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A HOMOTOPY THEORY FOR STACKS

SHARON HOLLANDER

ABSTRACT. We give a homotopy theoretic characterization of stacks on a site
C as the homotopy sheaves of groupoids on C. We use this characterization
to construct a model category in which stacks are the fibrant objects. We
compare different definitions of stacks and show that they lead to Quillen
equivalent model categories. In addition, we show that these model structures
are Quillen equivalent to the S2-nullification of Jardine’s model structure on
sheaves of simplicial sets on C.

1. INTRODUCTION

Stacks arise as classifying objects for moduli problems in algebraic geometry.
This means that, in some sense, maps from a scheme X into a stack correspond to
isomorphism classes of families of certain objects over X. A standard example is
the stack of all curves: a map from a scheme X into this stack corresponds to an
isomorphism class of families of curves over X. Other examples include the stack
representing vector bundles and the stack representing curves of genus g with n
marked points. In algebraic geometry, stacks are regarded as a generalization of
schemes, and many of the usual constructions for schemes are extended so as to
make sense for stacks as well. For example, one can define cohomology groups for
a stack. These groups yield important information about general properties of the
objects which the stack classifies.

Recently, stacks have also come up in algebraic topology. Complex oriented
cohomology theories give rise to Hopf algebroids which corepresent stacks on the
category of affine schemes, and these stacks map to the moduli stack of formal
groups. In recent work of Hopkins and Miller, it has been shown conversely that,
in good situations, stacks over the moduli stack of formal groups give rise to spec-
tra which are approximations (often localizations) of the sphere spectrum. These
spectra play a key role in modern attempts at understanding and calculating the
stable homotopy groups of spheres.

There are many different definitions of stacks. The main purpose of this paper is
to show that all of these definitions can be interpreted in terms of homotopy theory,
and to show that from this point of view they are natural and easy to compare.

One definition of stacks is based on the concept of category fibered in groupoids
[@, @] and another based on the concept of lax presheaf of groupoids , .
In each definition, part of the information encoded in a stack M is an assignment
to each scheme X of a groupoid M(X). These assignments are required to satisfy
‘descent conditions’, which are often somewhat cumbersome. We will show that,
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for the definitions of stack commonly in use, the descent conditions can be given a
simple homotopy theoretic interpretation.

The descent conditions describe the circumstances under which we require that
local data glue together to yield global data. Naively, one might require “isomor-
phism classes of -7 to satisfy the sheaf condition. However, for very fundamental
reasons, this almost never happens in examples. Taking isomorphism classes is a
localization process, and such processes rarely preserve limits such as those which
arise in the statement of the sheaf condition. Instead, one can ask that an assign-
ment of groupoids satisfy a sheaf condition with respect to the best approximation
to the limit which is invariant under taking isomorphism classes. This is called
the homotopy limit, and denoted holim. Stacks are assignments which satisfy this
modified sheaf condition, so in this sense, stacks are the homotopy sheaves.

We propose the following definition of stack as a reference point, as it is concep-
tually the simplest:

Definition 1.1. Let C be a Grothendieck topology. A presheaf of groupoids, F on
C is a stack if for every cover {U; — X} in C, we have an equivalence of categories

Here U, i, denotes the iterated fiber product U;y X x --- X x U, , and the homotopy
limit is taken in the category of groupoids (see sections 3-4).

We will show that all other definitions of stack commonly in use can be given
similar homotopy theoretic interpretations. Not only the definition but many prop-
erties of stacks which are of interest are homotopy theoretic in nature, and this
homotopy theoretic perspective both simplifies the task of comparing the different
definitions as well as illuminates the sense in which stacks are the “right” classi-
fying spaces for algebraic problems. In particular, the previous definition gives an
alternate category of stacks which is equivalent from the point of view of homo-
topy theory but much easier to work with, and which is related in a simple way to
familiar homotopy theoretic categories.

In more detail, for each of the definitions of stack, we will construct a model
category in which the stacks are the fibrant objects. In these model categories, con-
structions that are commonly performed on stacks (such as 2-category pullbacks,
stackification, sheaves over a stack and others) have easy homotopy-theoretic in-
terpretations [ Moreover, homotopy classes of maps from an object X € C to
a stack M correspond to the isomorphism classes of M(X), and the homotopies
themselves correspond to isomorphisms in M(X). We will see that all of these
different model categories are Quillen equivalent. This is the formal way of saying
they are all models for the same underlying homotopy theory. This equivalence
makes precise the sense in which, when dealing with stacks, it is enough to consider
presheaves of groupoids satisfying descent conditions.

More precisely, we will analyze three different categories in which stacks can be
defined (see section 5 for the definitions) and prove the following results. Let € be
a Grothendieck topology.

Theorem 1.2. There are adjoint pairs of functors between: categories fibered in
groupoids over C, presheaves of groupoids on C, sheaves of groupoids on C, and lax
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presheaves of groupoids on C,

~ r i
—_— —_— -~
lax — P(C, Grpd) Srpd/C P(C, Grpd) Sh(C, Srpd),
~ p sh
where the right adjoints point to presheaves. All of these functors take stacks as
defined in the domain category to stacks as defined in the range category and thus
restrict to give adjoint pairs between the stacks in each of these categories.

Theorem 1.3. There are simplicial model category structures on each of the above
listed categories in which:

1. the stacks are the fibrant objects,

2. in P(C, Grpd) or Sh(C, Srpd), a weak equivalence is a map satisfying the local
lifting conditions (see 8.2),

3. if the topology on C has enough points, the weak equivalences in P(C, Srpd)
are the stalkwise equivalences of groupoids,

4. all of the adjoint pairs listed above are Quillen equivalences,

5. the fundamental groupoid of the simplicial Hom set between X € C and a
stack M, the homotopy function complex hHom(X, M) is equivalent to the
groupoid M(X). In particular, [X, M] is the set of isomorphism classes of
M(X).

Presheaves of groupoids, which will be our preferred setting for talking about
stacks, is closely related to presheaves of simplicial sets. The homotopy theory of
the latter has been developed by Jardine [@], and is the basis on which Morel and
Voevodsky build the A'-homotopy theory of schemes, see [@]

Theorem 1.4. The local model structure on P(C,SGrpd) is Quillen equivalent to
Jardine’s model category structure on P(C, sSet) localized with respect to the maps
A" ® X — A" ® X, for each X € € and n > 2.

This theorem says that the homotopy theory of stacks is recovered from Jardine’s
model category by eliminating all higher homotopies.

1.1. Notation and Assumptions. So as not run into set theoretic problems, we
assume that the Grothendieck topology € is a small category. We also assume that
the topology on € is subcanonical in order to construct the desired model structure
on Sh(C,Grpd). For {U; — X} a cover in €, and F a presheaf on C,

e Uj,.., denotes the iterated fiber product U;, xx --- xx U,,.

o U, denotes the simplicial diagram in Pre(C) with

(Ue)n = ]_[Ui0 xx - xx U,
I
where the coproduct is taken over all multi-indices of length n, and the face
and boundary maps are defined by the various projection and diagonal maps.
This is referred to as the nerve of the cover {U; — X }.
e To simplify notation [[U; will sometimes be denoted by U,
the coproduct [ [ U;; will be denoted by U x x U,
and Hka by U XxU XX U.
o F(U,) = Hom(U,, F') denotes the cosimplicial diagram F'(Us, ), = [[; F (Ui, X x
-+ xx U, ) with coface and codegeneracy maps dual to those for U,.



4 SHARON HOLLANDER

o We will sometimes write F(U) for [] F(U;),
F(U Xx U) for HF(U”>,
and F(U xx U xx U) for HF(UZJk)

e Similarly, a cover {V; — Y} may be denoted by V' — Y, and the nerve of this
cover by {V — Y},.

1.2. Contents. The following is an outline of the contents of this paper:

In section 2 we give necessary background information about groupoids,
monoidal categories, enriched categories, model categories and localization.

In section 3 we construct a model structure on groupoids, and prove that it
is Quillen equivalent to a localization of simplicial sets with respect to the map
52 — x, called the S? nullification of s8et.

In section 4 we give some background on homotopy limits and colimits, and prove
that the descent category is a model for the homotopy inverse limit of a cosimplicial
diagram of groupoids.

In section 5 we review the definition of categories fibered in groupoids over a
fixed base category C. Then we construct an adjoint pair of functors between this
category and the category of presheaves of groupoids on €. We define stacks in
each of these categories as the objects which satisfy a homotopy sheaf condition.

Section 6 contains a discussion of the classical definition of stacks [DM], and a
proof that it is equivalent to our definition in terms of the homotopy sheaf condition.

In section 7 we put model structures on the categories described in section 5
and on the category of sheaves of groupoids. The weak equivalences are defined
to be object, respectively. fiberwise. We note that the pairs of adjoint functors
between the different categories that were defined previously are Quillen pairs. We
also observe that these model structures can be localized with respect to the local
equivalences holim Uy — X, and in these local model structures the fibrant objects
are the stacks.

In section 8 we give a characterization of pointwise weak equivalences for
presheaves of groupoids in terms of Dan Dugger’s local lifting conditions. We
use this to prove that the local model categories are all Quillen equivalent. We
also obtain that the local model category structure on presheaves of groupoids is
Quillen equivalent to the S? nullification of Jardine’s model category structure on
presheaves of simplicial sets, and conclude that when the Grothendieck topology on
C has enough points, the weak equivalences in the local model category structure
are precisely the pointwise equivalences of groupoids.

Appendix A contains a discussion of limits and colimits in the category Grpd/C
of categories fibered in groupoids.

In appendix B we define the category of lax presheaves of groupoids and describe
the adjoint pair between lax presheaves and categories fibered in groupoids. This
is an equivalence of categories and hence allows us to translate all the results from
categories fibered in groupoids to lax presheaves.

1.3. Acknowledgments. A great many thanks are owed to Dan Dugger, Gustavo
Granja, and Mike Hopkins, for many helpful conversations and ideas, without which
this paper would not exist.

The author has recently learned about the paper of Jardine [@], which appears
to treat some of the questions dealt with here. Although his approach is quite
different, it is possible that there is some overlap in the results.
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2. PRELIMINARIES

A groupoid is a small category in which all morphisms are invertible. Grpd
denotes the full subcategory of Cat whose objects are groupoids. In this section we
will define the notion of a category with a groupoid action. Many of the categories
we will discuss in the future have groupoid actions, and many of their properties
follow from similar properties of groupoids. We show that such categories have a
natural simplicial structure, determined by the action of the fundamental groupoid
of the simplicial sets. We also review the concept of a model category, and quote
the results about localization which we will need later.

2.1. Groupoids. Recall, the nerve embedding, N : Cat — sSet. For C € Cat,
N(@),, is the set of n-tuples of composable morphisms

X, fo X, f1 fn—2Xn71 fn-1 X,

with the convention that a O-tuple is just an object. For i # 0,n, the boundary
maps d; send (fo,... fi, fixts-oo fne1) = (f1,. - fic10 fise ooy fro1); do leaves out
fo, and d,, leaves out f,,. In particular N(G); D, N(G)p is the domain function,
and d; is the range function. The degeneracy maps s; insert an identity morphism
in the ith position.

We begin by noting that Grpd is complete and cocomplete since the (co)limit of
a diagram of groupoids in Cat is still a groupoid.

Note 2.1. Recall that the limit of a diagram in Cat is the category whose objects
(morphisms) are the limit of the sets of objects (morphisms) in the diagram. To
construct a colimit in Cat one takes as objects the colimit of the sets of objects and
for morphisms the formal compositions of elements in the colimit of the morphisms,
modulo the obvious relations.

We will need the following characterization of the functors in Grpd that are
equivalences of categories.

Lemma 2.2. The functor G FoHe Srpd is an equivalence of categories, if and
only if the following two conditions hold:

e F induces a bijection on isomorphism classes of objects.
e For every a € G, the induced map Autg(a) — Auty(F(a)) is an isomor-
phism.

Definition 2.3. [@] Let sSet ™% Grpd be the functor which assigns to a sim-
plicial set X the groupoid with objects Xo and morphisms freely generated under
composition by the members of X1 and their formal inverses subject to the relations
dsox o dox = dyx for each x € Xs.

The proof of the following lemma is easy.

Lemma 2.4. The functors myq : sSet < Grpd : N are an adjoint pair, in which
N is the right adjoint, and mwyq is the left adjoint. The composition of functors
Toid © N is naturally isomorphic to the identity functor of Grpd.
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Note 2.5. The definition of m,;q used here is the one given in [ This groupoid
is naturally equivalent to the one defined via homotopy classes of paths [@, p. 39].
The [@] definition is needed to form the adjoint pair (74, V), and thus to define
the simplicial structure on Grpd which is essential for many of our results.

Note 2.6. It follows from the previous note, as 7y;q © N = id, and NG is a Kan
complex, that for any G € Grpd, the isomorphism classes of G are in bijective
correspondence with mg NG, and the automorphism group of an object a € G, is
isomorphic to m (NG, a).

The category Grpd has an internal Hom, written Srpd(G, H), where the objects
of Srpd(G, H) are the functors G — H, and the isomorphisms are the natural
isomorphisms between these functors.

Lemma 2.7. Let G be a groupoid, then Grpd(G,—) is the right adjoint to the
functor G x (—).

Recall [@] that a closed category (short for closed symmetric monoidal) is a
category M with an internal Hom and an associative and commutative product ®
with a unit S, such that for all X € M, the functor X ® (—) is the left adjoint of
M(X,—).

By lemma E, Srpd is a closed category with the categorical product and the
internal Hom defined above.

Another example of a closed category is sSet. The tensor product is just given
by the categorical product, and the internal Hom is given by the formula

s8et(X,Y), := Homgse: (A" x X,Y)

where A® denotes the cosimplicial standard simplex [BK|, p. 268].

Recall [@], that a category C is enriched over a monoidal category M, if
there is a bifunctor from €% x € — M assigning to each X,Y € C an object
Me(X,Y) € M (which we also denote by M(X,Y")) for each object X an “iden-
tity” S — M(X, X), and for each triple of objects X,Y,Z € € a “composition”
MX,Y) MY, Z) — M(X, Z) which is associative and unital. Moreover it is
required that Home(X,Y) = homy(S,M(X,Y)). C is said to be enriched with
tensor and cotensor if for all G € M and X,Y € @ there are objects X®G and
Y& € € such that

M(X®G,Y) =M(X, YY) = M(G,M(X,Y)).

It then follows that this tensor and cotensor operations satisfy all the usual prop-
erties.

Note 2.8. In practice we will abuse notation and denote the tensor product of
objects of C with objects M by ®.

Any closed monoidal category M is enriched with tensor and cotensor over it-
self. A category enriched with tensor and cotensor over simplicial sets is called a
simplicial category. We will say that a category enriched with tensor and cotensor
over groupoids has a groupoid action.

Proposition 2.9. Let C be a category with a groupoid action. Then the assignment
s8et(X,Y) := N(9rpd(X,Y))
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gives C the structure of a simplicial category. Moreover, the tensor and cotensor
are given by the formulas
Y®RS: =Y ® 148,
Y =y
for any X,Y € €, S € s8et.
This proposition follows immediately from the following lemma.

Lemma 2.10. Let X € sSet, G € Grpd, then the adjoint pair of functors myq and
N satisfies

N(Srpd(moia X, G)) = s8et(X, N(G)).
In particular, given G, H € Grpd,

N(Srpd(H,G)) = s8et(N(H), N(G)).

Proof. The nerve of Grpd(m;qX, @) has 0-simplices the functors m,,¢X — G. By
lemma P4 these are the elements of Homgs.: (X, N(G)) = s8et(X, N(G))o. The n-
simplices of N(Srpd(msiaX,G)) are n-tuples of composable natural isomorphisms
between such functors. They can be naturally identified with functors m,;qX X
Toid A" = Toia(X x A™) — G By another application of lemma @ these are
identified with the elements of Homgge: (X x A™, N(G)). O

The following examples of categories with a groupoid action will be used through-
out the rest of the paper.

Example 2.11 (Diagrams of Groupoids). Let X and Y be diagrams of groupoids
indexed by a category D, and G a groupoid. Then we define Srpd(X,Y"), to be the
groupoid with objects the natural transformations X — Y, and with morphisms
the natural isomorphisms X X me;qAl — Y, where my4A' denotes the constant
diagram (which assigns to each object the groupoid with two objects and a unique
isomorphism between them). Then we have

(X®G)(d)=X(d) x G,
X%(d) = Hom(G, X (d)).
When € is a Grothendieck topology, diagrams indexed by C° are called

presheaves of groupoids on C. The category of presheaves of groupoids on € is
denoted P(C, Grpd).

Example 2.12 (Sheaves of Groupoids on a Grothendieck Topology €). A sheaf of
groupoids on C is a presheaf which satisfies the “sheaf condition”: For every covering
{Ui = U},
FU) = [[FW) =[] FW: xv U;)
is an equalizer sequence. Equivalently, we could require F(U) to be the limit of the
cosimplicial diagram determined by the nerve of the covering as, in any category,
the limit of a cosimplicial diagram X* is the equalizer of d°,d! : X° = X'. The
category Sh(€,Grpd) is the full subcategory of P(C, Grpd) whose objects are the
sheaves of groupoids on C.
We list some of the important properties of sheaves and presheaves.

1. There is a “sheafification functor” P(C, Grpd) b, Sh(C, Grpd) which is the
left adjoint to the inclusion functor of sheaves in presheaves.
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2. The category Sh(C,Grpd) inherits a Grpd action via the inclusion into
P(C,Grpd) as it is easy to check that for a sheaf &, the presheaves ¥ ® G
and F¢ are still sheaves.

For further elaboration of these points see [MM].

2.2. Review of Model Categories. We recall the definition of a model category
structure on a category C. Model categories are an abstract setting in which to do
homotopy theory.

A model category @, Q, @], is a category €, together with three distinguished
classes of morphisms in €, called cofibrations, fibrations, and weak equivalences,
which are closed under composition and contain all identity morphisms, and satisfy
the following properties:

e (MC1) Small limits and colimits exist in €.

o (MC2) If f, g are morphisms with go f defined, and two of the three morphisms

f,9,g90 f are weak equivalences then so is the third.

o (MC3) If f is a retract of g and g is a fibration, cofibration, or weak equiva-

lence, then so is f.
e (MC4) Given a commutative square

A—sx

) l /1 i

7 , p

7 g
B——Y.

where either (a) i is a cofibration and p a trivial fibration (a fibration which
is also a weak equivalence), or (b) i is a trivial cofibration (a cofibration
which is also a weak equivalence), and p a fibration, then there exists a lifting
[ : B — X making the above diagram commute.

e (MC5) Any morphism f can be factored functorially in two ways: (a) f = poi
where ¢ is a cofibration and p is a trivial fibration; and (b) f = p o where ¢
is a trivial cofibration and p is a fibration.

An object X is called cofibrant if the map from the initial object @, to X is a
cofibration. An object X is called fibrant if the map from X to the final object
%, is a fibration. The category obtained from € by formally inverting the weak
equivalences is called the homotopy category of €, and denoted Ho(C).

A set of (trivial) cofibrations are said to gemerate if the trivial fibrations (fi-
brations) are characterized by having the right lifting property (as in MC4) with
respect to these morphisms.

A simplicial model category is a model category € which has a simplicial structure
compatible with the model structure in the sense that the following axiom holds:

(SM7) Given a cofibration A 5 B and a fibration X -2 Y, the
induced map

s8et(B, X) — s8et(A, X) X sser(a,y) s8et(B,Y)
is a fibration. In addition, if either i or p is a weak equivalence then the
above map is a trivial fibration.

A Quillen pair between model categories is an adjoint pair L : € «» D : R where
the left adjoint L preserves cofibrations and trivial cofibrations, or equivalently the
right adjoint R preserves fibrations and trivial fibrations. Under these conditions,
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one can define the derived functors L : Ho(C) — Ho(D) and R : Ho(D) — Ho(C),
and they form an adjoint pair. A Quillen pair is called a Quillen equivalence if, for
A € @ cofibrant and B € D fibrant, a morphism LA — B is a weak equivalence in
D if and only if its adjoint A — RB is a weak equivalence in €. A Quillen pair is
a Quillen equivalence if and only if it induces an equivalence of categories between
Ho(C) and Ho(D), see [Hd, p. 19].

Under mild conditions there is a procedure called localization which formally
adds weak equivalences to a model category (a good reference is [Dg]). Let € be a
simplicial model category and S a set of morphisms between cofibrant objects in C.
A fibrant object X € C is called S-local if for all f € S the induced map sSet(f, X)
is a weak equivalence. A morphism f in C is called an S-equivalence if for all S-local
X, we have that h Hom(f, X) is a weak equivalence, (where h Hom is the homotopy
function complex, see [@]) A model category is left proper if pushouts of weak
equivalences along cofibrations are weak equivalences.

Note 2.13. A model category C is combinatorial if it is cofibrantly generated and
the underlying category is locally presentable [@] All the categories we will be
working with here are locally presentable, (as they have underlying sets) and we
will give explicit sets of generating cofibrations.

Theorem 2.14. (J.Smith) [Bul] Let C be a left proper, combinatorial, simplicial
model category and S a set of morphisms between cofibrant objects in C. Then
there exists a new model category structure on € in which

o the weak equivalences are S-equivalences,

e the cofibrations are the old cofibrations,

e the fibrations are maps with the right lifting property with respect to the maps
which are cofibrations and also S-equivalences.

In addition the fibrant objects of € are precisely the S-local objects, and this new
model structure is again left proper, combinatorial, and simplicial.

This new model category is called the S-localization of € and denoted S~1C.
Notice that all of the original weak equivalences in C are, by construction, S-
equivalences. The following properties of localization will be used often.

Note 2.15. (P. Hirschhorn) [Hj] Let S and € be as in the above theorem, D be a
model category, and L : € «» D : R a Quillen pair such that L takes morphisms in
S to weak equivalences in D. Then

(a) The pair (L, R) is also a Quillen pair L : S™'1C + D : R.

(b) In particular, if S’ is a set of morphisms between cofibrant objects in D, and
L takes morphisms in S to S’-equivalences, there is a Quillen pair L : S7!C «
(S)"'D:R.

(¢) [H], Theorem 3.4.20] If L : € < D : R is a Quillen equivalence and S is a set
of morphisms between cofibrant objects in €, then L : S71€ « (LS)"!D: R is
also a Quillen equivalence.

(d) If S, S are sets of morphisms in € then the two model structures S~1(S")71€ =
(8")~1S~1C agree.
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3. MoODEL CATEGORY STRUCTURE ON GROUPOIDS

In this section we will describe a model category structure on Grpd which appears
in [@, ], a proof can be found in [@] This model category structure will enable
us to prove that the descent category, which appears prominently in the definition
of stacks, is a model for the homotopy inverse limit of a cosimplicial groupoid.
With this in mind the various definitions of stacks can be interpreted as different
incarnations of presheaves of groupoids satisfying a ‘homotopy sheaf condition’.

Under the nerve embedding, functors between categories become maps between
simplicial sets, and natural transformations between functors give rise to homo-

topies between the corresponding maps. If F 2, G, and F £, H are natural
transformations, we obtain homotopies between N(F') and N(G), and from N(F)
to N(H). Though there is not necessarily a natural transformation from G to H
corresponding to the composite homotopy. Thus, our intuitive notion of homo-
topy in Cat, as a natural transformation between functors, does not correspond to
the one defined via the nerve embedding in sSet. However, if our categories are
groupoids, this problem does not arise since all natural transformations are natural
isomorphisms. This close relationship between our intuition for what homotopy
should be in Grpd and the notion of homotopy defined via the nerve, motivates the
model category structure on Grpd we define here, where a map f in Grpd is a weak
equivalence or fibration if and only if N(f) is one.

We will sometimes abuse notation and denote the groupoid myiq(A?) by A
This is the groupoid with ¢ + 1 objects with unique isomorphisms between them.
Similarly, we will sometimes denote 7,;q(0A?) by dA!. BG denotes the groupoid
with one object whose automorphism group is the group G.

Theorem 3.1. There is a left proper, simplicial, cofibrantly generated model cate-
gory structure on Grpd in which:

e weak equivalences are functors which induce an equivalence of categories,

e fibrations are the functors with the right lifting property with respect to the

map A? — A1,

e cofibrations are functors which are injections on objects.
The generating trivial cofibration is the morphism A° — Al and the generating
cofibrations are the morphisms OA" — A% i =0,1,2.

Note 3.2. In this model category structure all objects are both fibrant and cofi-
brant, so all weak equivalences are homotopy equivalences.

Lemma 3.3. Let G T Hbea map of groupoids. The following are equivalent:
o f is a weak equivalence in Grpd
o Nf is weak equivalence in sSet
Similarly, the following are equivalent:
e f is a (trivial) fibration in Srpd.
o Nfis a (trivial) Kan fibration in sSet.
o f has the right lifting property with respect to AY — Al (with respect to
OA™ — A" forn=0,1,2).

Note that the morphisms OA? — A%, i =0,1,2, are
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o ) — x,
o {x,x} =1
o A2 x (BZ — *).

Proof. If f is a weak equivalence in Grpd, it is an equivalence of categories and
so N f is a homotopy equivalence in sS8et. Since the nerve of a groupoid is a Kan
complex, if N f is a weak equivalence, it must be a homotopy equivalence, and so
ToigN f = f is an equivalence of categories.

Kan fibrations of simplicial sets are characterized by having the right lifting
property with respect to the maps V,, , — A™,n > 1 and trivial Kan fibrations
are characterized by having the right lifting property with respect to the maps
OA™ — A™. Given a morphism G — H of groupoids, it is equivalent to construct
a lifting in either of the diagrams

Vor — N(G) ToidVn,k ——= G
P 7
V2 e
l/ g \L l/ // l/
// e
A" —— N(H), Toig A" — H,

so we can characterize the maps in Grpd whose nerves are fibrations as the maps
which have the right lifting property with respect to moiq Ve — moiq A™. Sim-
ilarly, the maps whose nerves are trivial fibrations are characterized as the mor-
phisms with the right lifting property with respect to the maps m;q 0 A" — moiq A™.
Now notice that the inclusions myiqVir — ToiaA? are isomorphisms for i > 1, and
that the inclusions 7,;q0A? — T,iqA? are isomorphisms for ¢ > 2. O

Note 3.4. The previous lemma gives sets of generating cofibrations and trivial
cofibrations for the model structure in Theorem B.1].
Proof of Theorem [B.1. For MC1-MC5 see [B{].

For SM7, we need to show that given A — B a cofibration and X > Y a
fibration, the induced map

s8et(B, X) — s8et(A, X) X sser(a,y) s8et(B,Y)
is a fibration of simplicial sets. In addition, we need to show that if either ¢ or p is a
weak equivalence, then the above map is a trivial fibration. The simplicial structure
on Grpd is defined by taking the nerve of the internal Hom, and N commutes with
limits, so we can rewrite the above map as
N (ngd(B, X) - 9Tpd(A, X) X Grpd(A,Y) 97’pd(B, Y)) 5
which is a (trivial) fibration if and only if the map
Srpd(Ba X) - Srpd(Aa X) X Grpd(A,Y) grpd(Ba Y)

is one. By lemma @, this is the case if and only if this map has the right lifting
property with respect to A® — Al (A" — A% i = 0,1,2). In the first case, the
desired lifting is equivalent to a lifting in the diagram

A—=Ax Al —= X

|+

B——= B x Al —=Y.
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This follows since (A x AY) [[4 B — Bx Al is a trivial cofibration. Similarly, in the
second case, the desired lifting exists because the map (AxA") [] 4, gai (BXIAY) —
B x A’ is a cofibration.

To show that the model category structure is left proper we must show that
the pushout of a weak equivalence along a cofibration is again a weak equivalence.
We have already observed above that this is true when the weak equivalence is a
cofibration so, by MC5, it suffices to show that the pushout P of a trivial fibration

A -1 C along a cofibration A — B is a weak equivalence. This follows from the
following more general proposition. (|

Proposition 3.5. Let A, B,C be small categories, and A 5 B be a functor which

is a monomorphism on objects, and A —— C' a surjective equivalence of categories.
Then the induced functor to the pushout in Cat, B — P := C[[4B is also a
surjective equivalence of categories.

Proof. First note that the universal map B —— P is surjective on objects. If
b,b" € ob B, then p(b) = p(V') if and only if b = b’ or there exist a,a’ € ob A with
i(a) = b,i(a’) = b and j(a) = j(a'). In the latter case there is a unique map
a — a’ € A which maps to the identity of j(a) and we will call the image of this
map in B the canonical map b — b’. For b not in the image of A the canonical
map b — b is defined to be the identity.

It is clear that p induces an isomorphism on components so it remains to show
that p induces an isomorphism

Hompg(b,b') — Homp(p(b), p(b)).

For 3,0 objects of P, let W(53, ) denote the set of words formed by formal
compositions of morphisms in B and C' such that the first map in the word has
domain 3, the last map has range (3’ and consecutive maps have domains and ranges
whose images in P agree. Recall that Homp(3, 3') is the quotient of W (3, 8) by
the equivalence relation generated by the composition in B, composition in C' and
i(f) ~ j(f) for f a morphism in A.

Let b,b' be objects of B and write 8 = p(b), 3’ = p(b’). We will define functions
oo+ W(B,0") — Homp(b,b') which are constant on the equivalence classes
of W(B,") and so determine functions Homp(3,3') — Homp(b,b’). It will be
immediate from the construction that these are inverse to p and this will complete
the proof.

The functions ¢y 3 are defined by induction on the length of words as follows. Let

w be a word of length 1. If w is a morphism ¢ 4, ¢ € C then let a, a’ be the unique
objects in A such that i(a) = b,i(a’) =V, j(a) = ¢, j(a’) = ¢ and let a %> @’ denote
the unique morphism in A such that j(g) = f. Define ¢pp (w) = i(g). If w is a
morphism by 4, by € B define ¢y (w) to be the composite b — by S, by — b
where the unlabeled arrows are canonical morphisms.

Now suppose ¢, has been defined on words of length < n and let w = w'f
where w’ is a word of length n and f is a morphism in B or in C. Let b be
an arbitrary object of B mapping to the range of w’ and define ¢34 (w) as the

. (z) 1" 4 .
composite b () b b'. Tt follows from the construction that the value

of ¢y, is independent of the choice of b” and that ¢ 4 is constant on the equivalence
classes of W(3, ). O

Sprr 5 (f)
—_—
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Corollary 3.6. With this model category structure on Grpd, the adjoint pair weiq :
sSet <« Grpd : N is a Quillen pair.

Remark 3.7. The previous corollary implies that m,;,q preserves trivial cofibra-
tions, and hence is equivalent to the usual fundamental groupoid functor.

To end this section we give an alternative description of the homotopy theory
of groupoids. Consider the model category on sSet which is the localization of the
usual model structure with respect to the map

A3 — A3,
We will call this the S? nullification of sSet, following [@] Notice that the maps
OA™ — A" n > 2.

are all weak equivalences in this localized model structure, so we could equivalently
localize s8et with respect to this set of maps.

Lemma 3.8. In the S? nullification of sSet, weak equivalences are the maps which
induce an isomorphism on my and w1 at all base points.

Theorem 3.9. The adjoint pair
Toid

——
sSet - Grpd,

is a Quillen equivalence between Grpd and the S? nullification of sSet.
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4. HoMoTOPY LIMITS AND COLIMITS

It is well known how to define homotopy limits and colimits in simplicial model
categories. One can write down explicit formulas going back to [@] In this sec-
tion, we will give simplified formulas for homotopy (co)limits in case the simplicial
structure comes from a groupoid action (E) Our main concern will be the homo-
topy limit of a cosimplicial diagram, and dually the homotopy colimit of a simplicial
diagram. Our simplified formula for the former will allow us in section 7 to interpret
the descent conditions for stacks in a homotopy-theoretic manner.

Let € be a simplicial model category. The homotopy limit of an I-diagram X in
C with each X (¢) fibrant is the equalizer of the two natural maps
HX(i)N(I/i) = H X (a)yNU/9),
i =i

where I /i denotes the category of objects over 4. Similarly, the homotopy colimit
of an objectwise cofibrant I-diagram X is the coequalizer of the two maps

IIX@%@NUﬂ)iIlX@M@N@HL

where j/I denotes the category of objects under j. An exposition of these construc-
tions for simplicial sets appears in , @], and for a general simplicial model
category in [E] For Y a fibrant object and X € @ objectwise cofibrant, these
functors satisfy the equation

(4.1) s8et(hocolim X, Y') = holim s8et(X,Y).

Note 4.2. When the simplicial structure on C is derived from a groupoid structure,
the above formula is obtained by applying N to the equality

Grpd(hocolim X, V) = holim Srpd(X,Y).

Theorem 4.3. Let C be a simplicial model category whose simplicial structure de-
rives from a groupoid action, and let X*® be a cosimplicial object in C, with each X*
fibrant. Then a model for the homotopy inverse limit of X*® is given by the equalizer
of the natural maps

2 o i<2,<1 v
l_[()(i>AZ = H (Xi>AJ.
i=0 =[]

Proof. First, notice that writing sko A® for the 2-skeleton of A®, the inclusion
Toid Sko A® — myqA® is an isomorphism. It follows that T'ot X*®, the space of maps
from A® to X°, is isomorphic to Tot2 X*®, the space of maps from the restriction
A®[a[2] to X *|a[2) where A[2] denotes the full subcategory of A with objects [0],[1]
and [2]. Since the map 74 sk; A2 — 7,;,4A? is surjective, Tota X *® is given by the
equalizer in the statement of the theorem.

It now suffices to show that the homotopy limit of X* is naturally homotopy
equivalent to TotX®. Using the definition of the homotopy limit in a simplicial
model category given above, this is an easy consequence of the following proposition.

O
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Proposition 4.4. There is a homotopy equivalence of cosimplicial groupoids
F : moiaN(A/]e]) < moiaA® : G.

Proof. Morphisms in 7,;¢N(A/[n]) are generated by the commutative triangles

(]
N,

and their formal inverses. Let 70N (A/[n]) I, ToiaA™ be the functor which sends

[m]

e the object [m] — [n] to the vertex [0] < [m] — [n],
where ey, : [0] — [k] denotes the map which sends 0 to k.

e a generating morphism as above to the 1-simplex in A™ which is the unique
map filling in the following diagram

0] 1] <=0
|
|
|

lek ! l/f%n

k] ————[m]
[ Iv] /

One can check easily that F' is well defined and natural in n, and so defines a
morphism

ToiaN(A/[0]) =5 70iaA® € ¢Grpd.
Let (G,, be the functor which is defined
e on objects by including [0] — [n] in A/[n].

e on generating morphisms [1] — [n] as the composition

o

[n].
Again it is easy to check that G,, is well defined and natural in [n], and so defines
a morphism my;qA® <, Toid N (A/[e]) in cGrpd.
The composition FoG is the identity. There is a natural transformation GoF ——
id defined on objects [m] — [n] € TiaN(A/[n]) by the triangle

[0} ——"——[m]
N

[0]
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The groupoid Toto(X*®) will also be called the descent category of X*. From now
on, when we refer to the homotopy limit of a cosimplicial groupoid X*® we will mean
the simpler model Tots(X*®). The following corollary gives an explicit description
of this groupoid.

Corollary 4.5. The homotopy inverse limit of a cosimplicial groupoid X* is the
groupoid whose
e objects are pairs (a,d"(a) —— d°(a)), with a € 0bX°, a € morX?", such that
s%(a) = id,, and d°(a) o d*(a) = d'(a),
e morphisms (a,a) — (a’,a’) are maps a LR a’, such that the following dia-
gram commutes

dO
(a) = do(a)
Dually we have the following theorem giving a formula for homotopy colimits of
simplicial diagrams.

Theorem 4.6. Let C be a simplicial model category whose simplicial structure de-
rives from a groupoid action and let X4 € sC, be such that each X; is cofibrant.
Then the homotopy colimit of X, is naturally homotopy equivalent to the coequalizer

of the maps
n<l,m<2 2

H XnoA" = [T X, ® A™.
0

[n]—[m] n=
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5. CATEGORIES FIBERED IN GROUPOIDS

There are different categories in which the descent condition can be formulated,
and in which stacks can be defined. In this section we will discuss the category of
categories fibered in groupoids over C, [@, @] This category is denoted Grpd/C.

After discussing some important properties of Grpd/C, we will be able to define
an adjoint pair of functors

I
Grpd/C __~ P(C,Srpd)

p

satisfying the following properties:
e For F'in P(C, Grpd), the map F(X) — I'pF(X) is an equivalence of groupoids,
for all X € C.
e For & € Grpd/C, the map pI'€ — €& is an equivalence of categories over C.

When € has a Grothendieck topology, we will define stacks in both categories so
that the pair (p,T’) restricts to an adjoint pair between the subcategories of stacks.
In section 7, we will define model structures on these categories such that the
adjunction above induces a Quillen equivalence.

5.1. Categories Fibered in Groupoids over €. One should think of a category
fibered in groupoids over C as the analogue in Cat of a fibration over € with fibers

which are groupoids. Recall that if X 7, v is a fibration of topological spaces,
given a path I in Y, and 2 € X such that f(z) = I(1), we can lift I to a path I’
in X, with I’(1) = z. One can use these liftings to define a map from the fiber
over I(1) to the fiber over I(0). This map is only determined up to homotopy
but a homotopy between two liftings is again determined up to homotopy and

so on. Similarly, a category fibered in groupoids over C, &€ £, C, satisfies a path
lifting condition, where the lift is unique only up to isomorphism. However, since in
groupoids there are no nontrivial homotopies between homotopies, this isomorphism
is unique. More precisely, a morphism X — Y € €, determines a pullback functor
from the fiber over Y to the fiber over X, which is unique up to a unique natural
isomorphism.

Here is a standard example to motivate the definition.

Example 5.1 (Vector Bundles on Top). Let Vec(Top) be the category whose ob-
jects are vector bundles Fy — Y, and whose morphisms are pullback squares

Ey—>-EX

]

Y —X.

The projection functor Vec(Top) — Top is an example of a category fibered in
groupoids over Top. Here are some ways in which it resembles a fibration:
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e The fact that we can pull back vector bundles tells us that there is ‘path
lifting’
(E—»Z)
* ————> Vec(Top)

A lifting in this diagram is a choice of a bundle E’ — Y and an isomorphism
E' = f*E. Two different choices will necessarily be canonically isomorphic.
o All the fibers of this functor are groupoids.

Now we give the definition of a category fibered in groupoids, which formalizes
the ‘path lifting’ condition described above.

Definition 5.2. [DM] The category Grpd/€ is the full subcategory of Cat/C whose

objects are functors & e satisfying the following properties:

’

1. Given Y 15 X ¢ C, and X' € &€ such that F(X') = X, there exists Y’ L,
X' € & such that F(f') = f.
2. Given a diagram in &, over the commutative diagram in C,

Y’ SN Y
4 Ll
7 —Le x L 7-2- X,
with F(f") = f,F(g') = g, there exists a unique h' such that ¢’ o h' = f' and

F(h') = h.

This definition may seem involved but it becomes very simple when we look at
the functors F'x/ induced by F' on the over categories

e/x' ™ oe/x,

where X’ € €, and F(X’) = X. The conditions for & L. Ctobea category
fibered in groupoids over € are equivalent to the following simple requirements of
the functors Fx:
1. Fx/ is surjective.
2. For every pair of objects Y', Z' € /X' with Fx.(Y') =Y, Fx/(Z') = Z the
induced map
HOmg/X/(Y/, ZI) — HOme/X(Y, Z)
is a bijection.
Together these conditions are equivalent to saying that the functors Fx. are
surjective equivalences of categories.
Let €x denote the fiber category over X in €. This has objects those of &
lying over X and morphisms those of € lying over idx. It is easy to see that if
& — € € Grpd/C, the fiber categories € x are groupoids.

Example 5.3. The simplest examples of categories fibered in groupoids over C are

the projection functors €/X — € for each X € C. If YV’ J, X isan object of €/ X,
then (€/X)/f = €/Y, and so conditions 1. and 2. above are trivially satisfied.
Notice that (C/X)y is the discrete groupoid whose set of objects is Home (Y, X).
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Another class of simple examples are € x G - @, for G € Grpd. Here the fibers
over each X € € are canonically isomorphic to G.

Categories fibered in groupoids are enriched over §rpd in a natural way.

Lemma 5.4. Grpd/C is enriched with tensor and cotensor over Grpd. The objects
of Grpd(&,E&") are the functors &€ — &' over C, and the morphisms are the natural
isomorphisms between such functors covering the identity natural automorphism of
ide. Moreover, the tensor is given by the formula

ERG:=E& xe (CxEG),
and the cotensor EC is the category of functors from (G — %) to (€ — @).

Proposition 5.5. Let € - C € Grpd/C, X' € &, and let X = F(X'). Then

1. there is a section

&

7

G -

P F

o
such that G(idx) = X'.

2. If G,G' : C/X — & are two such sections and G(idx) 7, G'(idx) a mor-
phism in Ex, then there is a unique natural isomorphism G 2, G’ over ide,

with ¢(idx) = f.

Proof. First notice that giving a section €/X 9, & over € with G(idx) = X' is
the same as giving a section
&/ X ——=¢
A
| l F
\
sending idx to idx.

1) Define G on objects Y € C/X, to be an arbitrary choice of Y’ € /X’ with
Fx/(Y') =Y, (this is possible since £€/X’ — €/X is a surjection). For a pair of
objects Y, Z € C/X, define

Homex (Y, Z) > Home x/ (Y, Z')
to be the inverse of the bijection
Home ) x (Y, 2') 2% Home, x (Y, Z).

To show this construction gives a functor, consider a pair of composable morphisms
fyg € €/X. The morphisms G(f) o G(g) and G(f o ¢g) have the same domain and
range and the same image, f o g, in €/X, therefore they must be equal.

2) Suppose G’ is another such functor. Then for each object (Y — X) € C/X
there is a unique isomorphism

GY — X) —— G(idx)

3| |

G (Y - X) — G'(idx).
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lying over the identity of Y. By uniqueness, this collection of isomorphism forms a

natural isomorphism G Nyel , and ¢ is the unique natural isomorphism G — G’
over ide which evaluated at idx is f. O

Corollary 5.6. For each X € C, the natural map
grpd(e/X, 8) - SX

given by evaluation at idx is a surjective equivalence of groupoids. There is a left
inverse which is unique up to unique natural isomorphism.

This corollary says that given &€ — C there is a functorial “rigidification” of the
fibers. Later we will use this method of rigidification to construct a functor from
Grpd/C to P(C, Grpd).

In a similar fashion we can prove:

Proposition 5.7. Let £ — C be a category fibered in groupoids, and Y Jox

morphism in C. There are “pullback” functors Ex AR Ey which are unique up to
a unique natural isomorphism covering idy .

Proof. To construct the functor on objects X’ € £x, we arbitrarily lift ¥ — X
using condition 1 of Definition @ Once the functor has been defined on objects,
condition 2 of Definition .9 yields a map Y’ — Y for each morphism X’ — X" €
Ex. Finally, the uniqueness in condition 2 implies that this assignment is a functor
and that any two assignments are naturally isomorphic over idy . [l

Now we can give a definition of stack in Grpd/C.

Definition 5.8. Let C be a category with a Grothendieck topology. A category
fibered in groupoids &€ L, ¢ is a stack if for all covers {U; — X} the map

Grpd(C/X, E) — holim §rpd(C/Us,, &)
is an equivalence of groupoids.
We will compare this definition with the usual definition [DM] in the next section.

5.2. Adjoint Pair Between Grpd/C and P(C, Srpd). Let &€ — € be a category
fibered in groupoids. By Corollary @, the assignment to each X € C of the sections
Grpd(C/X, €) is a functor such that Grpd(C/X, &) — Ex.

Definition 5.9. Let T' : Grpd/C — P(C,SGrpd) be the functor which sends & — C
to the presheaf 'E(X) := Grpdg,,q/e(C/ X, E).

Let p : P(C,Grpd) — Srpd/C be the functor defined by setting pF to be the
category whose

e objects are pairs (X, a) with a € F(X),

e morphisms (X,a) — (Y,b) are pairs (f,«) where X v ecada -

F(f)b is an isomorphism in F(X).

The composition of two morphisms (X, a) () (Y,b) @8) (Z,c¢) is the pair (g o

FE(f)(B) o).

It is easy to check that both p and I" preserve the groupoid action on their domain
categories. Under p presheaves of groupoids sit inside Grpd/C as the “trivializable
bundles” (see example f.1)).
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Theorem 5.10. The functors

P(€,Grpd) ___ Grpd/e,
r
form an adjoint pair with p the left adjoint. The unit of the adjunction is an
objectwise equivalence, and the counit is a fiberwise equivalence of groupoids.

Proof. We will define natural transformations n : id — I'p, and € : pI" — id. It will
be clear from their definition that they satisfy the equations required to form the
the unit and counit of an adjunction.

Define € : pI'é — €& on objects by sending (X, ¢ : €/X — &) to ¢(idx) € €,
and on morphisms by sending (f : X — X', ¢ : ¢ — f*(¢')) to the composite
&' (f) 0 &(idx). Tt follows from Corollary @, that € is a fiberwise equivalence.

Define ) : F — I'pF to be the map of presheaves which sends an object a € F(X)

to the section ¢q : €/X — pF defined by ¢u(Y —> X) = (Y, F(f)a); da(Y —L
Z) = (g,id), and a morphism a —— b € F(X) to the natural transformation
& po — ¢p defined by (Y N X) = F(f)(a). By construction F(X) is the fiber

over X in pF. Another application of Corollary @ shows that Grpd(C/X,pF) —
pFx = F(X), and so 7 is an objectwise equivalence. O

The existence of this adjoint pair now motivates the following definition of stack
in P(C, Grpd).

Definition 5.11. A presheaf F' of groupoids on C is a stack if for all covers {U; —
X} the map F(X) — holim F'(U,) is an equivalence of groupoids.

With this definition, a category fibered in groupoids & L, @ is a stack if and
only if '€ is a stack in P(C, Grpd), so our adjoint pair restricts to one between the
stacks in Grpd/C and the stacks in P(C, Grpd).
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6. STACKS

In this section we will discuss the usual definition of stacks in Grpd/€ [DM] used
in algebraic geometry, and show that it is equivalent to the definition we have given
using homotopy limits (Definition [.§).

We start with an example that will hopefully provide intuition for the de-
scent/homotopy sheaf condition.

Example 6.1 (Principal G-bundles on X). Consider the functor moBG which as-
signs to a space the set of isomorphism classes of principal G bundles over it. Locally
all bundles are trivial, so gluing together isomorphism classes via the sheaf condi-
tion yields only the isomorphism class of the trivial bundles. The sheafification of
moBG is just the constant assignment of the isomorphism class of the trivial bundle.
In particular, 7o BG is not generally a sheaf.

Yet there is a sense in which isomorphism classes of principal G-bundles are
determined locally. A cover, principal G-bundles on each member of the cover, and
coherent isomorphisms between their restrictions to the intersections determine a
G-bundle on the total space. More precisely, given an open cover {U; C X} and

e G-bundles E; — U;,

e isomorphisms we call gluing data ouj : Ei|lv,nv; — Ejlunu;,

o satisfying o o oy;j = ay, when restricted to U; N U; N Uy,
there is a principal G-bundle £ — X, and isomorphisms f; : E|y, — E;, compatible
with the gluing data:

fi
UimU]. - E

E;

U—;ﬁU]‘

an lfj

E] U—;ﬁUj .

Let BG(X) denote the groupoid of principal G-bundles on X and isomorphisms
between them, and U, the nerve of the cover {U; C X}. We can translate the above
property as saying:
Given an object a € [[ BG(U;), and an isomorphism d'a —~ d°a, which is coherent
in the sense that d’(«) o d?(a) = d*(a), then up to isomorphism a is in the image
of BG(X).

This is essentially what it means for BG(X) to be the homotopy inverse limit of
the cosimplicial diagram of groupoids BG(Us,).

Let € — € be a category fibered in groupoids, and assume that for each X Ty
we have chosen pullback functors £y EANY x. Given a morphism U; — U € C, we
will sometimes abuse notation and denote the pullback of an element a € £y to

Eu, by a|y,. In defining some of the maps below, we will also make implicit use of
the natural isomorphisms (al|v,)|v,;, = alu,;-

Definition 6.2. [GI] [DM] A stack in Grpd/€ is an object & — € which satisfies
the following properties for any cover {U; — X} :
1. given a,b € Ex, the following is equalizer sequence

Home  (a,b) — H Home,, (a U,) = H Home,, (a

U—;;b Uij;bU-;j)a
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2. gwen a; € Ey, and isomorphisms

Qg
ai|Uij j|Us;,

satisfying the cocycle condition

ajk|Uijk o O‘ij|Uuk = aik|Uijk7
then there exist a € Ex, and isomorphisms aly, LR a;, such that the following
square commutes

Bilu,

Uy — 05

(6.3) a

|

a

Usj

\Laij

Ui]‘ .

Bilu,;
Usj e aj

In this case, we say that € — € satisfies descent.

Note 6.4. Note that pulling back the square @ along the diagonal map A : U; —
U;; shows that the family of isomorphisms a;; must satisfy the added condition
A*(av;) = idy, and so we might as well have added this requirement to the cocycle
condition.

This definition seems very complicated, but it can be considerably simplified if
we recall the description of the homotopy inverse limit of a cosimplicial groupoid
given in Corollary [t.5.

Proposition 6.5. A category fibered in groupoids € — C is a stack in the sense of
Definition .4, if and only if for all covers {U; — X}

(6.6) Grpd(C/X, &) — holim Grpd(C/Us,, &)
is an equivalence, i.e. if € — € is a stack in the sense of Definition B

Proof. We begin by showing that condition 1. in Definition @ is equivalent to the
requirement that for objects F,, F}, € Grpd(C/X, €), the set of morphisms F,, — F}
is in bijective correspondence with the set of morphisms between their images in
holim Grpd(C/U,, €).

Consider objects F,, Fp, € Grpd(C/X, &), and let a = F,(idx) and b = Fy(idx)
in €x. Evaluation at id(_y induces bijections

Hom(Fa, Fb) —_— HHom(Fa|Ui7Fb|Ui) o HHOm(Fa Uiijb Ui].)
Home  (a,b) — [[Home,, (alv;,blv,) =— HHomguij (aly,,,blu,,)-

It follows that the top line is an equalizer if and only if the bottom one is. By
corollary @, the top line is an equalizer if and ounly if Hom(F,, F}) is in bijective
correspondence with the set of maps from the image of F, to the image of Fj
in holim Grpd(C/Us,, €). The requirement that the bottom line be an equalizer is
condition 1. in Definition @

To finish the proof we have to show that condition 2. is equivalent to the require-
ment that every object in holim Srpd(C/U,, €) be isomorphic to one in the image of
Grpd(C/ X, ). This follows from the description of morphisms in Corollary @ once
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we show that specifying an object in holim Grpd(€C/Us,, &) is equivalent to specifying
descent datum as in condition 2. of Definition @

By corollary [.F, an object of holim Grpd(€/Us,, €), consists of an object F. €
[1Srpd(C/U;, &), and an isomorphism d'F. - d°F,, satisfying d°(a) o d?*(a) =

d'(a) and s°(a) = idp,. For any U N V, and F, € Grpd(C/V,&) with
F,(idy) = a, the evaluation Fg|y(idy) is a choice of pullback of a along f, and
so Fyu|u(idy) is canonically isomorphic to the pullback f*a, which we chose in ad-
vance. Evaluating at idy, determines ¢ € [] €y,, and isomorphisms a;; = a(idy,); )
satisfying the cocycle condition. Composing with the canonical isomorphisms
v, = Fely,(idy,;), we obtain isomorphisms c|y, 24, clu,, satisfying the cocy-
cle condition.

Conversely, given ¢ € [[ €y, and «;j, as in condition 2. satisfying A*(cy;) =
idy, (see Note p.4)), we can lift them to an object F. € [[Srpd(C/U;, €), and an
isomorphism d'F, — d°F,. Since these lifts are essentially unique they must also
satisfy the cocycle condition and s°(«) = idp, and hence determine an object of
holim Grpd(C/U,, €). O
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7. MODEL STRUCTURES

In this section we put model structures on P(C, Grpd), Sh(C, Grpd), and Grpd/C.
In the first two subsections, we describe model structures on (pre)sheaves and
categories fibered in groupoids. A morphism in (sh)P(€, Grpd) will be a fibration
or weak equivalence if it is one when evaluated at each object. In Grpd/C, the
weak equivalences are the maps which induce an equivalence of groupoids on the
fibers or, equivalently, maps which become weak equivalences in P(C, Srpd) after
applying I'.

The above model category structure on P(C, Grpd) is not very interesting because
it does not see the topology on C. In a Grothendieck topology there is a notion
of locality. Just as sheaves are isomorphic if they are locally isomorphic, so too
stacks should be equivalent if they are locally equivalent. Thus, there should be
a model structure for which weak equivalences are those maps which locally are
weak equivalences of groupoids. The most basic local equivalences are the maps
hocolimU, — X, as stacks can be defined to be those presheaves which see this
as an equivalence. This suggests that we should declare these to be new weak
equivalences.

In the third subsection, we use Theorem to localize the model structures on
P(€, 9rpd), Sh(€, Grpd), and Grpd/C, with respect to the set of maps

hocolim U, — X, where {U; — X} a cover in C,

We then observe that in these local model structures, the fibrant objects are the
stacks.

In the next section we will prove that all these local model category structures
on P(€, Grpd), Sh(C, Grpd), and Grpd/C are Quillen equivalent. We will also prove
that the weak equivalences in the local model structure on P(C, Grpd) are the maps
which, locally, are weak equivalences.

7.1. Model Category Structure on (Pre)Sheaves of Groupoids. In this sub-
section we construct a model category on both sheaves and presheaves of groupoids
on a Grothendieck topology C, using a set of “generators”. More precisely, we will
give a collection of objects X and define a map f to be a weak equivalence or a
fibration if and only if the map of groupoids Grpd(X, f) is one for all X. This
definition of weak equivalences and fibrations together with the smallness of the
generators X implies that the sets of maps {X ® G — X ® H}, where X is a
generator and G — H is a generating (trivial) cofibration of groupoids, form sets
of generating (trivial) cofibrations. In our case the “generators” X will be the
representable functors.

Henceforth we will abuse notation and denote by X the sheaf Home(—, X) of
discrete groupoids represented by the object X € C.

Theorem 7.1. There are left proper, cofibrantly generated, model category struc-
tures on P(C, Srpd), and Sh(C, Grpd), where

o f is a weak equivalence or a fibration if Grpd(X, f) is one for all X € C,

e cofibrations are the maps with the left lifting property with respect to trivial

fibrations.

The maps of the form X — X @ A, for X € @, form a set of generating trivial
cofibrations. The maps of the form X @ OA* - X @ A? for X € € and i = 0,1,2
form a set of generating cofibrations.
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Corollary 7.2. The adjoint pair

Sh(C, Srpd) P(
sh

C, Grpd)

is a Quillen pair.

Proof. Presheaves: For MC1, note that limits and colimits are defined objectwise
in P(€, Grpd). MC2-MC4a are obvious. For X € €, the functor Grpdp e, gpa) (X; —)
is evaluation at X, which commutes with all limits and colimits in P(C, Grpd). It
follows that X is small in P(C, Grpd), hence the domains of the generating (triv-
ial) cofibrations are small. This implies MC5a. Now note that cofibrations are,
in particular, objectwise cofibrations. Since colimits are computed objectwise, it
follows that pushouts and directed colimits of trivial cofibrations are again trivial
cofibrations, which proves MC5b. Similarly, left properness follows from the left
properness of Grpd and the fact that cofibrations are objectwise cofibrations. MC4b
now follows by the same argument used in the proof of Theorem . SM7 follows
immediately from SM7 for Grpd.

Sheaves: MC1-MC4a, are obvious. The inclusion of sheaves in presheaves pre-
serves filtered colimits so the domains of the generating (trivial) cofibrations are
also small in sheaves, and MCba follows. For MC5b, it suffices to show that the
pushout in presheaves, of a sheaf along a generating trivial cofibration is still a
sheaf. Consider the diagram

X F

! |

XA — (XA ][ F,

where F is a sheaf and X € €. The presheaf of groupoids X @ A! [[ F has:
e object presheaf, the presheaf of objects in F'[[ X and
e morphism presheaf, the presheaf of objects in FA ]_[FAl xp X][X xp
FA' [ X xp FA xp X.
The presheaves of objects and morphisms of (X @ A') [] F are sheaves, so (X ®
ANy F is a sheaf. MC4b follows by the same argument given in the proof of
Theorem . SM7 follows immediately from SM7 for Grpd.

Since P(C, Grpd) is left proper, to show left properness for sheaves it suffices to
show that the pushout in P(C, Grpd) of a weak equivalence along a cofibration of
sheaves is again a sheaf. Since we have already proven that the pushout of a sheaf
along a trivial cofibration is a trivial cofibration whose range is a sheaf, we can
assume that our weak equivalence is a trivial fibration.

We begin by noting that cofibrations of sheaves are, in particular, objectwise
cofibrations, as sheafification preserves monomorphisms (and N and 7,4 preserve
cofibrations).

Trivial fibrations in Grpd are the surjective equivalences of categories, and so
pushouts of trivial fibrations along objectwise cofibrations in P(C, Grpd) are again
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trivial fibrations in P(€, Grpd). Consider the diagram in P(C, Grpd)

A—"F

|

B—N»BHAF.

Let P denote the pushout B[, F. The argument given above to show that cofi-
brations are objectwise cofibrations shows also that the pushout in presheaves of
a sheaf along a cofibration of sheaves is a sheaf on objects. Hence P is a sheaf on
objects.

To see that the morphisms of P are a sheaf, recall that for each X € €, the map
B(X) — P(X).is a surjective equivalence of categories.

Given a presheaf G, let I(G) be the presheaf with I(G)(X) the category with
objects, the objects of G(X) and a unique morphism between each pair of objects
G(X). There is a canonical map G — I(G) and if G is a sheaf on objects, then
I(G) is a sheaf. Since B — P is a trivial fibration, it is easy to check that B =
I(B) xr(py P. Using the following facts:

e the set of morphisms of a fiber product is the fiber product of the morphisms,

o the map I(B) — I(P) is a surjection on objects and morphisms,
it is not hard to check that P satisfies the sheaf condition. |

7.2. Categories Fibered in Groupoids over C. In this subsection we construct
a model category on Grpd/C relative using the set of “generators” /X — C.

Theorem 7.3. There is a left proper, cofibrantly generated, simplicial model cate-
gory structure on Grpd/C in which
e [ is a weak equivalence or a fibration if Grpdg,,q/c(C/X, f) is one for all
X e,
e cofibrations are the maps with the left lifting property with respect to trivial
fibrations.
The maps of the form C/X — (€/X ® Al), for X € €, form a set of generating
trivial cofibrations. The maps of the form (€/X ® OAY) — (C/X @ AY), for X € C

and i =0,1,2 form a set of generating cofibrations.

Proof. For MC1, see Appendix A. MC2-MC4a are obvious. In order to apply the
small object argument to prove MC5, we need to check that the objects /X ®G —
€ with G = (9)A%,i = 0, 1,2, are small with respect to the colimits which appear
in the small object argument. First notice that sequential colimits in Grpd/C agree
with sequential colimits in Cat /€. For convenience, in the construction of the
factorization for MCba we will take pushouts along both the generating cofibrations
and the generating trivial cofibrations.

Let &; — &;4+1 be constructed as usual, using the small object argument, and
let consider a map F': €/X — colim &;. F(idx) lifts to some element X’ in some
&;, and we can extend this to a map F] : €/X — &;. Let F’ be the composition
C/X — &, — colim&;. Then F'(idx) = F(idx), and so there is a unique natural
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isomorphism ¢ : F — F’ making the following diagram commute

/X ———=¢;

| ]
C/X —=C/X ® Al _a > colim &;.
\_/

F

The map €/X — C/X ® Al is one of the generating trivial cofibrations, so by
construction we obtain a lift

/X —— ¢,

|

L Cit

R 4
— ~
- ~

_— ~
// -

C/X = €/X ® Al —2 = colim &,
\/
F

Thus €/X is small with respect colim &;. Since natural transformations between
sections are determined uniquely by their evaluation on ¢dx, a similar argument
shows that €/ X ® (9)A? is small with respect to colim €;. This completes the proof
of MCha.

For MC5b, note that if & — &' has the left lifting property with respect to all
fibrations, then in particular it has the left lifting property with respect to &€ — C
and (&/)2" — (&)?2", and therefore it is an equivalence of categories over €. An
equivalence of categories over € is clearly a weak equivalence. It follows that the
cofibration constructed using the small object argument for MC5b is also a weak
equivalence.

MC4b now follows by the same argument given in the proof of Theorem .
SM7 follows immediately from the definition of (trivial) fibration in Grpd/€ and
the adjunction formulas given by the simplicial structure.

To show left properness, it suffices to show that the pushout of a trivial fibration
along a cofibration is a weak equivalence. We begin by noting that trivial fibrations
are surjective equivalences of categories. Let F : & — & be a trivial fibration
and let X')Y' € £ X" = F(X'),Y" = F(Y'). Clearly F is surjective on objects
and morphisms. We will show that the map

HOmg/ (X/, Y’) — HOIng// (X”, Y“)

is a bijection. If F(f") = F(g’) then f’ and ¢’ have the same image in € and so
there is a unique isomorphism A’ filling in the following triangle in &’:

bl

| X\
I

\ g

X' —Y'

By the uniqueness of the lifting ', F'(h') = idx» € £". Since F is a trivial fibration
it follows that A/ = idx-.
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Now note that cofibrations in Srpd/C are inclusions on objects as this is the
case for the generating cofibrations. Proposition @ implies that the pushout in
Cat /€ of a surjective equivalence of categories along an inclusion on objects is
still an equivalence of categories over C. This simultaneously implies that the
pushout in Cat /€ coincides in this case with the pushout in Grpd/C (see the proof
of Proposition Ell) and completes the proof. O

Corollary 7.4. The adjoint pair p : P(C, Srpd) < Grpd/C : T is a Quillen equiva-
lence.

Proof. This follows immediately from the definition of the model structures and

Theorem . O

7.3. Local Model Category Structures. Recall that given X € € we also denote
by X the (pre)sheaf represented by X. For convenience, we will sometimes also
denote by X the category fibered in groupoids €/X — €. In any of the categories
P(€, Grpd), Sh(C, Grpd) or Grpd/C, we denote by S the set of maps

S = {hocolimU, — X : {U; — X} is a cover in C}
where U, denotes (as usual) the nerve of the covering {U; — X}.

Proposition 7.5. Let M be one of the categories P(C,Grpd),Sh(C, Grpd) or
Grpd/C. There is a model category structure on M which is the localization of
the model structure of Theorems or @ with respect to the set of maps S.

Proof. Since homotopy colimits of cofibrant objects are cofibrant, the domains and
ranges of the morphisms in the localizing set are cofibrant. By Theorems @ and
f-3, the model category structures on P(C, Grpd), Sh(C, Grpd) and Grpd/C satisfy
the hypothesis of Theorem P.14, so the proposition follows. O

Let M be one of the categories P(C, Grpd), Sh(C, Grpd) or Grpd/C. We will write
My, for the category M with the model structure given by the previous proposition.

Since in the old model structure on M every object is fibrant, and X € € is
cofibrant, an object F' € My, is fibrant if and only if

Grpd(X, F) — Grpd(hocolim U,, F') = holim Grpd(U,, F)

is a weak equivalence for all covers. By definition of stack, this happens if and
only if F' is a stack. It follows that a fibrant replacement functor for My is a
stackification functor.

Remark 7.6. Since stacks are the fibrant objects, and representables are cofibrant,
it follows that when M is a stack, h Hom(X, M) is equivalent to the groupoid
M(X). In particular, [X, M] is the set of isomorphism classes of M(X).

Remark 7.7. Tt is not hard to check that a small presentation (in the sense of [,
Definition 6.1]) of P(C, Srpd)y, is given by the Yoneda embedding of € in P(C, Grpd)
and the set of maps

X®IA" » X @ A", forall X € C,n > 2

hocolim U, — X for all covers {U; — X} in C.

This means that the local model category structure is the “quotient” of the universal
model category generated by C by the relations given by the maps above.
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8. CHARACTERIZATION OF LOCAL EQUIVALENCES

In this section we prove that a morphism f is a local weak equivalence if and
only if it satisfies one of the following equivalent properties:

e fis an isomorphism on sheaves of homotopy groups,

o f satisfies the local lifting conditions,

o fis a stalkwise weak equivalence (when € has enough points).

Furthermore we prove that our local model structure P(C, Grpd)y, is Quillen equiv-
alent to the S? nullification of Jardine’s model structure on presheaves of simplicial
sets 4.

In subsection 8.1 we describe Jardine’s model structure on presheaves of sim-
plicial sets and show that it is the localization of the Heller model structure with
respect to a set of maps Sy,. There is an analogue of the Heller model structure for
presheaves of groupoids which we denote by P(C, Srpd) . We prove that its local-
ization with respect to m,;4S5, has weak equivalences the isomorphisms on sheaves
of homotopy groups, and is Quillen equivalent to the S? nullification of Jardine’s
model structure. The main theorem in this subsection is that the identity adjoint
pair induces a Quillen equivalence

(8.1) P(C,Grpd), < (ﬂoidSm)flP((?,Srpd)H.

It follows that P(C, Grpd)y, is Quillen equivalent to the S? nullification of Jardine’s
model structure. We prove that @) is a Quillen pair, and leave the proof that the
weak equivalences are the same till 8.2.

In subsection 8.2 we introduce Dan Dugger’s local lifting conditions, and prove
that they are satisfied by a map ¢ € P(C,Grpd) if and only if ¢ induces an iso-
morphism on sheaves of homotopy groups, and if and only if ¢ is a local weak
equivalence. This completes the proof that (@) is a Quillen equivalence.

In subsection 8.3 we apply the characterization of local weak equivalences to
show that the adjoint pairs

sh: P(C,Grpd) < Sh(€,SGrpd) : i
and
p: P(C,S9rpd) < Grpd/C: T
are Quillen equivalences between the local model structures on each of these cate-
gories.

8.1. Jardine’s Model Structure. In this subsection we compare the local model
structure on presheaves of groupoids to Jardine’s model structure on simplicial
presheaves [@] In order to define this model structure we will need the notion
of sheaves of homotopy groups. Note that for a simplicial set X, and basepoint
a € X, m,(X,a) denotes the n-th homotopy group of the fibrant replacement of
X with basepoint the image of a.

Definition 8.2. [@] Let F be a presheaf of simplicial sets or groupoids. Then
o moF is the presheaf of sets defined by (moF)(X) := mo(F(X)).
e For F € P(C,s8et) and a € F(X)o, m,(F,a) is the presheaf of groups on C/X
defined by
mn(Fra)(Y -5 X) = (F(Y), f*a).
For F € P(C,Srpd) and a € ob F(X), m,(F,a) := 7, (NF,a).
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We say that a map F 2. q of presheaves of simplicial sets or groupoids is an
isomorphism on sheaves of homotopy groups if the induced maps shmo(¢) and
sha, (¢, a) are isomorphisms for all a € F(X), and all X € C.

Note that if F is a presheaf of groupoids then 7;(F,a) = 0 for i > 1, and 71 (F, a)
is the presheaf of groups Autp(a) on €/X, where

Autp(a)(Y 55 X) := Aut e (fra).

Note also that if FF — G is an objectwise weak equivalence, then the induced
map of presheaves of homotopy groups is an isomorphism.

Reference 8.3 (Jardine’s Model Structure [Jd]). There is a left proper, cofi-
brantly generated, simplicial model structure on P(C, s8et) where
e cofibrations are the maps which are objectwise cofibrations,
e weak equivalences are the maps which are isomorphisms on sheaves of homo-
topy groups,
e fibrations are the maps with the right lifting property with respect to the trivial
cofibrations.

The Jardine model category will be denoted by P(C, s8et) .

Proposition 8.4. (a) There is a model structure on P(C, Grpd), denoted
(T0iaSx,) "1 P(C, Srpd) i, in which the cofibrations are objectwise and the weak
equivalences are the isomorphisms on sheaves of homotopy groups.

(b) The adjoint pair (weiq, N) induces a Quillen equivalence between
(T0idSx, ) L P(C, Grpd) g and the S? nullification of P(C,sSet) ;.

To prove the proposition we will make use of the following model structure:

Reference 8.5 (Heller Model Structure [[Hd, Bu])). There are left proper, cofi-
brantly generated, simplicial model structures on P(C, s8et) and P(C, Grpd) where
e cofibrations are the maps which are objectwise cofibrations,
e weak equivalences are the objectwise weak equivalences, and
e fibrations are the maps with the right lifting property with respect to the trivial
cofibrations.

Proof. A proof for presheaves of simplicial sets is contained in [@], while the general
case of a left proper combinatorial model category is contained in [@] [l

The categories of presheaves of simplicial sets and groupoids with the Heller
model structure will be denoted P(C, sSet)y and P(C, Srpd)y respectively.
The following lemma will also be needed in the proof of Proposition @

Lemma 8.6. 1. Let Sy, be a set of generating trivial cofibrations in P(C, sSet) .
Then the identity adjoint pair is an isomorphism

(Sx. ) tP(C, s8et)yy = P(C, s8et) ;.
2. Consider the set of morphisms in P(C, s8et):
OA"RX - A"® X, forn>2X €C

and let (S?)71P(C, sSet)y denote the localization of the Heller model structure
with respect to these morphisms. The Quillen pair (74, N) induces a Quillen
equivalence:

Toia : (S%)7LP(C, s8et)yr < P(C,Grpd) g : N.
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Proof of Proposition . Applying Theorem (c) and (d) we see that after lo-
calizing the above Quillen equivalences we still have Quillen equivalences
(S%)71(Sx.) L P(C, s8et)y = (S*) 71 P(€, s8et) s
(S*)71(Sx, ) TEP(C, s8et) g > (T0iaSr,) L P(C, Grpd) g
It follows that (meiqSx,) L P(C, Grpd)y is Quillen equivalent to (S2)~1P(C, sSet) ;.

Now we will show that the weak equivalences in (52)~1P(C, s8et); are the iso-
morphisms on sheaves of homotopy groups in dimensions 0 and 1. As F' — NmyiqF
is a weak equivalence (because it is one in (S%)~!P(C, sSet)y), morphisms which
are isomorphisms on sheaves of homotopy groups in dimensions 0 and 1 are weak
equivalences.

We claim that the fibrant replacement functor in (S2)71(S,,) ' P(C, s8et)n
can be constructed as a transfinite composition of fibrant replacement functors
of (S2)7'P(C,s8et)y and (Sy.) 'P(C,sSet)y [Dgd. The desired number of
compositions is a cardinal ¢ such that all the generating trivial cofibrations in
(S?)71P(C, s8et)y and (Sx,) 1 P(C, s8et)y are small with respect to c¢. As fibrant
replacement in (S2)~1P(C, s8et)y and in (S;,) ' P(C, s8et)y are isomorphisms on
sheaves of homotopy groups in dimensions 0,1, the same is true for fibrant re-
placement in (S?)~1(S,,)"tP(C,s8et) . Now let A L, B be a weak equivalence
and let P denote a fibrant replacement functor in (S2)~1(S,,) 1 P(C, sSet)y. As
Pf, A— PA, and B — PB are isomorphisms on sheaves of homotopy groups in
dimensions 0,1, so is f.

We now show that weak equivalences in (m,;4Sx,) ' P(C,Grpd)y are the iso-
morphisms on sheaves of homotopy groups. As 7,;q preserves weak equivalences
between cofibrant objects it preserves all weak equivalences. It follows that all
isomorphisms on sheaves of homotopy groups are weak equivalences. Since myq
induces a surjective equivalence of categories

Ho((S*)71(S:, )" P(C,s8¢et) ) — Ho((T0iaSx,) ' P(C, Grpd) ),

all the weak equivalences in (my;qSx, ) 1 P(C,Grpd)y are the image under 7,4 of
weak equivalences in (S?)71(S;,) "1 P(€, s8et) iy and therefore are isomorphisms on

sheaves of homotopy groups.
O

Theorem 8.7. The identity adjoint pair induces a Quillen pair
P(C,SGrpd)r, < (ToiaSx.) *P(C,Grpd) .

Proof. The cofibrations in the model structure on P(C, Grpd) of Theorem are
in particular objectwise cofibrations, and the weak equivalences agree with those in
P(C,Grpd)y. So there is an induced Quillen pair
P(C,SGrpd) < P(C,Srpd) g « (ToiaSx.) ' P(C, Grpd) g

To complete the proof, by Theorem , it suffices to show that the maps
hocolimU, — X are isomorphisms on sheaves of homotopy groups. Note that in
the model structure of Theorem 7.1 the homotopy colimit of the simplicial objects
U, agrees with the geometric realization |U,|, as the homotopy colimit of objectwise
cofibrant diagrams can be constructed objectwise.

Let Y € C, and consider the map

grpd(Y, |U°|) = |9Tpd(Y, U')l - grpd(Y, X)’
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where the equality above holds because both the simplicial action and colimits are
defined objectwise and Y is a discrete presheaf of groupoids. Using the fact that
the Yoneda embedding preserves limits we see that Grpd(Y,U,) is the nerve of the
map Srpd(Y,U) — Srpd(Y, X), that is, the simplicial groupoid:

oo => Grpd(Y,U) Xgrpacy,x) Grpd(Y,U) == Grpd(Y,U).

As Grpd(Y,U) and Srpd(Y, X) are discrete groupoids, it follows that the simplicial
set Grpd(Y,U,) has contractible components indexed by the image of Grpd(Y,U)
in Grpd(Y, X). In other words Grpd(Y, |U,.|) is homotopy equivalent to the discrete
set of maps Y — X which factor through U — X. It follows that mo|Us,| is the
presheaf of sets defined by the image of U in X, and the presheaves 71 (|Us|, a) are
trivial for all base points. Therefore the induced maps on 7 are isomorphisms.
One checks easily that |Us| — X induces an isomorphism on shmy. O

Theorem 8.8. The identity adjoint pair induces a Quillen equivalence
P(€,Grpd), < (ToiaSx,) ' P(€,Grpd)p.
Furthermore, the weak equivalences in these two model structures agree.

Proof. To see that the left adjoint preserves weak equivalences, i.e. that the local
weak equivalences are isomorphisms on sheaves of homotopy groups, factor a weak
equivalence f € P(C, Grpd)y, as a cofibration ¢ followed by a trivial fibration p. The
cofibration 7 is a weak equivalence and so, by Theorem @, its image is a trivial
cofibration in (my;qSx, ) 1 P(C, Grpd) . As p is an objectwise weak equivalence, it
is also a weak equivalence in (7,4 Sx, )" P(C, Grpd) 5.

To complete the proof, it suffices to show that the weak equivalences in
(T0idSx, ) "1 P(C,Grpd) are also weak equivalences in P(C,SGrpd)r. We use the
characterization of weak equivalences in the next subsection to prove this in Theo-

rem . O

Corollary 8.9. If the Grothendieck topology on C has enough points, a morphism
f € P(C,Grpd) is a local weak equivalence if and only if it is a stalkwise weak
equivalence of groupoids.

Proof. We have characterized the weak equivalences as those maps which induce
isomorphisms on sheaves of homotopy groups, so the proof is exactly the same as
the proof in [ld] of the analogous result for P(€, sSet). O

Corollary 8.10. The local model structure on presheaves of groupoids P(C, Srpd)
is Quillen equivalent to the S2%-nullification of Jardine’s model structure on
presheaves of simplicial sets (S*)™1P(€, s8et) .

8.2. Characterization of Local Weak Equivalences. In this subsection we
give a characterization of the weak equivalences in P(C,Srpd), in terms of Dan
Dugger’s local lifting conditions. This characterization allows us to complete the
proof of Theorem @, and prove in subsections 8.3 that the local model structures
P(C,Grpd) 1, Sh(C, Grpd)r, and Grpd/Cy, of section 7.3 are Quillen equivalent.

Definition 8.11. [@] A map F 2 qe P(C,Grpd) is said to satisfy the local
lifting conditions if:
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1. (Surjectivity on m). Given an isomorphism class in G(X), not necessarily
represented in F(X), there is a cover U — X such that it is represented in
FU).

) — F(X) A° /(Z), P(X) FU)
A T S S
A'— G(X) Al<— A0 G(X) —5 G{U).

2. (Injectivity on mp). If two isomorphism classes in F(X) bezo;n; identified in
G(X), there is a cover U — X such that they become identified in F(U).

AT — F(X) OA! —= F(X) —= F(U)
I
Al — G(X) Al —= G(X) —=G(U).

3. (Surjectivity on w1 ). If an element of the automorphism group of an object in
G(X) is not in the image of the automorphism group of an object lying over it
in F(X), then there is a cover U for which it is.

A — F(X) A FX) —= F(U)
I T R (S St
B7Z — G(X) BZ — G(X) G(U).

(Recall that BZ ~ S*.)

4. (Injectivity on 71 ). If two elements in the automorphism group of some object
in F(X) become identified in G(X), there is a cover U such that they become
identified in F(U).

B7Z — F(X) BZ F(X) F(U)

Y T R R

A0 —— G(X) A0 Z G(X) G(U).

Theorem 8.12. [Dgd] 4 map F 2. Ge P(C,Srpd) is an equivalence on sheaves
of homotopy groups if and only of it satisfies the local lifting conditions.

Proof. Recall that for F' a presheaf, its sheafification shF', can be constructed by
setting
shF(X) = colim(lim F(U) = F(V))

where the colimit is taken over all covers U — X and V — U xx U. It follows
that if a € shF(X) then there exists a cover U — X such that a lifts to an element
of F(U). Similarly if a,b € F(X) have the same images in shF (X) there exists a
cover U — X so that they have the same image in F(U). Conversely these two
properties are enough to characterize the sheafification. It follows that conditions
1. and 2. are equivalent to shmy¢ being an isomorphism, and conditions 3. and 4.
are equivalent to sh Auty(a) being an isomorphism for all ¢ € F(X), X € C. O

We use this theorem to prove the following result which completes the proof of
Theorem E
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Theorem 8.13. A map F — G € P(C,Grpd) satisfies the local lifting conditions
if and only if it is a local equivalence.

Proof. We may assume F and G are fibrant, as fibrant replacement is a local
weak equivalence, and we have already seen that the local weak equivalences are
isomorphisms on sheaves of homotopy groups. In this case, we need to show that
F — G is an objectwise weak equivalence.

Consider a map F' — G between stacks in P(C, Grpd) which satisfies the local
lifting conditions. First we show F(X) — G(X) is injective on automorphism
groups. We are in the situation of (4), so we are guaranteed that there is a
cover U — X and a lift in the diagram of B.1])(4). The descent condition for the
cover U — X gives a commutative diagram

BZ —— F(X)

.

AN ——=FU)=—— F({U xxU)= F(U xx U xx U).

~

The image of BZ in each F(U') is an identity morphism. Since F(X) ——
holim F'(U,), the image of BZ in F(X) must be trivial also.

To show that F(X) — G(X) is surjective on automorphism groups, suppose we
have a diagram as in (3) Consider again the descent condition for the cover
U — X, and the commutative diagram

AO—>F(X)

|

BZ ——FU)=—— F({U xxU)== F(U xx U xx U).

Let ¢ denote the image of BZ in F(U). Then d°(¢) and d*(¢) are automorphisms
of the same object in F(U xx U), and they have the same image in G(U x x U).
Since F' — G is an injection on automorphism groups, d°(¢) = d!(¢), which gives
us a lift of ¢ to holim F(U,). Since F(X) — holim F(U,), there is a unique lift
BZ — F(X).

Next we show that F/(X) — G(X) is an injection on connected components. Let
a,b € F(X), be objects with isomorphic images in G(X). By B.11(2), we have a

commutative diagram

IAN! —= F(X) ——=F(U)
_ 7

Al T—= G(X) ——= G(U).
We also have two maps Al G F(U xx U), whose composition to G(U xx U)
is the same. Since F' — G is injective on automorphism groups, it follows that
d'(a) = do(a). This data gives a lifting of o to holim F(U,). Since F(X) ——
holim F'(U,), and the domain and range of « lie in F'(X), this in turn lifts uniquely
to a morphism in F(X).
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Lastly, we show that F'(X) — G(X) is surjective on isomorphism classes. Con-
sider the diagram from B.11(1)

a

/_\

AD 0 F(X) FU)
A
Al AD G(X) GU).

\/

Let a € F(U) be the image of A°, b € G(X), be the image of A in G(X), and
B :im(a) — im(b) be the image of A in G(U). Since F — G is an surjection
on automorphism groups, we can lift (d'38)~! o (d°83) : im(d®(a)) — im(d'(a)), to
some « : d°(a) — di(a) € F(U?). Since F — G is an injection on automorphism
groups, this lifting is unique. The image of d'(a™!) o d’(a) o d?(a) is trivial in
G(U?), so it is also trivial in F(U?). Hence (a,) is an element of holim F(U,),
which determines a lifting in the diagram

) — F(X) —=> holim F(U.)

b

A0 = G(X) — holim G(U,).

Pick o’ € F(X) whose image in holim F'(U,) is isomorphic to (a,«). Then the
image of @’ in G(X) is isomorphic to b, so we can fill in the following diagram

’
a

A=) ()

L

Al=—A0 _—b,; G(X).

which completes the proof. O

Corollary 8.14. Let F' — G be an objectwise fibration, then the first of the local
lifting conditions of can be simplified to 1. (Surjectivity on ).

) — F(X) 0 F(X) —= F(U)
l J{ = 3 l ////$// l
A0 —— G(X) A0 G(X) G(U).

The local lifting conditions 1',2,3,4 are preserved under pullbacks, so the pullback
of an objectwise fibration which is a local weak equivalence is again an objectwise
fibration which is a local weak equivalence.

8.3. Comparison of the Local Model Category Structures.
Proposition 8.15. The adjoint pairs

r i
Grpd/@ P(C,Grpd) Sh(€, Srpd)
P sh

induce Quillen equivalences between the local model structures.
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Proof. Let S denote the sets of morphisms
hocolim U, — X, for {U; — X} a cover

in P(C,SGrpd), Sh(C,Srpd) and Grpd/C. Since homotopy colimits commute with
the left adjoint in a Quillen pair, the set S € P(C, Grpd) is mapped by sh and p to
the sets S in Sh(C, Grpd) and Grpd/C respectively. By Theorem , the adjoint
pairs (sh,i), and (p,T") are still Quillen pairs between the local model category
structures, and (p,T’) is still a Quillen equivalence.

It remains to show that (sh, ) is a Quillen equivalence. By construction of the
sheafification functor, the map F' — shF satisfies the local lifting conditions, and
so is a weak equivalence in P(C, Srpd) . Similarly, it is easy to check that if a map
f € P(C, Srpd) satisfies the local lifting conditions then so does sh(f).

We will now prove that sh preserves weak equivalences. Let A — B be a
weak equivalence in P(C, Grpd)r, and P denote a fibrant replacement functor on
P(C,Grpd)r,. One can check directly that the sheafification of a stack F is a stack
and so sheafification preserves fibrant replacement. We have the following commut-
ing diagram

A——B shA — shB
\[\N \[\N sh \[\N fw
=
PA—> PB sh(PA) — sh(PB).

In P(C,Srpd)r, the morphism sh(PA) — sh(PB) is a weak equivalence between
fibrant objects (as PA — PB is a weak equivalence in P(C,Grpd);) and so is
an objectwise weak equivalence. It follows that sh(PA) — sh(PB) is a weak
equivalence in Sh(C, Srpd)y,, and therefore, so is shA — shB.

Now we show that the forgetful functor ¢ also preserves weak equivalences. Let
f be any weak equivalence in Sh(C,Grpd)r, and Pf its fibrant replacement in
P(C,Grpd)y,. As sh(Pf) is the fibrant replacement of f in sheaves it is also a weak
equivalence, and so also an objectwise weak equivalence. It follows that sh(Pf) is
a weak equivalence in P(C, Srpd)r, and therefore f is a weak equivalence also.

As both 7 and sh preserve weak equivalences, and the unit and counit are weak
equivalences, the Quillen pair (sh, ) is a Quillen equivalence. O

Corollary 8.16. A morphism X Ty e Sh(C,Srpd)r, is a weak equivalence if
and only if i(f) is a weak equivalence in P(C, Grpd) . It follows that the weak equiv-
alence in Sh(C, Grpd)r, are the maps which satisfy the local lifting conditions. In
particular, the weak equivalences in Sh(C, Grpd)r, are the maps which are objectwise

full and faithful, and satisfy [8.11(1).

Proof. We show that if a morphism X Ty e Sh(C, Grpd)r, is such that i(f)
is a weak equivalence in P(C,SGrpd)r, then f was already a weak equivalence in
Sh(C,Grpd)r. Let C denote a cofibrant replacement functor in P(C, §rpd)r, and
let F' be a fibrant sheaf. Then the map hHom(f, F) = s8et(Cf,F) is a weak
equivalence. As shealfification preserves fibrant replacement

s8et(C'f, F) = s8et(sh(Cf), F),

and so the map sSet(sh(Cf),F) is also a weak equivalence. As sh(CX) and
sh(CY') are cofibrant as sheaves it follows that sh(Cf) is a weak equivalence in
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Sh(C, Grpd)r,. We have the following commutative diagram in Sh(C, Grpd)

sh(Cf)

sh(CX) sh(CY)
Mo
shX 2 X —=shY 2Y.

where the vertical arrows are weak equivalences because they are the sheafification
of weak equivalences in P(C,SGrpd);,. By a 2 out of 3 argument, it follows that

x- Ly is also a weak equivalence in Sh(C, Srpd)y.

To complete the proof, notice that for a morphism X Ly of sheaves, the local
lifting conditions 2. - 4. are equivalent to f being objectwise full and faithful. O
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APPENDIX A. LiMmITS AND COLIMITS IN Srpd/C

Theorem A.1. Categories fibered in groupoids over C are closed under small limits
and colimats.

In order to prove this, we will need a few preliminaries.

Definition A.2. F: & — C € Cat /C is pre-fibered in groupoids if
1. Given f:Y — X € C and X' € € such that F(X') = X, there exists f' € &
such that F(f')=f.
2. Given a diagram in &, over the commutative diagram in C,

Y/ é Y
| S b
Z/L>X/ :F> Z_g>)(7

with F(f') = f,F(¢') = g, there exists h' such that g’ o h' = f' and F(I') =
h. Moreover, given two such maps h,h}, there exists an automorphism ¢ €
Aute (Y') such that F(¢) = idy and b} o ¢ = hl,.

Thus, the difference between fibered and pre-fibered is that categories which are
pre-fibered in groupoids only satisfy the uniqueness in condition 2) of Definition

in a weak form.

Proposition A.3. Let I be a small category, and F : I — SGrpd/C, a diagram.
Then the colimit of F in Cat/C is pre-fibered in groupoids.

Proof. The coproduct in Cat/C of a set of objects in Grpd/C is again in Grpd/C so
it suffices to consider the case of a coequalizer diagram. Consider the diagram

A

where Fy, F5 € Grpd/C and & is the coequalizer of the two arrows in Cat. Recall
that the coequalizer in Cat has objects the coequalizer of the sets of objects, and
morphisms the formal compositions of the coequalizer of the morphisms, modulo
the relations given by composition in €& Thus the map & — € clearly satisfies
condition 1. of definition @

We now prove that it also satisfies condition 2. with an induction argument.
Consider the diagrams

Y Y
| .
7—1-x z—1sx

where the bared objects and morphisms represent objects and morphisms in &
projecting to the corresponding objects and morphisms in €. Using the construction
of &, we can factor f and g as formal compositions of maps in the image of € in €.

Let f (an fla s 7fn) and g = (goag_lﬂ cee 79771)) with do;nalngfz) - range(fl—l)a
domain(g;) = range(g;—1), and range(f,) = range(g,,) = X in &.
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Firstly, consider the case when n =m = 0. Let
Yi L X1 Zy LN X cé

be representatives of the maps f and § respectively. If there is X’ € & such that
Fi(X’) = Xy and Fo(X') = X, lift f, g to morphisms f/, ¢’ in & whose range is
X'. Since & € Grpd/C, there is a unique b’ € &', projecting to h € C, such that
g oh/ = f'. Since € € Grpd/C, there are unique isomorphisms in €, projecting to
identity morphisms in C, filling in the diagrams

Y
Z2 T) X2.

Then the map h, defined as the formal composition Y7 — Fy(Y') ~ Fy(Y') —
Fy(Z") = Zy, is such that go h = f € €. In general, there will not be an object
X' such that Fy(X’) = X; and F»(X') = X5, but a finite sequence of objects in
&’ such that their images under F; and F, form a chain connecting X; and Xos.
The above argument is easily generalized to deal with this case. This completes the

proof in the case when n = m = 0.
If n = 0 then we can use the previous case and induction on m to lift as indicated

in the following diagram

gm

g1 Im—1

so the result is true in the case when n = 0 and m is arbitrary.

It is not hard to check that one can choose the lift h so that it is the image in &
of a formal composition of isomorphisms in €y followed by a lift of h to €&.

To complete the proof, notice that there is a lift of f € € to a map

v/l Xecé

which is in the image of €. Then by the previous case, there is an isomorphism

¢ € &, projecting to idy € €, as well as a map h' € & such that the following
diagrams commute in &

Y Yy

[ 7 [ 7!

| X I B’ !

¥ _ Y _
Y—f>X Z—§>X.
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We can now take h = h’ o 1. Notice that if h is the identity, we can choose h to
be an isomorphism. [l

Proposition A.4. Let € — C be pre-fibered in groupoids. Let ~ be the equivalence
relation on € generated by setting o ~ id for the automorphisms a € & which
satisfy:

1. a maps to an identity morphism in C,

2. there exists f € € such that foa = f.
Then £/ ~— C is also pre-fibered in groupoids.

Proof. The map &€ — &/ ~ is surjective on morphisms and bijective on objects so
this is obvious. |

Proof of Theorem @ Colimits: Let I be a small category and F' : I — Grpd/C

be a diagram. We denote by F’ the composite I £, Grpd/C — Cat/C. Let Ecolim
denote the colimit of F’ in Cat. We will show that the colimit of F is the directed
colimit of categories in Cat/C,

(A5) 8colim - Scolim/ ~—> (Scolim/ N)/ N
Denote the i-th category in this diagram & ;  and the colimit & := colim; (€% ;; ).
Propositions and % imply that Condition 1) and the existence part in Con-
dition 2) of Definition [p.9 are still satisfied by €.

To show the uniqueness part in Condition 2), suppose given a commutative
diagram in &:

Y—f>X

Mﬂhy’
VA

such that hy and hg project to the same map in €. Pick lifts ] and h} of h; and
hs in some €’ ;. . Then they also project to the same map in € so by Proposition
@, there is an automorphism « of Y in & , mapping to an identity in € such
that kb, o a = hy. Tt follows that k) = h) € €11 and so hy and hy agree in €.

We still need to show that & is the colimit in Grpd/C, but this follows because
any map F — & € Cat/C, with & € Grpd/C factors uniquely through F/ ~.

Limits: Let F' : I — Grpd/C be a diagram, and let lim F’ denote its inverse
limit in Cat/C. If lim F' € Grpd/C then it is the limit in Grpd/C as this is a full
subcategory of Cat/C.

The objects and morphisms of lim F’ are the inverse limits of the sets of objects
and morphisms, so for each object X’ € lim F’, the category (lim F’)/X’, is the
limit of categories F'(¢)/ X/, € I. It is easy to see that the map (lim F')/ X’ — C/X

e is a bijection on Hom-sets, since this is the case for each of the constituent
functors F(i)/ X! — C/X,
e but it is not necessarily a surjection on objects even though each of the functors
F@i)/X] — €/X is.
It follows that if lim F” is not fibered in groupoids over €, this is due to the failure of
Condition 1) in Definition @ However, in this case, the full subcategory of lim F’
with objects all those X’ such that (lim F’)/X’ — €/X is surjective on objects,
clearly is fibered in groupoids and satisfies the universal property of the limit.
O
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APPENDIX B. LAX PRESHEAVES OF GROUPOIDS

In this section we will define the category of lax presheaves of groupoids, denoted
lax — P(C, 9rpd), and we will give an equivalence between this category and the
category Grpd/C. When € has a Grothendieck topology, lax — P(C, Grpd) is also
used as an ambient category in which to define stacks and we observe that the two
different definitions of stack agree under this equivalence.

Using this equivalence of categories, all the results proved in this paper for
Grpd/C can be transfered to lax — P(C, Srpd).

One should think of a lax presheaf on C as a category fibered in groupoids
together with a choice of pullback functors. The morphisms between lax presheaves
are sufficiently flexible so that different choices of pullback functors for the same
category fibered in groupoids correspond to canonically isomorphic lax presheaves.

The relation between the categories Grpd/C and lax — P(C, Srpd) is analogous
to the relation between two different ways of defining principal G-bundles. One can
define a bundle on X as a space over X which is locally trivial, or one can define the
bundle to be the space over X together with a set of local trivializations. When the
trivializations are part of the definition, one has to add morphisms to the category
which give equivalences between the different choices of trivializations.

Definition B.1. [Bry], Bril] The objects of lax — P(C, Grpd) are the assignments:
e for each object X € C, a groupoid F(X),

e for each morphism Y T xe C, a functor F(X) 7 FY),
e for each pair of composable morphisms Z —2»'Y Jox € C, a natural trans-
0
formation F(g) o F(f) = F(f o g),
such that
e for every triple of composable morphisms W ez 9y Loy € C, the
following diagram commutes

F(h) 0 Fg) 0 F(f) 2L F(h) 0 F(f 0 g)

9h,903(f)l eh,fogl
0 o
F(goh)oF(f) —LsTF(fogoh).

A morphism ¢ : F — F' € lax — P(C, Grpd) is an assignment:
o for each object X € C, a map F(X) s F(X),
#(f)

e for each morphism Y Jox € C, a natural isomorphism ¢(Y) o F(f) —
F'(f) 0 d(X),

F(x) 2L g (x)
Y

o(f
(1) / l’f’(f)

TY) 55 T,

such that
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e for each pair of composable morphisms Z -2 Y Jox € @, the following
diagram commutes

9(2) 0 T(f o)
9(2) 0 T(g) 0 T(f) F(f 09) 0 9(X)
¢(9)0’J"(f)l T%,fmi’(X)
T'(9) 0 6(Y) 0 (1) ST (9) o TN 0 ().

There is a natural groupoid action on lax — P(C, Grpd), in which:
e the groupoid of maps has objects maps, and morphisms the coherent natural
isomorphisms,
e the tensor and cotensor are defined objectwise.
There is an obvious inclusion ¢ : P(C, §rpd) — lax — P(C, §rpd) which preserves
the groupoid action.

Example B.2 (Vector Bundles on Top Revisited). Consider the assignment Top —
Srpd which sends Y to the groupoid of vector bundles over Y, and a map f to the

pullback function f*. This assignment is not a functor because given Z Sy S,
X € Jop and E — X a vector bundle, the pullbacks g*f*F and (f o g)*F are
not equal. There is, however, a canonical isomorphism ¢*f*E — (f o g)*E so the
assignment above together with the canonical isomorphisms is an example of a lax
presheaf on Top.

Instead of working with this lax presheaf, we can consider its associated category
of pairs, or Grothendieck construction. This has objects the pairs (Y, F — Y),
where F is a vector bundle over Y € Top, and morphisms (Y, E) — (Z,E’), the
pairs formed by a map f : Y — Z, and an isomorphism « : E — f*E’. It is
easy to check that this category is isomorphic to the category Vec(Top) € Grpd/C
of Example EI

Just as in the bundle case, there is a “forgetful functor” laxz — P(C, Grpd) —
Grpd/C which sends lax presheaves corresponding to different choices of pullback
functors for &€ — €, to objects in Grpd/C which are canonically isomorphic to &€ — C.

Definition B.3. Given F € lax — P(C, Srpd), let pF € Cat /C be the category with
o objects, the pairs (X, a) with X € € and a € F(X),
e morphisms (X,a) — (Y,b), the pairs (f,«) where f: X — Y is a morphism
in C and a : a — F(f)b is an isomorphism in F(X).

The composition of two morphisms (X, a) (i) (Y, b) @8) (Z,c) is the pair (g o

f,05.90F(F)(B) 0 ).

It is not hard to show that pF is a category fibered in groupoids over €, and that
p defines a functor lax — P(C, §rpd) — Srpd/C.

Theorem B.4. The functor p : lax — P(C, Grpd) < Srpd/C is an equivalence of
categories.

Proof. Let & € Srpd/C. A choice of a pullback functor f* : Ex — €y for each
y L x e C, determines a lax presheaf F with F(X) := €x, and F(f) = f*
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Given two such choices of lax presheaves F,JF’, there is a canonical isomorphism
¢:F — F, where ¢(X) = ide . for each X € €, and ¢(f) is the canonical natural
isomorphism from F(f) — F(f). For each & € Grpd/C make an arbitrary choice
of pullback functors, and let L(€) denote the resulting lax presheaf.

For each X -V € C,amap & L, & determines squares

SXL>8Y

|

& — IS
where the unique natural isomorphism follows from condition 2. of Definition @
The uniqueness of the natural isomorphism in the square above guarantees that
these squares patch together to give a morphism L(F) : L(€) — L(&') € lax —
P(€, Grpd) and that L is indeed a functor.
It is now easy to check that there are canonical natural isomorphisms L o p =
idlaz,p and po L= idngd/@. |

Note B.5. It is easy to check directly from the definition of stacks in lax presheaves
[Brd, Pg.5] that F € laz—P(C, Grpd) is a stack if and only if pJ is a stack in Grpd/€.
Thus, the equivalence of categories between lax — P(C, Grpd) and Srpd/C restricts
to an equivalence between the subcategories of stacks.



[An]
[Bo]
[BK]

[Brn]
[Bry]

(DM]
[Db]
[DF]
[Dg]

[Dg2]
[DK]

[DS]
[EK]
(Gi]
(GJ]
(GZ]
(He]
(Hi]
[Ho]
[Holl]
[Ja]
[Ja2]
(M1]
(MM]
[May]
(MV]
Q]

[Sm]
[St]
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