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Abstract

This is a PRELIMINARY and UNFINISHED set of personal notes. They are not
intended as an exhaustive presentation of any particular topic, and in particular they do
not include a complete set of references.
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1 Introduction

A good warm-up for the relation between GW invariants and modular forms is the example

of the torus, the simplest nontrivial CY manifold. We want to compute the generating
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functionals of GW invariants of genus g in the class d

Fg =
∑

g,d

Ng,dq
d (1.1)

where q = e2πit, and t is the complexified Kähler class of the torus. It is useful to put all

of these invariants in a single generating function

Z(q, gs) = exp
( ∞∑

g=1

g2g−2
s Fg

)
. (1.2)

The invariants vanish for g = 0.

This generating functional turns out to have a simple representation. This is due to

the connection of this theory to the counting of branched coverings (or, in physics, to

YM in two dimensions). In particular, it is known that this partition function can be

computed as

Ẑ(q, gs) =
∞∑

d=0

qd
∑

R, ℓ(R)=d

egsκR, (1.3)

where Ẑ(q, gs) = q
1
24Z(q, gs), the second sum is over Young tableaux with d boxes, and

κR is given by

κR =
∑

i

li(li − 2i+ 1), (1.4)

where li are the lengths of rows in the Young tableau. The above formula has been

rederived recently in [9]. By using the fermionic picture of U(∞) representation theory,

this quantity can be computed immediately as

Ẑ(q, gs) =

∮
dz

2πiz

∞∏

n=1

(1 + zqn−1/2egs(n−1/2)2/2)(1 + z−1qn−1/2e−gs(n−1/2)2/2), (1.5)

see [11] for the details of this derivation. One consequence of this formula is that the Fg

are deeply related to modular forms, where the q variable is the one introduced above.

For example, if one uses the product formula

ϑ3(z|τ) =
∑

n∈Z

qn2/2zn =
∞∏

n=1

(1 − qn)(1 + zqn−1/2)(1 + z−1qn−1/2), (1.6)

one finds that

F1(q) = − log η(q). (1.7)
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With some more work one finds

F2(q) =
1

103680
(10E3

2 − 6E2E4 − 4E6), (1.8)

and in general one has that Fg are quasimodular forms of weight 6g − 6.

This is a very beautiful result and confirms many ideas about mirror symmetry in

the very simple case of T2. Interestingly enough, the phenomenon persists in higher

dimensions, although we are still far from writing compact formulae like (1.5) for the

full generating functional. The physics behind this is based on heterotic/type II duality,

and it was proposed already some time ago by Kachru and Vafa [18]. For this relation

to modularity to hold, one has to consider a special class of CY threefolds, namely K3

fibrations [22].

2 K3 surfaces

A mandatory reference for K3 surfaces in string theory is the excellent review [2].

2.1 Some general results on algebraic surfaces

This subsection is mostly based on standard references on algebraic surfaces [5, 16, 4].

Algebraic surfaces have numerical invariants which are preserved under birational

maps. Given an algebraic surface X, its irregularity is defined as

q(X) = h1(X,OX) (2.1)

and one has

2q(X) = b1(X). (2.2)

The geometric genus pg(X) is defined as

pg(X) = h2(X,OX) = h0(X,O(KX)), (2.3)

where KX is the canonical line bundle of X and we have used Serre duality. For algebraic

surfaces, we have the general relation

b+2 (X) = 2pg(X) + 1 (2.4)

The holomorphic Euler characteristic is defined as

χ(OX) =
∑

n

(−1)nhn(X,OX), (2.5)
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and for an algebraic surface it is given by

χ(OX) = 1 − q(X) + pg(X). (2.6)

Noether’s formula relates the holomorphic Euler characteristic to the usual topological

Euler characteristic χ(X)

χ(OX) =
1

12
(K2

X + χ(X)). (2.7)

An important object in Algebraic Geometry is the set of complex line bundles on a

complex manifold M . It is called the Picard group or Picard lattice of M and it can be

defined as

Pic(M) = H1(M,O∗
M ), (2.8)

where O∗
M is the sheaf of nowhere vanishing holomorphic functions on M . The Picard

group can be given another description by using the short exact sequence of sheaves

0 → Z → OM → O∗
M → 0, (2.9)

which leads to the long sequence in sheaf cohomology

0 → H1(M,Z) → H1(M,OM) → Pic(M) → H2(M,Z) → H2(M,OM) → · · · (2.10)

The map

c1 : Pic(M) → H2(M,Z) (2.11)

is given by taking the first Chern class of the line bundle. The kernel of this map is

isomorphic to the image of H1(M,OM ) ≃ H(0,1)(M) in Pic(M). Another useful result is

that the map

H2(M,Z) → H2(M,OM) (2.12)

is obtained as ([16], p. 163)

H2(M,Z) → H2(M,C) → H(0,2)(M), (2.13)

where the last map is the projection of the de Rham cohomology of M with complex

coefficients onto the (0, 2) part.

Another way of thinking about Pic(M) is as an extension

0 → T → Pic(M) → NS(M) → 0 (2.14)

where

T =
H1(M,OM)

H1(M,Z)
(2.15)
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is a complex torus, and NS(M) ⊂ H2(M,Z) is the so-called Néron-Severi lattice of M

(see [5], p. 6).

We will be interested in the particular case in which M is simply connected, therefore

H(0,1)(M) = 0, therefore T = 0, and (2.11) is injective. Since the kernel of (2.12) is

H(1,1)(M), we find

Pic(M) ≃ H2(M,Z) ∩H(1,1)(M). (2.16)

If we denote

ρ(M) = rk Pic(M), (2.17)

we have that

ρ(M) ≤ h1,1(M). (2.18)

The rank of the Picard lattice, also called the Picard number of M , depends on the

complex structure.

If M is an algebraic manifold, all classes in H(1,1)(M) can be realized in terms of

holomorphically embedded curves (this is the Lefschetz theorem on (1, 1)-classes, see [16]

pp. 162–4). Therefore, the Picard lattice can be also defined as

Pic(M) = {C ∈ H2(M,Z) : C holomorphically embedded}. (2.19)

For M = IPk, one has ρ(IPk) = 1 and it is generated by the hyperplane line bundle [H ].

We will also denote

x = c1([H ]), (2.20)

which is the hyperplane class.

Finally, we will need some general results on hypersurfaces in projective spaces. The

total Chern class of IPk is given by

c(IPk) = (1 + x)k+1, (2.21)

and the canonical line bundle to IPk is given by ([16], p. 146)

KIPk = [−(k + 1)H ]. (2.22)

The adjunction formula says that the dual normal bundle N∗
XV to a hypersurface (which

is a line bundle) is given by

N∗
V = [−V ]

∣∣
V
, (2.23)

where [D] denotes the line bundle associated to a divisor. On the other hand, it is

well-known (see [16], pp. 165–7) that, if V is given by the zero locus of a homogeneous

polynomial of degree d, then

[V ] = [dH ]. (2.24)
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This is because homogeneous polynomials of degree d are in one-to-one correspondence

with global sections of Hd:

Symd(Ck+1∗) ≃ H0(IPk,O(Hd)), (2.25)

and this space has dimension (
d+ k
k

)
. (2.26)

Therefore, if the divisor [V ] is given by the zero locus of a homogeneous polynomial of

degree d, it can be represented as the zero locus of a section of Hd, and (2.24) follows.

Another standard result we will use is the Lefschetz hyperplane theorem. We first recall

a few standard facts. A line bundle L on a complex manifold is positive if there exists

a metric on L such that its curvature is a positive (1, 1)-form i.e. a form that leads to

a positive-definite Hermitian inner product in the holomorphic tangent space. The basic

example of a positive line bundle is the hyperplane bundle H on IPk, since ix/(2π) in

(2.20) is precisely the (1, 1) form associated to the Fubini-Study metric on IPk ([16], p.

150).

The Lefschetz hyperplane theorem goes as follows ([16], p. 156). Let V ⊂ M be a

smooth hypersurface of an n-dimensional compact, complex manifold M with L = [V ]

positive. Then, the map

Hq(M,Q) → Hq(V,Q) (2.27)

induced by the inclusion V →֒ M , is an isomorphism for q ≥ n − 2 and injective for

q = n− 1. This theorem applies in particular to the case in which V is a hypersurface of

the projective space IPk given by a homogeneous polynomial of degree d > 0. If k > 2,

then it follows from the hyperplane theorem and the simple-connectedness of projective

spaces that b1(V ) = 0. We conclude that any hypersurface in projective space of complex

dimension ≥ 2 is simply-connected.

We will also need some results on algebraic curves on algebraic surfaces. Consider a

curve C on a surface X. The adjunction formula states that

KC = (KX + C)
∣∣
C
. (2.28)

The genus of C is given by

g(C) =
1

2
(2 − χ(C)), (2.29)

and the Euler characteristic can be computed as minus the degree of the canonical bundle

to C,

χ(C) = −degKC = −
∫

C

c1(KC) = −KX · C − C2, (2.30)
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so we find the genus formula

g(C) =
KX · C + C2

2
+ 1. (2.31)

Using Riemann-Roch one can also compute

χ(OC) = χ(OX) +
1

2
(C2 − C ·KX) = g(C) + d̂+ χ(OX) − 1, (2.32)

where

d̂ = −KX · C (2.33)

is the degree of the curve C with respect to the anticanonical class of X. The deformation

space of the curve is given by IPH0(C), and if the appropriate vanishing holds, the rank

of H0(C) can be computed from χ(OC). We then find that the deformation space for C

is a projective space given by

IPχ(OC)−1. (2.34)

Example. For X = IP2, let us define the degree d of the curve as

[C] = d[H ], (2.35)

where H is the hyperplane class. This means that the homology class of C in IP2 is given

by dH . From (2.22) we have

KX = −3H −→ g(C) =
1

2
(d− 1)(d− 2), (2.36)

where we also used that H2 = 1 (i.e. two lines intersect generically at one point). In this

case,

χ(OC) =
1

2
(d+ 1)(d+ 2). (2.37)

2.2 Elementary properties of K3 surfaces

2.2.1 Definition and numerical invariants

In Algebraic Geometry, a K3 surface X is a compact, Kähler surface which has q(X) = 0

and trivial canonical bundle,

KX = 0. (2.38)

This information is enough to determine all numerical and topological invariants of X.

First, by (2.2) we have that a K3 surface is simply-connected. From (2.38) we find

c1(X) = 0. (2.39)
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Therefore, a K3 surface is a Calabi-Yau manifold of complex dimension 2. From this

condition it also follows that

h2,0 = 1 or pg(X) = 1. (2.40)

With this we can already compute the holomorphic Euler characteristic of a K3 surface:

χ(OX) = 2, (2.41)

and from (2.4) we find that for a K3 surface

b+2 (X) = 3. (2.42)

Using now Noether’s theorem (2.7) we find

χ(X) = 24. (2.43)

From here we immediately deduce

b2(X) = 22, σ(X) = −16. (2.44)

and we check

3σ(X) + 2χ(X) = K2
X = 0. (2.45)

We can now write the Hodge diamond of a K3 surface as

1
0 0

1 20 1
0 0

1

(2.46)

As a lattice, the second cohomology of a K3 surface is of the form

H2(X,Z) = Γ3,19, (2.47)

where the inner product Q is simply the cup product in cohomology, and we will denote

Q(α, β) = (α, β). It follows from Poincaré duality that the two-cohomology lattice of a

four-manifold is unimodular (i.e. detQ = ±1). On the other hand, for four-manifolds

one has that

(α, α) = (c1(X), α) mod 2. (2.48)

This follows from Wu’s formula and the fact that c1(X) is an integer lift of w2(X) (see

[14], Chapter 1). Since c1(X) = 0 for a K3 surface, it follows that the lattice (2.47) is
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even. Standard results on the classification of unimodular even lattices (see for example

[14], chapter 1) show that the lattice (2.47) is of the form

Γ3,19 = 2E8(−1) ⊕ 3 Γ1,1, (2.49)

where Γ1,1 is the unimodular even lattice with intersection form
(

0 1
1 0

)
. (2.50)

2.2.2 K3 surface as a CY manifold

Since a K3 surface is a two-dimensional CY manifold, it has a globally defined, nowhere

vanishing holomorphic (2, 0) form Ω. This form is in fact the generator of H(2,0)(X). As

a form in H2(X,C), we can write it as

Ω = x+ iy, (2.51)

where x, y are in H2(X, IR). From the obvious identities

∫

X

Ω ∧ Ω = 0,

∫

X

Ω ∧ Ω =

∫

X

|Ω|2 > 0 (2.52)

one deduces

x · y = 0, x2 = y2 > 0. (2.53)

This means that x, y are linearly independent vectors which span a spacelike plane in

H2(X, IR). This plane will be also denoted by Ω. As in the case of CY threefolds, the

periods of Ω parameterize the deformations of complex structure.

2.2.3 Lattices

The subspace H2,+(X, IR) of self-dual forms on X is spanned by the Kähler form J and

the form Ω. The fact that J is spacelike is due to the fact that

Vol(X) =

∫

X

J ∧ J > 0. (2.54)

This also follows from the decomposition

H2,+(X,C) = C · J ⊕H2,0(X,C) ⊕H0,2(X,C) (2.55)

which is valid for two-dimensional Kähler manifolds. We will denote by Σ the space

H2,+(X, IR) regarded as a three-dimensional plane in H2(X, IR).
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It is convenient to divide the lattice H2(X,Z) into the Picard lattice and its comple-

ment Λ, called the transcendental lattice:

H2(X,Z) = Pic(X) ⊕ Λ, (2.56)

where Λ has rank 22 − ρ(X). Notice that the maximal Picard number of a K3 surface is

ρ(X) ≤ 20. (2.57)

For an algebraic K3 surface, i.e. a K3 surface that can be embedded in a projective space

through algebraic equations, the Picard number is at least one. This is because the Kähler

form inherited from the projective space is an integer (1, 1) form. Since this is a spacelike

element of H2,+(X, IR), the number of spacelike elements in Pic(X) is at least one. It can

not be greater than this, however, since we know that Σ is spanned by J and Ω, which

is not in the Picard lattice (it has Dolbeault bidegree (2, 0)). We then conclude that the

Picard lattice of any algebraic K3 surface has signature

(1, ρ(X) − 1). (2.58)

It then follows that the transcendental lattice Λ has signature

(2, 20 − ρ(X)), (2.59)

where the two spacelike directions correspond to Ω, which can be viewed as

Ω = Σ ∩ (Λ ⊗ IR). (2.60)

We can represent the full interplay of lattices and planes in figure 1.

2.3 First model of a K3 surface: quartic in IP3

An explicit construction of a K3 surface can be made as follows. Since we want a surface,

we can look for a projective hypersurface X in IP3 of the form

xd
0 + xd

1 + xd
2 + xd

3 = 0. (2.61)

Let us show that, for an appropriate choice of d, this is indeed a K3 surface. By the

Lefshetz hyperplane theorem, this hypersurface is simply-connected. The only thing to

impose is then that c1(X) = 0. We first notice that the tangent bundle of IP3 along X

satisfies

T IP3
∣∣
X

= TX ⊕NX (2.62)
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Ω

J

Σ
Λ

Figure 1: This represents the planes Σ and the plane spanned by the transcendental
lattice Λ. The Kähler form is perpendicular to Λ and belongs to the Picard lattice. The
intersection of Λ and Σ is the plane Ω.

where TX and NX are respectively the tangent and normal bundle to X. The total Chern

class satisfies, by Whitney’s formula,

c(IP3) = c(TX) · c(NX). (2.63)

Using now (2.21), (2.24) and (2.23), we obtain for the hypersurface (2.61),

c(TX) =
(1 + x)4

1 + dx
= 1 + (4 − d)x+ · · · . (2.64)

Therefore, c1(X) = 0 if and only if d = 4 in (2.61).

We can of course consider a more general quartic equation
∑

i+j+k+l=4

aijklx
i
0x

j
1x

k
2x

l
3 = 0. (2.65)

This describes a family of K3 surfaces parameterized by 35 − 1 = 34 parameters (the

number 35 comes from (2.26) with d = 4, k = 3, and we subtract an overall rescaling of

the equation).

2.4 Second model of K3: Kummer surface and orbifolds

Consider a torus T2, and the following Z2 action

z → −z. (2.66)

12



This has four fixed points,

(0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2), (2.67)

so the quotient T2/Z2 is an orbifold. Similarly, we can consider a four-dimensional orbifold

by taking T4 = T2 ×T2 and the symmetry

(z1, z2) → (−z1,−zz). (2.68)

This has 16 fixed points, obtained by doing the Cartesian product of the two sets of fixed

points (2.67). Let us consider the orbifold

Xo = T4/Z2 (2.69)

where the Z2 symmetry is given by (2.68). We have b1(Xo) = 0 , since the basis of one

forms of T4 given by dxi, i = 1, · · · , 4, is projected out by the Z2 symmetry. We have

however six two-forms

dxi ∧ dxj (2.70)

which are preserved by the quotient. This leads to

H2(Xo) = 3Γ1,1. (2.71)

This orbifold is clearly singular, since it has 16 singularities which are locally of the form

C2/Z2. (2.72)

One can smooth out Xo by blowing up these singularities. This leads to 16 exceptional

curves with self-intersection −2, and we end up with a K3 surface which is called a

Kummer surface.

2.5 Moduli of K3 surfaces

We will now discuss various moduli spaces associated to K3 surfaces: the moduli space of

complex structures, the moduli space of Einstein metrics, the moduli space of K3 surfaces

with a B field, and the moduli spaces of algebraic K3 surfaces with a B field. Good

references for this subsection are [2, 3, 27].

We start with the moduli space of complex structures. As in the CY case, this will be

given (thanks to the Torelli theorem) by the possible periods of the homolorphic 2-form

Ω. To compute the periods, we choose a basis {ei}i=1,··· ,b2(X) of the lattice H2(X,Z). Such

a choice gives a so-called marked K3 surface. The periods are given by

ui =

∫

ei

Ω. (2.73)
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If we denote by {ωi}i=1,··· ,b2(X) ∈ H2(X,Z) the dual 2-forms, such that

∫

ei

ωj = δi
j, (2.74)

then ∫

X

ωi ∧ ωj = Cij , (2.75)

where Cij is the intersection matrix of the lattice H2(X,Z). It follows from the above

that we can write

Ω = uiωi. (2.76)

Notice that the ui ∈ C3,19 are endowed with a natural metric induced by the lattice

〈u, v〉 = Ciju
ivj (2.77)

with signature (3, 19). The period map can be regarded as a map

π : (X, ei) →
O(3, 19)

O(2) × O(1, 19)
(2.78)

where the coset space is parameterized by the ui. To understand this in more detail,

notice first that the form Ω is defined up to an overall rescaling by a nonzero scalar, so

that the periods ui are projective coordinates and are defined up to u ∼ λu (this is as in

the CY case). Also, due to (2.52), the periods ui satisfy

〈u, u〉 = 0, 〈u, u〉 > 0, (2.79)

and the image of the period map is then the set

{
u ∈ C3,19 : 〈u, u〉 = 0, 〈u, u〉 > 0

}
/(u ∼ λu). (2.80)

But this is precisely a representation of the above coset. Another way to see this is that

the period map gives the position of the spacelike 2-plane Ω inside IR3,19, and this space

is parameterized by the above Grassmannian. We then conclude

Mcomplex structures(K3) =
O(3, 19)

O(2) × O(1, 19)
(2.81)

The moduli space of Einstein metrics can be obtained similarly thanks to the famous

theorem of Yau. This theorem says that, if we fix the complex structure and the coho-

mology class of the Kähler form, there exists a unique Ricci-flat metric on X. But since
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the spacelike plane Σ is spanned by precisely these elements, a choice of Σ, the spacelike

3-plane in IR3,19, will lead to a metric. The space of such planes is again a Grassmannian,

and we deduce

MEinstein metrics(K3) =
O(3, 19)

O(3) ×O(19)
(2.82)

In string theory, it is important to include a B field to complexify the Kähler form as

follows:

ω = iJ +B, (2.83)

with the condition that B is a (1, 1) form, and that J leads to a positive volume (i.e.

that J is inside the Kähler cone). We now want to determine the moduli space of K3

surfaces together with a B field. We first define another period vector by considering the

full cohomology lattice of the K3 surface:

H∗(X,Z) = U ⊕H2(X,Z) = Γ4,20, (2.84)

where

U = H0(X,Z) ⊕H4(X,Z) (2.85)

is a lattice of type Γ1,1 lattice. We now associate to ω the generalized period

ω → Πω =
(
1,−1

2

∫

X

ω ∧ ω,
∫

ei

ω,
)
∈ C4,20. (2.86)

Notice that

Re(Πω) = (1,
1

2
(J ∧ J − B ∧B), B), Im(Πω) = (0, J ∧B, J). (2.87)

Notice that the real and imaginary parts of Πω, together with the real and imaginary

parts of the standard period vector

ΠΩ =
(
0, 0,

∫

ei

Ω
)

(2.88)

span a four-dimensional spacelike plane Π in IR4,20, endowed with the metric 〈 , 〉 inherited

from the lattice Γ4,20. This is easy to see by computing

〈Πω,Πω〉 = 0, 〈Πω,Πω〉 > 0, (2.89)

or, equivalently,

〈Re(Πω),Re(Πω)〉 = 〈Im(Πω), Im(Πω)〉 =

∫

X

J ∧ J > 0,

〈Re(Πω), Im(Πω)〉 = 0.

(2.90)
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These four vectors are independent, due to the second equality in (2.90) and

〈ΠΩ,Πω〉 =

∫

X

Ω ∧ ω = 0, 〈ΠΩ,Πω〉 =

∫

X

Ω ∧ ω = 0, (2.91)

which vanish by bidegree reasons: Ω and Ω are (2, 0) and (0, 2) forms, respectively, while

ω is a (1, 1) form. The moduli space of K3 surfaces with a B field will be now given by

the moduli of spacelike planes Π in IR4,20, which is again a Grassmannian. We conclude,

Mmoduli and B field(K3) =
O(4, 20)

O(4) ×O(20)
(2.92)

We finally consider the moduli space of algebraic K3 surfaces with a B field, which

is the moduli space we will be mostly more interested about. On an algebraic surface,

some of the lattice directions in Γ3,19 belong to the Picard lattice, and they are of type

(1, 1), therefore they cannot be paired with the holomorphic (2, 0) form Ω. This means

that only the transcendental lattice can be paired to Ω, and only the Picard lattice can

be paired to ω. To analyze the resulting moduli spaces, let us write

H∗(X,Z) = Υ ⊕ Λ, (2.93)

where

Υ = U ⊕ Pic(X) (2.94)

is usually called the quantum Picard lattice. The quantum Picard lattice has signature

(2, ρ(X)). We now choose bases for both the Picard lattice and the transcendental lattice,

which will be denoted by {pi}i=1,··· ,ρ(X) and {ti}i=1,··· ,22−ρ(X). We consider now the periods

TΩ =

∫

ti

Ω ∈ C2,20−ρ(X), (2.95)

and

Pω =
(
1,−1

2

∫

X

ω ∧ ω,
∫

pi

ω,
)
∈ C2,ρ(X). (2.96)

By the same arguments we have used before, we have that

〈TΩ, TΩ〉 =0, 〈TΩ, TΩ〉 > 0,

〈Pω, Pω〉 =0, 〈Pω, Pω〉 > 0
(2.97)

It follows that the periods (2.95) and (2.96) live in the corresponding cosets, and we

conclude:

Mcomplex structures(algebraic K3) =
O(2, 20− ρ(X))

O(2) × O(20 − ρ(X))
(2.98)
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and

Mcomplexified Kahler(algebraic K3) =
O(2, ρ(X))

O(2) × O(ρ(X))
(2.99)

2.6 Curves on K3 surfaces

Let C be a curve on a K3 surface. Since the canonical bundle of K3 is trivial, one finds

the simple genus formula

g(C) =
[C]2

2
− 1. (2.100)

In particular, for a curve to have genus 0 (i.e. to be rational) we necessarily have

[C]2 = −2. (2.101)

These curves are very important since they correspond to simple roots in the cohomology

lattice. They are responsible for enhanced gauge symmetries for string theory compactified

on a K3 surface.

3 K3 fibrations

Some CY manifolds have the structure of a K3 fibration over IP1, i.e. we have a map

π : M → IP1, (3.1)

where M is the CY, and π−1(p) = X, where X is a K3 surface. The Hodge number

h1,1(M) of a CY with this structure is given by

h1,1(M) = 1 + ρinv(X), (3.2)

where the extra 1 comes from the Kähler class of the IP1 base, and ρinv(X) denotes the

elements of the Picard lattice that are invariant when transported around the base. We

will call these elements the monodromy invariant Picard lattice of X. There can be some

extra contributions to (3.2) coming from “bad fibres”, but we won’t need that.

Consider now the compactification of type IIA theory on M . We will have h1,1(M)

vector multiplets, which we will denote by

S, ta, a = 1, · · · , ρinv(X), (3.3)

where S corresponds to the Kähler class of the IP1 base, and ta correspond to the mon-

odromy invariant Picard lattice of the fibre. Let us denote by ωS, ωa the corresponding
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(1, 1)-cohomology classes. From the above geometry we also deduce that the only non-

trivial triple intersection number on the CY is
∫

M

ωS ∧ ωa ∧ ωb = ηab, (3.4)

where ηab is the inner product on the monodromy invariant Picard lattice. Recall that the

Picard lattice had signature (2.58), where the +1 direction corresponded to the Kähler

form of the manifold. This form is monodromy invariant, since it is the restriction to the

fiber of the Kähler form of M , and we conclude that ηab has signature (1, ρinv(X) − 1).

We conclude that the cubic term in the perturbative prepotential of the type IIA theory

on M is given by

Ftree(S, t
a) = Sηabt

atb. (3.5)

Of course, this prepotential receives worldsheet instanton corrections. At tree level, how-

ever, we see that the moduli space factorizes into the moduli space for the Kähler modulus

of the base, and the moduli space of complexified Kähler forms in the fiber:

MIIA = H× O(2, ρinv(X))

O(2) × O(ρinv(X))
, (3.6)

where H is the upper half-plane, which parameterizes the moduli space for S, and we

have used the result (2.99).

Example 1. A favorite example is the hypersurface X24(1, 1, 2, 8, 12)−480 in weighted

projective space, described by the polynomial

x2
1 + x3

2 + x12
3 + x24

4 + x25
5 = 0. (3.7)

This CY has the structure of a K3 fibration over IP1. The base of the fibration is param-

eterized by the coordinates (x4, x5). By fixing x4/x5 and redefining x4 → x2
4, one obtains

the K3 fiber as a hypersurface in weighted IP3(1, 1, 4, 6):

x2
1 + x3

2 + x12
3 + x12

4 = 0. (3.8)

The elementary topological data of this CY are the following: we have χ(M) = −480.

The Picard lattice of the K3 fiber is of the form

Pic(X) = Γ1,1 (3.9)

therefore

h1,1(M) = 3, (3.10)

where the extra generator corresponds to the Kähler class of the base.
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Example 2. Our second example is the CY

Y = (K3 ×T2)/Z2 (3.11)

where the Z2 acts as the free Enriques involution [4] on the K3 and as the inversion

Z2 : z → −z on the coordinate z of the two torus that we considered before, with four

fixed points pi. The geometry of the T2/Z2 orbifold is that of an IP1 with four conical

curvature singularities at the pi each of which has deficit angle π. The total space M is

a K3 fibration over the IP1, and by construction it has Enriques fibres E over the four

pi. We will be particularly interested on the action of the Enriques involution on the

two-cohomology lattice of the K3

H2(K3,Z) = Γ9,1 ⊕ Γ9,1 ⊕ Γ1,1
g . (3.12)

This symmetry exchanges the first two factors, and acts as p→ −p on Γ1,1
g . The invariant

part of this lattice is precisely the two-cohomology lattice of the Enriques surface (with

doubled inner product due to the exchange symmetry), and it becomes the Picard lattice

of the K3 fiber,

Pic(X) = Γ1,1(2) ⊕ E8(−2), (3.13)

The Hodge numbers of Y can now be easily obtained by looking at the cohomology classes

of the original manifold K3 × T2 which are invariant under Z2. One finds,

h1,1(Y ) = 11, χ(Y ) = 0. (3.14)

4 Heterotic theories

We will consider here heterotic string compactifications which lead to N = 2 supersym-

metry in four dimensions, obtained typically as orbifolds of toroidal compactifications.

We briefly recall that heteroric strings are obtained by tensoring 26 free chiral bosons for

the right-moving sector, while on the left moving sector we will consider 10 free chiral

bosons together with their supersymmetric partners ψ. A toroidal compactification of the

heterotic string down to four dimensions is obtained by considering the (22, 6) compact

directions to live in a lattice of the form

Γ22,6. (4.1)

4.1 The STU model

The STU model is a Z2 orbifold of the above toroidal compactification. We start with

the following splitting of the lattice (4.1)

Γ22,6 −→ Γ2,2 ⊕ Γ4,4 ⊕ Γ0,8 ⊕ Γ0,8, (4.2)
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where the lattice Γ0,8 is just E8(−1). The interpretation of this splitting is standard: Γ2,2

and Γ4,4 are lattices corresponding to toroidal compactifications on T2 and T4, respec-

tively, and E8 ⊕ E8 is the lattice corresponding to the internal gauge group. In order

to understand the action on the E8 lattice, it is useful to remember that this lattice, at

the point of maximal gauge symmetry, can be represented by 8 complex fermions ψa,

a = 1, · · · , 8, along compact directions. This leads for example to the following formula

for the theta function of the E8 lattice:

ΘE8(q) =
1

2

∑

a,b=0,1

ϑ8[ab ]. (4.3)

The Z2 orbifold action acts on Γ4,4 and on one of the E8s. On Γ4,4 it acts as the Z2

symmetry that we used to construct Kummer surfaces starting from T4

XI , ψI −→ −XI ,−ψI , I = 1, 2, 3, 4 on Γ4,4 (4.4)

while on the E8 it acts as a Z2 symmetry on two of the complex fermions:

ψ1,2 → −ψ1,2, ψa → ψa, a = 3, · · · , 8 on E8. (4.5)

This orbifold has a simple space-time interpretation: we have compactified the six internal

directions of the heterotic string on a manifold of the form K3×T2. The K3 factor comes

from the quotient of Γ4,4 by T2, and it is a singular K3 surface at the orbifold point of

moduli space (of course, this is not a problem at all for the string propagation, as it has

been known for a long time). The T2 factor comes from the Γ2,2 lattice. The orbifold

action on the E8 breaks the gauge symmetry as

E8 × E8 −→ E8 × E7 × SU(2), (4.6)

and the SU(2) which appears here is identified through the orbifold action with the

SU(2) of the holonomy of the K3 surface. This is the well-known embedding of the spin

connection in the gauge connection, typical of heterotic compactifications on manifolds of

special holonomy.

To check that this heterotic compactification is consistent, one has to verify modu-

lar invariance at one-loop. The one-loop partition function can be computed by using

standard orbifold techniques (see [20], section 12.4, for more details):

1) bosons in the lattices Γ2,2 and Γ0,8, which are invariant under Z2, give the contri-

bution
ΘΓ2,2

η2η̄2
× ΘΓ0,8

η8
. (4.7)
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2) Bosons in the lattice Γ4,4 give different orbifold blocks ZΓ4,4 [hg ] with explicit expressions

ZΓ4,4 [00] =
ΘΓ4,4

η4η̄4
, ZΓ4,4 [hg ] = 24 η2η̄2

ϑ2[1−h
1−g ]ϑ̄

2[1−h
1−g ]

(4.8)

3) The Γ0,8 lattice where the symmetry acts leads to orbifold blocks ZΓ0,8 [hg ] which can

be obtained by simply noticing that in the fermionized version of the Γ0,8 lattice we are

simply considering a Z2 orbifold along two complex directions. We then find

ZΓ0,8 [hg ] =
1

2η8

∑

γ,δ=0,1

ϑ[γ+h
δ+g ]ϑ[γ−h

δ−g ]ϑ6[γδ ]. (4.9)

which has the following explicit values for the different orbifold blocks:

ZΓ0,8 [00] =
1

2η8
(ϑ8

2 + ϑ8
3 + ϑ8

4) =
E4(τ)

η8
,

ZΓ0,8 [01] =
1

2η8
ϑ2

3ϑ
2
4(ϑ

4
3 + ϑ4

4),

ZΓ0,8 [10] =
1

2η8
ϑ2

3ϑ
2
2(ϑ

4
3 + ϑ4

2),

ZΓ0,8 [11] =
1

2η8
ϑ2

2ϑ
2
4(ϑ

4
2 − ϑ4

4).

(4.10)

4) In the left-moving sector, we have fermions in the two transverse, uncompactified

directions, together with fermions on the Γ2,2 lattice. Each of these pairs leads to a factor

ϑ[ab ]/η. Finally, we have the fermions in the Γ4,4 lattice. We then find

1

2η̄4

∑

a,b=0,1

(−1)a+b+abϑ̄2[ab ]ϑ̄[a+h
b+g ]ϑ̄[a−h

b−g ] (4.11)

5) Finally, the bosons in the transverse directions lead to a factor

1

τ2η2η̄2
(4.12)

Putting everything together, we find the following partition function:

Z =
1

2

2∑

h,g=0

ΘΓ2,2ΘΓ0,8ZΓ4,4 [hg ]

τ2η12η̄4

1

2η8

∑

γ,δ=0,1

ϑ[γ+h
δ+g ]ϑ[γ−h

δ−g ]ϑ6[γδ ]

× 1

2η̄4

∑

a,b=0,1

(−1)a+b+abϑ̄2[ab ]ϑ̄[a+h
b+g ]ϑ̄[a−h

b−g ].

(4.13)
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It is an interesting exercise to check that this partition function is modular invariant,

so that the compactification we have constructed is a consistent vacuum of the heterotic

string. It has N = 2 supersymmetry in four dimensions. This is easily seen since K3×T2

has two covariantly constant spinors (it has holonomy SU(2)), twice as much as a generic

CY of SU(3) holonomy. The heterotic string has 16 supercharges in 10d, which decompose

under compactification down to four dimensions as 4× (2, 2), where 4 is a chiral spinor in

6d,and the (2, 2) are two Weyl spinors in 4d. For the holonomy SU(2), only two out of the

4 are covariantly constant, therefore we produce two copies of the N = 1 supersymmetry

charge in four dimensions, i.e. we have N = 2 SUSY.

The massless spectrum will organize itself into representations of the N = 2 superalge-

bra. It is easy to see that we will have four U(1) gauge fields from the T2 compactification,

together with the gauge fields of the unbroken gauge group (4.6). One of the U(1) gauge

fields from the T2 compactification enters into the SUGRA multiplet as the graviphoton,

while the other enter into vector multiplets. One of these vector multiplets is somewhat

special since it contains as a complex scalar S the dilaton-axion fields:

S = φ+ ia, (4.14)

where the axion a is obtained by dualizing the B field that lives in four dimensions. There

are two other vector multiplets coming from the T2. Their complex scalars parameterize

the moduli space of the Narain moduli space

O(2, 2)

O(2) ×O(2)
≃ H×H, (4.15)

and they are denoted by T , U . We will be mostly interested in studying the dependence

of the Fg amplitudes on these moduli.

4.2 The FHSV model

The heterotic FHSV model is an asymmetric orbifold of the heterotic string [13]. One

first considers the splitting of the compactification lattice Γ22,6 as

Γu = Γ9,1 ⊕ Γ9,1 ⊕ Γ1,1
s ⊕ Γ2,2 ⊕ Γ1,1

g , (4.16)

where Γ9,1 can be decomposed as

Γ9,1 = Γ1,1
d ⊕ E8(−1). (4.17)

We now act with a Z2 symmetry as follows:

|p1, p2, p3, p4, p5〉 → eπiδ·p3 |p2, p1, p3,−p4,−p5〉 (4.18)
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J 1 2 3
ζJ 2 1/2 1/2
αJ δ 0 δ
βJ 0 δ δ

Table 1: ζJ , αJ and βJ for the different blocks

where δ = (1, 1) ∈ Γ1,1
s , and δ2 = 2. Therefore Z2 acts as an exchange symmetry in

the direct sum Γ9,1 ⊕ Γ9,1, as a shift in Γ1,1
s , and as −1 in Γ2,2 ⊕ Γ1,1

g . It is easy to

see [13] that this asymmetric orbifold leads to an heterotic string compactification with

N = 2 supersymmetry in four dimensions. The massless spectrum consists of 11 vector

multiplets, 11 hypermultiplets, and the supergravity multiplet.

The vector multiplet moduli space for this compactification is given by

SL(2,Z)\SL(2, IR)/SO(2) ×M, (4.19)

where

M = O(Γ1)\O(10, 2)/[O(10)× O(2)], (4.20)

and O(Γ1) is the group of automorphisms of the lattice

Γ1 = Γ1,1
s ⊕ Γ1,1

d (2) ⊕ E8(−2). (4.21)

This is in fact the lattice associated to the untwisted, projected sector of the orbifold.

We will now compute the one-loop partition function of the FHSV orbifold, since

the results will be useful for the computation of the Fg amplitudes (this, as well as the

helicity supertrace generating function, have been computed independently in [10]). We

will denote by Z[h
g
] the partition functions on the sector twisted by h and with the g

element inserted. Here, g, h = 0, 1 in the usual way.

Let us first consider the bosonic sector. In the untwisted, unprojected sector we simply

have

Zb[00] =
1

2η̄24(τ)η8(τ)
ΘΓu(τ).

In order to consider the other sectors, we introduce the lattices ΓJ with J = 1, 2, 3:

ΓJ = Γ1,1
s ⊕ Γ1,1

d (ζJ) ⊕ E8(−ζJ), (4.22)

The values of ζJ , αJ , βJ are given in table 4.2. The three different cases J = 1, 2, 3

correspond respectively to the orbifold blocks 01, 10 and 11. In the untwisted, projected
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sector we identify the two sets of bosonic excitations associated to the two Γ9,1 lattices.

This amounts to a doubling of the τ parameter in the nonzero modes [24]. We then find,

Zb[01] =
4

η̄9(2τ)η(2τ)η̄3(τ)η3(τ)

∣∣∣∣
η(τ)

ϑ[10](τ)

∣∣∣∣
3

ΘΓ1(τ, δ, 0).

For the 10 and 11 orbifold blocks we find

Zb[10] =
4

η̄9(τ/2)η(τ/2)η̄3(τ)η3(τ)

∣∣∣∣
η(τ)

ϑ[01](τ)

∣∣∣∣
3

ΘΓ2(τ, 0, δ),

Zb[11] =
4

η̄9( τ+1
2

)η( τ+1
2

)η̄3(τ)η3(τ)

∣∣∣∣
η(τ)

ϑ[00](τ)

∣∣∣∣
3

Θ
′

Γ3
(τ, δ, δ).

In the 11 block, the ′ in the theta function indicates that the sum over lattice vectors

includes an insertion of

(−1)v2

, (4.23)

where v is the projection of p onto Γ1,1(1
2
) ⊕E8(−1

2
).

Let us now consider the fermionic sector in detail. The fermions in the Γ1,1
s lattice do

not change under the Z2 symmetry, so together with the fermions in the uncompactified

directions we have

Zf

Γ1,1
s

[ab ] =

(
ϑ[a

b
](τ)

η(τ)

)3/2

.

The orbifold blocks for two complex fermions with symmetry ψ → −ψ are given by (see

for example [20], eq. (12.4.15)):

ϑ[a+h
b+g ](τ)ϑ[a−h

b−g ](τ)

η2

Therefore, for the fermions in Γ2,2 ⊕ Γ1,1
g one finds

Zf

Γ2,2⊕Γ1,1
g

[hg ][
a
b ] =

(
ϑ[a+h

b+g ](τ)ϑ[a−h
b−g ](τ)

η2

)3/4

.

The treatment of the two fermions coming from Γ9,1 ⊕ Γ9,1 is slightly more delicate. The

00 block in the a, b sector is simply

Zf
Γ9,1⊕Γ9,1 [

0
0][

a
b ] =

ϑ[ab ](τ)

η(τ)
.
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Let us now analyze the invariant states in the NS sector. A convenient basis for the

Hilbert space H(1)
NS ⊗H(2)

NS is given by
(
ψ

(1)
−n1

· · ·ψ(1)
−n2k

ψ
(2)
−m1

· · ·ψ(2)
−ml

± (1 ↔ 2)

)
|0〉,

(
ψ

(1)
−n1

· · ·ψ(1)
−n2k+1

ψ
(2)
−m1

· · ·ψ(2)
−m2l+1

∓ (1 ↔ 2)

)
|0〉,

where ni, mi > 0 are half-integers. The above states have the sign ±1, respectively, under

the Z2 symmetry generator g which exchanges the two lattices. It is easy to see that in

computing the trace over the Hilbert space with an insertion of g, the above states cancel

except when the (1) and the (2) content is the same. Therefore, only the states

ψ
(1)
−n1

· · ·ψ(1)
−n2k+1

ψ
(2)
−n1

· · ·ψ(2)
−n2k+1

|0〉,
ψ

(1)
−n1

· · ·ψ(1)
−n2k

ψ
(2)
−n1

· · ·ψ(2)
−n2k

|0〉
contribute to the trace, with signs −1 and +1 under g, respectively. An odd number of

fermion oscillators leads to a −1 sign, but this is like having an insertion of (−1)F . We

then have

Tr
H

(1)
NS⊗H

(2)
NS
g qL0−c/24 = TrHNS

(−1)F q2L0−c/12 =

(
ϑ[01](2τ)

η(2τ)

) 1
2

,

where the doubling in τ is due to the doubling in the oscillator content. Notice that the

insertion of (−1)F in the above trace does not change anything, since (−1)F1 and (−1)F2

cancel each other. We then find:

Zf
Γ9,1⊕Γ9,1 [

0
1][

a
b ] =

(
ϑ[a1](2τ)

η(2τ)

) 1
2

,

and the expressions for the other blocks can be obtained by modular transformations.

Putting all these results together, we can write up the one-loop partition functions for

the different blocks. One finds, for example:

Z[00] =
1

2η̄24(τ)η8(τ)
ΘΓu

(τ)
∑

a,b

(−1)a+b+ab

(
ϑ
[a

b

]
(τ)

η(τ)

)4

.

for the 00 block. For the 01 block, one finds

Z[01] =
4

η̄9(2τ)η(2τ)|η(τ)|3
1

|ϑ
[

1
0

]
(τ)|3 ΘΓ1(τ, δ, 0)

×
(
ϑ[0

0
](τ)

)3/2(
ϑ[0

1
](τ)

)3/2

η3(τ)

(
ϑ[00](2τ)

)1/2−
(
ϑ[0

1
](2τ)

)1/2

(
η(2τ)

) 1
2

.

(4.24)
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5 Computing Fg amplitudes in heterotic string the-

ory

5.1 Computing the integrand

The general expression for the Fg couplings in these compactifications is given by the

one-loop integral [1]

Fg =

∫

F

d2ττ 2g−1
2

1

|η|4
∑

even

i

π
∂τ

(
ϑ[ab ](τ)

η(τ)

)
Z int

g [ab ]. (5.1)

In this equation, the integration is over the fundamental domain of the torus,

Z int
g [ab ] = 〈:

(
∂X

)2g
:〉 (5.2)

is a correlation function evaluated in the internal conformal field theory, and X is the

complex boson corresponding to the right-moving modes on the T2. The evaluation of

the correlation function reduces to zero modes [1], and the final result involves insertions

of the right-moving momentum pR. For this reason, it is convenient to introduce the

Narain theta function with an insertion,

Θg
Γ(τ, α, β) =

∑

p∈Γ

p2g−2
R exp

{
πiτ(p + β/2)2

+ + πiτ (p+ β/2)2
− + πi(p+ β/2, α)

}
. (5.3)

In general the internal CFT will be an orbifold theory and we will have to consider different

orbifold blocks, which will be labeled by J . For each of these blocks there is a different

Narain lattice ΓJ with different αJ , βJ , and we will denote

Θg
J = Θg

ΓJ
(τ, αJ , βJ). (5.4)

The integral (5.1) can now be written as

Fg =

∫

F

d2ττ 2g−1
2

∑

J

Ig
J , (5.5)

where

Ig
J =

Pg(q)

Y g−1
Θ

g

J(τ)fJ(q). (5.6)

In this equation, Pg(q) is defined by [1, 25]

(
2πη3λ

ϑ1(λ|τ)

)2

=
∞∑

g=0

(2πλ)2gPg(q), (5.7)
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and fJ (q) is a modular form which depends on the details of the internal CFT. As usual,

we write q = exp(2πiτ). Finally, the quantity Y in (5.6) is a moduli-dependent function

related to the Kähler potential as K = − log Y . The quantities Pg(q) can be explicitly

written in terms of generalized Eisenstein series. To do this, one uses the expansion

2πη3z

ϑ1(z|τ)
= − exp

[
∞∑

k=1

ζ(2k)

k
E2k(τ)z

2k

]
. (5.8)

If we now introduce the polynomials Sk through:

exp
[ ∞∑

n=1

xnz
n
]

=
∞∑

n=0

Sn(x1, . . . , xn)zn, (5.9)

we can easily check that Pg(q) is a modular form of weight (2g, 0) given by

Pg(q) = Sg

(
xk =

|B2k|
(2k)!

E2k(q)

)
. (5.10)

where B2k are Bernoulli numbers, and E2k(q) is the Eisenstein series introduced in (A.35).

We have, for instance,

P1(q) =
1

12
E2(q), P2(q) =

1

1440
(5E2

2 + E4). (5.11)

Example 1. The STU model. We now give some details about the integrand of Fg

and the functions fJ(q) for the STU model that we analyzed in the previous section. We

first compute the fermionic contribution

i

πη̄3

∑

even

(−1)a+b+ab∂ τ̄

(
ϑ̄[ab ](τ̄)

η̄(τ̄ )

)
ϑ̄2[ab ]ϑ̄[a+h

b+g ]ϑ̄[a−h
b−g ] (5.12)

for the different orbifold blocks. We find the following results:

h = g = 0 : 0,

h = 1, g = 0 :
1

4η̄8
ϑ̄2

3ϑ̄
2
2ϑ̄

4
4,

h = 0, g = 1 : − 1

4η̄8
ϑ̄2

3ϑ̄
2
4ϑ̄

4
2,

h = 1, g = 1 :
1

4η̄8
ϑ̄2

4ϑ̄
2
2ϑ̄

4
3.

(5.13)

We then see that the untwisted, unprojected sector of the orbifold does not contribute.

Putting this together with the other ingredients (namely, bosons in Γ4,4 and the contri-

bution from the Γ0,8s) one finds that the modular form f(q) is given by

4E4

η18

{
ϑ2

2ϑ
2
4

ϑ2
3

(ϑ4
2 − ϑ4

4) −
ϑ2

3ϑ
2
4

ϑ2
2

(ϑ4
3 + ϑ4

4) +
ϑ2

2ϑ
2
3

ϑ2
4

(ϑ4
2 + ϑ4

3)

}
= −2E4E6

η24
. (5.14)

27



Example 2. The FHSV model. This is rather straightforward using the results of

the previous section. We have four orbifold blocks, but the first block (corresponding to

h = g = 0) vanishes. The blocks (h, g) = (0, 1), (1, 0), (1, 1) will be labeled by J = 1, 2, 3,

and an easy computation shows that the modular forms fJ(q) in (5.6) are given by

f1(q) = − 128

η6(τ)ϑ6
2(τ)

=
2

q

∞∏

n=1

(1 − q2n)−12,

f2(q) =
4

η6(τ)ϑ6
4(τ)

= 4q−
1
4

∞∏

n=1

(1 − qn)−12(1 − qn−1/2)−12,

f3(q) =
4

η6(τ)ϑ6
3(τ)

= 4q−
1
4

∞∏

n=1

(1 − qn)−12(1 + qn−1/2)−12.

(5.15)

The Narain lattices for J = 1, 2, 3 are given in (4.22), and the corresponding theta func-

tions in (5.6) are the same ones that appear in the computation of the one-loop partition

function in the previous section.

5.2 Computing the integral

In order to complete the evaluation of Fg, one has to perform the one-loop integral (5.1).

This step is more involved and requires the techniques introduced in [12, 17] in the context

of string threshold corrections, further refined in [8, 26], and used to compute the Fg

couplings in [25]. The basic idea is to perform a lattice reduction. We will consider for

simplicity the case in which the integral involves only one Narain lattice Γ, with α = β = 0.

Let z be a primitive vector of Γ of zero norm, and let K = (Γ ∩ z⊥)/Zz. This lattice,

which has signature (b+−1, b−−1), is called the reduced lattice. A typical situation when

choosing a reduction vector occurs when the lattice Γ has Γ1,1 as a sublattice. In this

case, one can take z to be one of the vectors that generate Γ1,1. In the reduced lattice one

can construct “reduced” projections P̃ as follows: consider z± ≡ P±(z), and decompose

IRb± ≃ 〈z±〉 ⊕ 〈z±〉⊥. The projection on the orthogonal complement 〈z±〉⊥ is the reduced

projection P̃±. It can be explicitly written in terms of P± as

P̃±(λ) = P±(λ) − (P±(λ), z±)

z2
±

z±. (5.16)

The computation of the integral (5.5) through lattice reduction involves writing the vectors

of the lattice Γ as

p = nz +mz′ + pK , (5.17)

where pK is a vector in the reduced lattice K. When the reduction vector belongs to a

sublattice Γ1,1(l), the vector z′ is the other generator of the sublattice. After a Poisson
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resummation over n, the integral involves a sum over two integers, ℓ and m. Using

modular invariance one can set m = 0. The result of these manipulations is a complicated

expression for (5.5) which can be found in [25]. Howevee, the holomorphic limit

t̄→ ∞, t fixed, (5.18)

leads to a rather simple expression for Fg. We define the coefficients cg(n) through

Pg(q)f(q) =
∑

n

cg(n)qn. (5.19)

We then have [25]

Fg(t) =
∑

r>0

cg(r
2/2)

∞∑

ℓ=1

ℓ2g−3e−ℓr·y. (5.20)

In this equation, r2 is computed with the norm of the reduced latticeK, and the restriction

r > 0 means that we only consider vectors such that Im(r · y) > 0. Notice that the sum

over ℓ in (5.20) can be written as

Li3−2g(e
−ν−1r·y), (5.21)

where Lin is the polylogarithm of index n defined as

Lin(x) =
∞∑

k=1

xk

kn
. (5.22)

The answer for the integral (5.1) obtained with the method of lattice reduction is only valid

in the region of moduli space where |z+| ≪ 1. Different choices of regions in moduli space

lead to different choices of lattice reduction, and therefore to different expressions for the

topological ampltiudes. Notice that the expression for Fg in the heterotic computations

involves a model-dependent quantity (the modular form f(q)) as well as the universal

factors Pg.

The computation of the one-loop integral is more subtle when one has arbitrary α, β

shifts in the Narain theta lattice. It is possible however to generalize the lattice reduction

technique to these cases. An example of this is the FHSV model, which is considered in

detail in [23].

6 Enumerative geometry and modular forms

6.1 Gopakumar-Vafa invariants

As Gopakumar and Vafa discovered [15], the topological string amplitudes Fg have an

underlying structure in terms of BPS invariants associated to D0-D2 bound states. If we

29



consider the generating functional

F (λ) =

∞∑

g=0

Fg(t)λ
2g−2, (6.1)

then one has the following formula for the worldsheet instanton part of Fg:

F (λ) =
∞∑

g=0

∞∑

d=1

∑

r∈H2(M,Z)

ng(r)
1

d

(
2 sin

dλ

2

)2g−2

e−dr·t, (6.2)

where ng(r) are the Gopakumar-Vafa (GV) invariants which count bound states of D2-

D0 branes. Notice that the sum over d in (6.2) plays the same role as the sum over ℓ

in the heterotic computation (5.20). In the computation of Gopakumar and Vafa, this

sum is the Poisson resummation of a sum over D0 brane charges. When ν = 1, the

product representation of ϑ1(ν|τ) and the Gopakumar-Vafa representation (6.2) enable

us to express the heterotic prediction of (5.20) as a formula for the generating functional

of GV invariants: ∑

r∈Pic(K3)

ng(r)z
gqr2/2 = f(q)ξ2(z), (6.3)

where Pic(K3) is the cohomology of the K3 fiber, z = 4 sin2(λ/2), and ξ(z) is the function

that appears in helicity supertraces (see for example [20])

ξ(z) =

∞∏

n=1

(1 − qn)2

1 − 2qn cosλ+ q2n
=

∞∏

n=1

(1 − qn)2

(1 − qn)2 + zqn
. (6.4)

GV invariants can be given a geometric interpretation in certain cases in terms of Euler

characteristics of moduli spaces of embedded curves [15, 19]. The main formula derived in

[19] is the following. Let Mδ,Q be the moduli space of curves of genus g and with δ nodes

in the two-homology class Q. Then,

ng−δ
Q = (−1)dimMδ,Qχ(Mδ,Q). (6.5)

Alternatively, one has the following formula

ng−δ
Q = (−1)(dim(MC)+δ)

δ∑

p=0

bg−p,δ−pχ(C(p)), bg,k :=
2

k!

k−1∏

i=1

(2g − (k + 2) + i), bg,0 := 1 .

(6.6)

Here, C(p) is the moduli space of the curve C in the class Q together with a choice of

p points, which correspond to nodes of C. In particular C(0) = MC, and for curves of

maximal genus g in the class Q one has

ng
Q = (−1)dimMCχ(MC). (6.7)
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When the curve is embedded in an algebraic surface X, the maximal genus is related to

the degree of the curve through the formula (2.31).

The expression (6.6) reduces the computation of GV invariants to the problem to

calculating the Euler numbers χ(C(δ)). When C is embedded in an algebraic surface X

these can be computed as follows. If we force the smooth curve C to pass through δ given

points in X, corresponding to the locations of the nodes, we impose δ linear constraints on

its moduli space M = IPχ(OC)−1. The moduli space of deformations is therefore reduced

to IPχ(OC)−δ−1. On the other hand we are free to choose the position of the points, which

are therefore part of the moduli space of the nodal curves. The moduli space for a choice

of n-points on X is naively Xn. Since the points are undistinguishable one considers the

orbifold Symn(X) = Xn/Sn by the symmetric group Sn . The relevant model for the

moduli space of n points is the “free field” resolution Xn = Hilbn(X) of this orbifold. The

name comes from the fact that the Euler numbers of the resolved spaces are generated by

a free field representation

∞∑

n=0

χ(Xn)qn =

∞∏

n=1

(
1

1 − qn

)χ(X)

. (6.8)

This is special bosonic case of a formula of Göttsche and Soergel [14], which gives the

Poincaré polynomial of Xn in terms of bosonic and fermionic free fields. This means that

we have a fibration
IPχ(OC)−δ−1 −→ C(δ)

↓
Xδ

(6.9)

Since this fibration is trivial one finds

χ(C(δ)) = (χ(OC) − δ)χ(Xδ) . (6.10)

From this formula one can in principle derive many of the relevant GV invariants.

6.2 GV invariants for the STU model

According to [18], the heterotic STU model is dual to type IIA theory on the CY hy-

persurface X24(1, 1, 2, 8, 12)−480. Therefore, the heterotic Fg should encode information

about the GW invariants of these manifold. We want to check now some of the heterotic

predictions by using the formulae of the previous section for GV invariants. We first

present the heterotic prediction of [25], and then give the geometric interpretation of [21].

In the STU model, it was shown in [25] that the formula (5.20) applies with the

modular form f(q) given by (5.14). It is then simple to extract the GV invariant from

this expression, and one finds

31



g r = 0 1 2 3 4 5 6 7 8

0 −2 480 282888 17058560 477516780 8606976768 115311621680 1242058447872 11292809553810

1 0 4 −948 −568640 −35818260 −1059654720 −20219488840 −286327464192 −3251739174540

2 0 0 −6 1408 856254 55723296 1718262980 34256077056 506823427338

3 0 0 0 8 −1860 −1145712 −76777780 −2455936800 −50899848132

4 0 0 0 0 −10 2304 1436990 98987232 3276127128

5 0 0 0 0 0 12 −2740 −1730064 −122357100

6 0 0 0 0 0 0 −14 3168 2024910

7 0 0 0 0 0 0 0 16 −3588

8 0 0 0 0 0 0 0 0 −18

We consider curves in the K3 fiber. We choose the Kähler parameters to be parame-

terized by

t1 = U, t2 = T − U. (6.11)

We will denote by [E] and [B] the corresponding homology classes, which will have inter-

section form

[E]2 = 0, [E][B] = 1, [B]2 = −2. (6.12)

This is easily derived by taking into account that the original basis associated to T , U

has intersection form Γ1,1. Therefore, by the genus formula for K3 surfaces (2.100), we

see that [E] is an elliptic curve while [B] is a two-sphere. These two curves provide in

fact a structure of elliptic fibration for the K3 fiber itself:

E −→ K3
↓
B

(6.13)

Writing now

[C] = d1[E] + d2[B], (6.14)

we find

[C]2 = d1d2 − d2
2 + 1. (6.15)

Let us now consider curves in the class (d1, d2) = (g, 1), which will have by the above

arithmetic genus g. What is the moduli space for such curves? The moduli for “motions”

inside the K3 fiber is given by (2.34), which gives in this case

χ(OC) = g + 1, (6.16)

and we used that for a K3 surface χh(X) = 2. But there is an extra transverse space for

motion, given by the IP1 in the base of the K3 fibration of the CY. We then find,

MC = IPg × IP1. (6.17)
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The formula (6.6) gives then

ng
(g,1,0) = (−1)g+12(g + 1). (6.18)

This fits perfectly with the heterotic prediction.

We can now look at nodal curves, with effective genus g − 1. This is now slightly

different from what we discussed above. The space of curves with one marked point

C(1) = C is given by a fibration over the full CY M :

IPg−1 −→ C
↓
M

(6.19)

and one finds

χ(C) = χ(IPg−1)χ(M) = −480g. (6.20)

This leads to

ng−1
(g,1,0) = (−1)g+1(2(2g − 2)(g + 1) − 480g), (6.21)

which also fits the heterotic prediction.

6.3 GV invariants for the FHSV model

According to [13], the heterotic FHSV model we described above should be dual to type

IIA theory on the CY obtained as a Z2 quotient of K3 × T2

The FHSV model is much more subtle for various reasons. The final formula for Fg

has been computed in [23] and reads

Fg(t) =
∑

r>0

cg(r
2)

{
23−2gLi3−2g(e

−r·t) − Li3−2g(e
−2r·t)

}
, (6.22)

where ∑

n

cg(n)qn = f1(q)Pg(q) (6.23)

and f1(q) is given in (5.15).

Due to the peculiar form in which the polylog function appears, the results for the

GV invariants depend on the parity of the entries in r. If at least one entry in r ∈ Γ is

odd the second term in (6.22) does not contribute and we get the invariants nodd
g (r) listed

in the table below. Note that r2 ∈ 2Z because Γ is even.

If all entries in r are even then r2 ∈ 8Z and we call the class r even. In the (6.22) the

second terms gives a subleading correction to neven
g (r). The first few neven

g (r) are listed in

Table 6.3.
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g r2 = 0 2 4 6 8 10 12 14 16
0 0 0 0 0 0 0 0 0 0
1 8 128 1152 7680 42112 200448 855552 3345408 12166272
2 0 -16 -288 -2880 -21056 -125280 -641664 -2927232 -12166272
3 0 0 24 480 5264 41760 267360 1463616 7096992
4 0 0 0 -32 -704 -8400 -71872 -492800 -2872512
5 0 0 0 0 40 960 12384 113728 831960
6 0 0 0 0 0 -48 -1248 -17312 -169920
7 0 0 0 0 0 0 56 1568 23280
8 0 0 0 0 0 0 0 -64 -1920
9 0 0 0 0 0 0 0 0 72

Table 2: BPS invariants nodd
g (r) for the odd classes r in the fiber direction.

g r2 = 0 8 16 24 32
0 0 0 0 0 0
1 4 42048 12165696 1242726144 69636018752
2 0 -21024 -12165696 -1864089216 -139272037504
3 0 5256 7096656 1708748448 174090046880
4 0 -704 -2872416 -1158884992 -165915421248
5 0 40 831948 611668944 127601309256
6 0 0 -169920 -254819136 -80867605120
7 0 0 23280 83673040 42545564896
8 0 0 -1920 -21406464 -18592299200
9 0 0 72 4174920 6721882484
10 0 0 0 -598848 -1994908928
11 0 0 0 59472 480175264
12 0 0 0 -3648 -92117568
13 0 0 0 104 13732280
14 0 0 0 0 -1531072

Table 3: BPS invariants for the even classes r in the fiber direction.
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We now use the geometric interpretation of the GV invariants to test some of the

heterotic predictions of the FHSV model. The moduli space MC factorizes for these

curves into MC(F ) parametrizing movements of C in the fibre and IP1 parametrizing

movements of C over the base of Y . The IP1 is therefore a component of the moduli

space. Since away from the fixed points the topology of the base is T2, we will only have

contributions from curves in the Enriques fiber, whose GV invariants ng(r) will include

an overall factor χ(IP1) = 2.

It is therefore sufficient to consider curves in the four special Enriques fibres to explain

the BPS invariants. We will denote the Enriques surface by E. Let us first recall an

important fact about curves in an Enriques surfaces from [4]. According to proposition

16.1, for every such C in the class r in the Kähler cone there is a second curve C +KE

in the class r up to torsion with |C +KE| 6= ∅ and r2 = [C]2 = [C +KE ]2. So each curve

in the Enriques fibre is effectively doubled. Since we have four fibers we expect that the

numbers in table 2 are divisible by eight, which is indeed the case. Let us now compute

the moduli space of deformations MC for smooth curves of genus g. Since χh(E) = 1, we

now have

MC = IPg−1 . (6.24)

We apply now (6.6) and get for smooth curves in the class r of genus g = r2

2
+ 1 in the

class r

ng(r) = 8 · (−1)
r2

2 χ(IP
r2

2 ) = 8 · (−1)
r2

2 (
r2

2
+ 1) (6.25)

in agreement with table 2.

Let us now consider nodal curves. The generating function for Euler characteristics of

the Hilbert scheme of points on the Enriques surface is given by

∞∑

n=0

χ(Mn)qn =
∞∏

n=1

(
1

1 − qn

)χ(E)

= 1 + 12q + 90q2 + 520q3 + 2535q4 + . . . (6.26)

and if we insert this result in (6.10) we reproduce immediately, and to a large extent, the

heterotic predictions in table 2. The deviations between the two calculations are given in

table 4.

These deviations are typical of the geometric approach of [19] and correspond to

situations involving reducible curves and other topological complications.
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g r2 = 0 2 4 6 8 10 12 14 16
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 24 288 2160 12544 61608
2 0 0 0 0 0 0 0 -32 -384
3 0 0 0 0 0 0 0 0 0

Table 4: Differences between the heterotic BPS prediction in table 2 and the geometric
BPS calculation using (6.6) and (6.10).

A Theta functions and modular forms

Our conventions for the Jacobi theta functions are:

ϑ1(ν|τ) = ϑ[11](ν|τ) = i
∑

n∈Z

(−1)nq
1
2
(n+1/2)2eiπ(2n+1)ν ,

ϑ2(ν|τ) = ϑ[10](ν|τ) =
∑

n∈Z

q
1
2
(n+1/2)2eiπ(2n+1)ν ,

ϑ3(ν|τ) = ϑ[00](ν|τ) =
∑

n∈Z

q
1
2
n2

eiπ2nν ,

ϑ4(ν|τ) = ϑ[01](ν|τ) =
∑

n∈Z

(−1)nq
1
2
n2

eiπ2nν ,

(A.27)

where q = e2πiτ . When ν = 0 we will simply denote ϑ2(τ) = ϑ2(0|τ) (notice that

ϑ1(0|τ) = 0). The theta functions ϑ2(τ), ϑ3(τ) and ϑ4(τ) have the following product

representation:

ϑ2(τ) = 2q1/8
∞∏

n=1

(1 − qn)(1 + qn)2,

ϑ3(τ) =

∞∏

n=1

(1 − qn)(1 + qn−1/2)2,

ϑ4(τ) =

∞∏

n=1

(1 − qn)(1 − qn−1/2)2

(A.28)

and under modular transformations they behave as:

ϑ2(−1/τ) =

√
τ

i
ϑ4(τ),

ϑ3(−1/τ) =

√
τ

i
ϑ3(τ),

ϑ4(−1/τ) =

√
τ

i
ϑ2(τ),

ϑ2(τ + 1) =eiπ/4ϑ2(τ),

ϑ3(τ + 1) =ϑ4(τ),

ϑ4(τ + 1) =ϑ3(τ).

(A.29)
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The theta function ϑ1(ν|τ) has the product representation

ϑ1(ν|τ) = −2q
1
8 sin(πν)

∞∏

n=1

(1 − qn)(1 − 2 cos(2πν)qn + q2n). (A.30)

We also have the following useful identities:

ϑ4
3(τ) = ϑ4

2(τ) + ϑ4
4(τ), (A.31)

and

ϑ2(τ)ϑ3(τ)ϑ4(τ) = 2 η3(τ), (A.32)

where

η(τ) = q1/24
∞∏

n=1

(1 − qn) (A.33)

is the Dedekind eta function. One has the following doubling formulae

η(2τ) =

√
η(τ)ϑ2(τ)

2
, ϑ2(2τ) =

√
ϑ2

3(τ) − ϑ2
4(τ)

2
,

ϑ3(2τ) =

√
ϑ2

3(τ) + ϑ2
4(τ)

2
, ϑ4(2τ) =

√
ϑ3(τ)ϑ4(τ).

(A.34)

The generalized Eisenstein series are defined by

E2n(τ) = 1 − 4n

B2n

∞∑

k=1

kn−1q2k

1 − q2k
, (A.35)

where Bm are the Bernoulli numbers. The doubling formula for E2(τ) is

E2(2τ) =
1

2
E2(τ) +

1

4
(ϑ4

3(τ) + ϑ4
4(τ)). (A.36)

Under modular transformations, modular forms transform as follows:

S : Im τ → Im τ

|τ |2 . (A.37)

Under an S transformation, Jacobi theta functions transform as

ϑ2(−1/τ) =
√
−iτϑ4(τ)

ϑ3(−1/τ) =
√
−iτϑ3(τ)

ϑ4(−1/τ) =
√
−iτϑ2(τ)

(A.38)
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and under T as
ϑ2(τ + 1) =eiπ/4ϑ2(τ)

ϑ3(τ + 1) =ϑ4(τ)

ϑ4(τ + 1) =ϑ3(τ).

(A.39)

The η function transforms as

η(−1/τ) =
√
−iτη(τ), η(τ + 1) = eiπ/12η(τ). (A.40)

B CFT at one-loop

Here we gather some useful formula for doing one-loop computations in CFT. Narain

theta functions are defined by

ΘΓ(τ, α, β) =
∑

p∈Γ

exp

{
πiτ(p + β/2)2

+ + πiτ (p+ β/2)2
− + πi(p + β/2, α)

}
(B.41)

When α = β = 0, we will simply write ΘΓ(τ). The one-loop partition function for bosons

compactified on a lattice Γ of signature (b+, b−) is given by

ΘΓ(τ)

ηb+ η̄b−
(B.42)

Fermions with boundary conditions (a, b) have partition function

Z[ab ] =

√
ϑ[ab ]

η
, a, b = 0, 1. (B.43)

and we remind the correspondence with boundary conditions:

a = b = 0 → A

A

, Z[00] = TrNSq
L0 =

√
ϑ3

η
,

a = 0, b = 1 → P

A

, Z[01] = q−1/48TrNS(−1)F qL0 =

√
ϑ4

η
,

a = 1, b = 0 → A

P

, Z[10] = q−1/48TrRq
L0 =

√
ϑ2

η
,

a = 1, b = 1 → P

P

, Z[11] = q−1/48TrR(−1)F qL0 =

√
ϑ1

η
,

(B.44)
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We now consider Z2 orbifolds of torus compactifications. For a boson on Γn,n, the orbifold

blocks are given by

h
g

Z[hg ] = 2n

∣∣∣∣
η

ϑ[1−h
1−g ]

∣∣∣∣
n

. (B.45)

For fermions compactified on Γ4,4, the orbifold blocks are given by

h
g

Z[ba][
h
g ] =

ϑ[a+h
b+g ]ϑ[a−h

b−g ]

η2
. (B.46)
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