)^2$$ where \mathcal{B} is Kähler

 - $\frac{\partial}{\partial \psi}$ is a Killing vector ("Reeb") $\Rightarrow U(1)_{R(\text{eeb})}$ isometry
 - $\omega = \frac{d\eta}{2}$, where $\eta = d\psi + P$, is the Kähler two-form on \mathcal{B}

 $$ds^2(\mathcal{B}) \text{ is Einstein} \iff ds^2(\mathcal{Y}) \text{ is Einstein} \iff ds^2(\mathcal{X}) \text{ is Ricci-flat}$$
Some basic checks of AdS$_5$/CFT$_4$

- Isometries G_{iso} of $Y \leftrightarrow$ flavour symmetries of field theories
- $U(1)_{R(\text{eeb})}$ isometry $\leftrightarrow U(1)_R$ R-symmetry of $\mathcal{N} = 1$ field theories
- If $U(1)_R \subset U(1)^3 \subset G_{\text{iso}}$, then Y and X are toric \rightarrow great simplifications. Toric Calabi-Yau singularities are characterized by simple combinatorial data, essentially vectors $v_a \in \mathbb{Z}^3$
Some basic checks of AdS$_5$/CFT$_4$

- Isometries G_{iso} of $Y \leftrightarrow$ flavour symmetries of field theories

- $U(1)_{R(eeb)}$ isometry $\leftrightarrow U(1)_R$ R-symmetry of $\mathcal{N} = 1$ field theories

- If $U(1)_R \subset U(1)^3 \subset G_{iso}$, then Y and X are toric \rightarrow great simplifications. Toric Calabi-Yau singularities are characterized by simple combinatorial data, essentially vectors $v_a \in \mathbb{Z}^3$

$$\langle T^{\mu}_\mu \rangle = c(\text{Weyl})^2 - a(\text{Euler})$$

- Central charge $a = \frac{N^2 \pi^3}{4 \text{vol}(Y)}$ [Henningson-Skenderis]

- R-charges of certain BPS “baryonic” operators $R_a = \frac{N \pi \text{vol}(\Sigma_a)}{3 \text{vol}(Y)}$

Baryonic operators = D3-branes wrapped on supersymmetric Σ_3
Further checks of AdS$_5$/CFT$_4$: matching of moduli spaces

Gauge theory classical moduli spaces of susy vacua (Abelian)

- F-terms: $\mathcal{Z} = \{dW = 0\}$ (a.k.a. “master space”)
- D-terms/mod gauge symmetries: $\mathcal{M} = \mathcal{Z} // U(1)^{n-1}$

- \mathcal{M} is the mesonic VMS: gauge-invariant traces $\text{Tr}[X_1 \ldots]_{\text{loop}}$
- \mathcal{Z} is the baryonic VMS: determinant-like $\text{det}(X_1 \ldots)$
Further checks of AdS$_5$/CFT$_4$: matching of moduli spaces

Gauge theory classical moduli spaces of susy vacua (Abelian)

- **F-terms**: $\mathcal{Z} = \{dW = 0\}$ (a.k.a. “master space”)
- **D-terms/mod gauge symmetries**: $\mathcal{M} = \mathcal{Z} // U(1)^{n-1}$

- \mathcal{M} is the mesonic VMS: gauge-invariant traces $\text{Tr}[X_1 \ldots]_{\text{loop}}$
- \mathcal{Z} is the baryonic VMS: determinant-like $\det(X_1 \ldots)$

Gravity realizations:

- \mathcal{M} is realized simply as $\mathcal{M} = C(Y_5) = X$. Placing N D3-branes at generic positions gives $\mathcal{M}_{N>1} = \text{Sym}^N X$
- Different branches of \mathcal{Z} are realized in the gravity as partial resolutions of the cone singularities X [Klebanov,Murugan], [DM,Sparks]
Counting BPS operators

Problem: “count” chiral BPS operators of a quiver theory, labeled by some “quantum number”

- Geometrically, the problem reduces to “counting” holomorphic functions (sections) on the appropriate moduli space

- E.g. on \(\mathbb{C} \): 1, \(z, z^2, z^3, \ldots \). In general, there are infinitely many holomorphic functions

- Group them into finite sets with definite “quantum numbers”. For example \(\mathbf{R} \)-charges. For toric geometries we can label with \(\textbf{U}(1)^3 \) charges \((n_1, n_2, n_3)\)

- Counting mesonic BPS operators: enumerate holomorphic functions on \(\mathbb{C}(Y_5) = X \to \) equivariant index-character on \(X \) [DM,Sparks,Yau]

- Counting baryonic BPS operators: enumerate holomorphic sections on \(\mathcal{Z} \). More complicated. [Hanany et al]
Counting BPS operators

- Toric case: holomorphic functions ↔ integral points inside the cone \mathcal{C}^* (recall $X \simeq U(1)^3 \rightarrow \mathcal{C}^*$)

\[
\mathcal{C}(q, X) = \sum_{n \in \mathcal{C}^*} q_1^{n_1} q_2^{n_2} q_3^{n_3}
\]

Computed by localization techniques

- Another physical interpretation: the VMS of BPS D3 wrapped in $S^3 \subset AdS_5$ ("dual-giant gravitons") is $\mathcal{C}(Y_5)$ [DM,Sparks]

- $\mathcal{C}(q, X)$ is the partition function of such states. Grand-canonical partition function

\[
\mathcal{Z}(\zeta, q, X) = \exp \left[\sum_{n=1}^{\infty} \frac{\zeta^n}{n} \mathcal{C}(q^n, X) \right] = \sum_{N=0}^{\infty} \zeta^N Z_N(q, X)
\]

Z_N counts hol functions on $\text{Sym}^N X \rightarrow \text{mesonic BPS operators for } N > 1$
Volume minimisation and a-maximisation

Slogan: Sasaki-Einstein manifolds minimise volumes [DM,Sparks,Yau]

- More precisely: a Sasakian manifold, as a function of the Reeb vector field, has minimal volume when the metric becomes Einstein.

- If the geometry is toric it is easy to visualize: the Reeb $b \in \mathbb{R}^3$. The volume $\text{vol}(Y)$ of the Sasakian “horizon” Y as a function of b is a pole in $C(q, X)$:

 $$\text{vol}(Y)_b = \lim_{t \to 0} t^3 C(q_i = e^{-tb_i}, X)$$

- Minimizing $\text{vol}(Y)_b$ gives a b_*, which then can be used to compute the a central charge and the R-charges of BPS operators:

 $$a = \frac{N^2 \pi^3}{4 \text{vol}(Y)_{b_*}} \quad \Delta_{\text{mesonic}}[n_i] = \sum_{i}^3 b^i_* n_i$$
Volume minimisation and a-maximisation

- In 4d $\mathcal{N} = 1$ SCFTs this is the geometric counterpart of a-maximisation [Intriligator, Wecht]

$$\langle T^{\mu}_{\mu} \rangle = c(\text{Weyl})^2 - a(\text{Euler}) \quad a = \frac{3}{32} (3\text{Tr}R^3 - \text{Tr}R)$$

Introducing a “trial” $R_t = R_0 + \sum_1 s^I F_I$; a is maximised over the possible R-symmetries
Volume minimisation and a-maximisation

- In 4d $\mathcal{N} = 1$ SCFTs this is the geometric counterpart of a-maximisation [Intriligator, Wecht]

$$\langle T^\mu_{\mu} \rangle = c(\text{Weyl})^2 - a(\text{Euler}) \quad a = \frac{3}{32}(3\text{Tr}R^3 - \text{Tr}R)$$

Introducing a “trial” $R_t = R_0 + \sum_I s^I F_I$; a is maximised over the possible R-symmetries

- In 3d SCFTs, the geometry predicts a field theory technique to determine the R-symmetry of $\mathcal{N} = 2$ CS theories
Examples of AdS$_5$/CFT$_4$

A complete list of dual pairs where both the Sasaki-Einstein metric and the dual field theory are known explicitly

1. $T^{1,1}$ metric \rightarrow Klebanov-Witten quiver (1998)

3. $L^{a,b,c}$ metrics [Cvetic, Lu, Page, Pope] \rightarrow $L^{a,b,c}$ quivers [several people] (2005)

- Lessons from $T^{1,1}$: first example of non-orbifold AdS/CFT duality; Klebanov-Strassler cascade; and many more.

- Lessons from $Y^{p,q}$: demonstrated that the volumes of SE manifolds can be irrational multiples of $\text{vol}(S^5)$. Reflecting the implications of a-maximization.
Examples

Klebanov–Witten (conifold)
AdS$_4$/CFT$_3$ correspondence

Q: What are the fundamental degrees of freedom on M2-branes?
AdS$_4$/CFT$_3$ correspondence

Q: What are the fundamental degrees of freedom on M2-branes?
A: Despite the recent progress, this is not really clarified

The lesson of ABJM is that presumably, we should look for Chern-Simons-matter theories

Sasaki-Einstein results make predictions on the dual $\mathcal{N} = 2$ Chern-Simons theory

There are a number of proposals for the CFT$_3$ duals to various AdS$_4$ geometries

$\mathcal{N} = 2$ proposals are based on a general result about moduli spaces, which I will discuss in the part II
\(\mathcal{N} = 2 \ AdS_4/CFT_3 \): the regular Sasaki-Einstein manifolds

- Before 2004 three known examples of Sasaki-Einstein in 7d (different generalisations of \(T^{1,1} \)):

 \[M^{3,2}, \ Q^{1,1,1}, \ V_{5,2} \]

- Isometries: \(SU(3) \times SU(2) \times U(1), \ SU(2)^3 \times U(1), \ SO(5) \times U(1) \)

- They are regular i.e. the volumes are rational multiples of \(\text{vol}(S^7) \)

- In the end-'90s proposals for gauge theory duals were given → problematic; however not Chern-Simons gauge theories

- ABJM wisdom: look at \(\mathcal{N} = 2 \) Chern-Simons-matter quivers!

- Other ABJM insight: do not attempt to realise all the symmetries in the Lagrangian!
A proposed dual to $\text{AdS}_4 \times M^{3,2}/\mathbb{Z}_k$

[DM,Sparks]

- The Chern-Simons levels are $(k_1, k_2, k_3) = (k, k, -2k)$
- The superpotential is $W = \epsilon_{ijk} \text{Tr} (X_i Y_j Z_k)$
- As a 4d theory it corresponds to the orbifold model $\mathbb{C}^3/\mathbb{Z}_3$
- By construction the moduli space of this CS quiver is $X = C(M^{3,2}/\mathbb{Z}_k)$
- A (partial) check: dimensions of some operators match Kaluza-Klein harmonics on $M^{3,2}/\mathbb{Z}_k$ [Franco,Klebanov,Rodriguez-Gomez]
Proposed duals to $\text{AdS}_4 \times Q^{1,1,1}/\mathbb{Z}_k$

Two different proposed quivers. [Franco, Hanany, Park, Rodriguez-Gomez]

- Chern-Simons levels $(k, -k, k, -k)$.
- The superpotential is $W = \text{Tr} (C_2 B_1 A_1 B_2 C_1 A_2) - (A_1 \leftrightarrow A_2)$
- It is not well-defined as a 4d theory
Proposed duals to $\text{AdS}_4 \times \mathbb{Q}^{1,1,1}/\mathbb{Z}_k$

[Aganagic]

- Chern-Simons levels $(k, 0, -k, 0)$

- The superpotential is $W = \epsilon_{ik}\epsilon_{jl}\text{Tr} (A_i B_j C_k D_l)$

- As a 4d theory it corresponds to the an orbifold $\mathbb{T}^{1,1}/\mathbb{Z}_2$

- Both models pass some basic checks: moduli spaces, and matching of some dimensions with Kaluza-Klein spectrum

It is not known if ultimately only one of them is the correct theory; or perhaps the two are related by some duality
\(\mathcal{N} = 2 \) AdS\(_4\)/CFT\(_3\): the irregular SE manifolds

- [Gauntlett,DM,Sparks,Waldram]: explicit Sasaki-Einstein metrics \(Y_{p,k}(B_{2n}) \) in any \(D = 2n + 3 \) dimension (2004)

- E.g. \(Y_{p,k}(\mathbb{CP}^2) \) is a generalisations of \(Y_{p,q} \) in \(d = 5 \)

 Proposed family of CS quivers [DM,Sparks] has same quiver as \(M^{3,2} = Y^{2,3}(\mathbb{CP}^2) \), but CS levels \((k_1, k_2, k_3) = (2p-k, -p, k-p) \)

\[
\begin{align*}
R_a = \frac{\pi \text{vol}[\Sigma_a]}{6 \text{vol}(Y_7)} \\
\Sigma_a \text{ supersymmetric 5-submanifolds}
\end{align*}
\]

- These examples are of “irregular” type: volumes are non rational multiples of \(\text{vol}(S^7) \)
- Can assign geometric R-charges \(\rightarrow \) irrationals!
Status of AdS$_4$/CFT$_3$ ($\mathcal{N} \geq 2$)

From the explicit examples and the general results we can infer some lessons about AdS$_4$/CFT$_3$

1. Supersymmetry not realized manifestly in ABJM [Gustavsson, Rey], [Kwon, Oh, Sohn]

2. Flavour symmetries not manifest either: in the “$k = 1$” cases we always observe an isometry larger than the symmetries of the proposed Lagrangians

3. In the $\mathcal{N} = 2$ case the conjectured CFTs have generically irrational R-charges! It is currently not known how to compute R-charges in the field theory

4. Volume minimization of Sasaki-Einstein \mathbb{Y}_7 strongly suggests a 3d version of a-maximisation
“Counting” of mesonic BPS traces goes through. We can predict the entire BPS Kaluza-Klein spectrum of R-charges.

Account of non-traces is much more subtle. Monopole operators involved [Benna,Klebanov,Klose]

Different duals to a given $\text{AdS}_4 \times Y_7$ solution. Some are understood as related by 3d mirror symmetry (M-theory lifts), some as 3d Seiberg dualities. There is not yet a clear picture though.

We still lack an “M-theoretic” understanding of the origin of these Chern-Simons theories.
Beyond Sasaki-Einstein: I

Some non-Sasaki-Einstein geometries with interesting AdS/CFT applications

- **Warped AdS$_5$ geometries with non-Freund-Rubin type of fluxes**
 - AdS$_5 \times Y_5$ in type IIB: e.g. mass-deformations of SCFT (e.g. [Pilch, Warner])
 - AdS$_5 \times Y_6$ in M-theory: recently [Gaiotto, Maldacena] identified the field theory duals of $\mathcal{N} = 2$ geometries. There are also several $\mathcal{N} = 1$ explicit solutions [Gauntlett, DM, Sparks, Waldram]!

- Supersymmetry implies existence of $U(1)_R$. a-maximization implies that these Y_5, Y_6 manifolds have generically **irrational** volumes

- Interesting to set up **volume minimization** for these geometries. Hitchin’s “generalized geometry” may be useful [Gabella, Gauntlett, Palti, Sparks, Waldram]
Beyond Sasaki-Einstein: II

- $\mathcal{N} \geq 2$ AdS$_4 \times Y_7$ backgrounds can be reduced to supersymmetric type IIA backgrounds with RR F_2: $[F_2] \sim$ Chern-Simons levels

- If Y_7 is a Sasaki-Einstein manifold, $k_{\text{tot}} = \sum_i k_i = 0$ [DM,Sparks]

- The sum of the CS levels k_{tot} is proportional to the Romans mass F_0 → supersymmetric AdS$_4 \times M_6$ geometries in massive type IIA [Gaiotto,Tomasiello]

- Explicit massive type IIA solutions

 1. $\mathcal{N} = 1$ deformation of S^7 (ABJM) [Tomasiello]
 2. $\mathcal{N} = 2$ deformation of $M^{3,2}$ [Petrini,Zaffaroni]

- The field theory analysis suggests a canonical deformation of Sasaki-Einstein solutions. (Recent paper by [Luest,Tsimpis])
Beyond Sasaki-Einstein: III

Fractional branes: the best understood case is the Klebanov-Strassler cascade. Adding fractional branes and deforming the singular conifold geometry leads to a cascade of Seiberg dualities and confinement in the IR

1 In type IIB, deforming many other cones is not possible. Interpreted as runaway behaviour in the 4d $\mathcal{N} = 1$ field theory. Supergravity dual of this not available. Perhaps the perspective in [Maldacena,DM] will be useful

2 In M-theory, fractional M2-branes behave differently. Correspond to torsion fluxes, rather subtle to detect [ABJ]

Possible to deform some eight-fold singularities, and add fluxes → strong indication of phenomenon analogous to the KS cascade for $\mathcal{N} = 2$ Chern-Simons theories (DM,Sparks WIP). Recent related paper [Aharony,Hashimoto,Hirano,Ouyang]