Homological mirror symmetry

Nick Sheridan

IAS/Princeton

July 1, 2013

Outline

Gromov-Witten invariants

Mirror symmetry 1.0 – closed string

Mirror symmetry 2.0 – open string, or 'Homological'

Calabi-Yau hypersurfaces in projective space

Holomorphic curves

- ▶ Let (M, ω) be a **Kähler manifold**: a complex manifold with a compatible symplectic form ω .
- Given a Riemann surface Σ, we consider the moduli space of holomorphic curves:

$$\{u: \Sigma \to M \text{ holomorphic}\} / \sim$$
,

where $u_1 \sim u_2$ if they are related by a reparametrization.

Gromov realized (1985) that holomorphic curves come in compact, finite-dimensional families.

Counting curves

The **Gromov-Witten invariants** are counts of the zero-dimensional part of such a moduli space. E.g.:

- Number of degree-1 curves (lines) $u: \mathbb{CP}^1 \to \mathbb{CP}^n$, passing through two generic points: 1.
- Number of degree-2 curves (conics) $u : \mathbb{CP}^1 \to \mathbb{CP}^2$, passing through five generic points: 1.
- Number of lines on a cubic surface: 27.

Curve-counting on the quintic three-fold

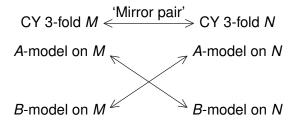
- Number of lines on a quintic three-fold: 2875.
- ▶ Number of conics: 609250.
- Number of cubics: 317206375.
- ▶ In 1991, the number of degree-d rational curves on the quintic three-fold was unknown, for $d \ge 4$.

A and B models

- Physics: study string theory on a Calabi-Yau Kähler manifold (M, ω, Ω).
- ▶ Calabi-Yau means there is a holomorphic volume form $\Omega \in \Omega^{n,0}(M)$.
- ▶ There are two models for closed-string theory on (M, ω, Ω) :
 - The 'A-model' = Gromov-Witten invariants (depend on symplectic structure (M, ω));
 - ► The 'B-model' = periods of Ω (depend on complex structure (M, Ω)).

Mirror symmetry 1.0

Physicists noticed (mid-80s) that there are many pairs of Calabi-Yau three-folds on which *A*- and *B*-models are exchanged:



Application to the quintic three-fold

In 1991, string theorists Candelas, de la Ossa, Green and Parkes used mirror symmetry to predict curve counts on the quintic three-fold *M*:

- They constructed a mirror N to M;
- ► The A-model (Gromov-Witten invariants) on M should correspond to the B-model on N;
- ► They explicitly computed the B-model on N (periods of the holomorphic volume form).

The results

- ► This gave a prediction for the number of degree-d curves on the quintic three-fold for any d.
- Their predictions agreed with the known results for d = 1, 2, 3.
- In 1996, Givental and Lian-Liu-Yau proved this version of mirror symmetry for all Calabi-Yau (and Fano) complete intersections in toric varieties, using equivariant localization.

Cohomological Field Theory (Kontsevich-Manin)

▶ The *A*-model on *M* should be a **Cohomological Field Theory**: an *R*-module $C = H^*(M)$ together with maps

$$I_{g,n}:\mathcal{C}^{\otimes n}\otimes H^*(\overline{\mathcal{M}}_{g,n})\to R,$$

where $\overline{\mathcal{M}}_{g,n}$ denotes the Deligne-Mumford compactification of the moduli space of genus-g, n-pointed closed Riemann surfaces.

These must be compatible with the inclusions of boundary strata

$$\mathcal{M}_{g_1,n_1+1} \times \mathcal{M}_{g_2,n_2+1} \rightarrow \mathcal{M}_{g_1+g_2,n_1+n_2}$$

(+ other axioms).

CohFT from Gromov-Witten invariants

► To define Gromov-Witten invariants of *M*, consider moduli spaces of stable holomorphic maps

$$\overline{\mathcal{M}}_{g,n,\beta}(\textit{M}) := \{u : \Sigma_g \to \textit{X} \text{ holomorphic, } u_*[\Sigma_g] = \beta\} / \sim.$$

There are maps

$$\overline{\mathcal{M}}_{g,n} \leftarrow \overline{\mathcal{M}}_{g,n,\beta}(\textit{M}) \rightarrow \textit{M}^n$$
; hence

$$I_{g,n,\beta}:H^*(M)^{\otimes n}\otimes H^*(\overline{\mathcal{M}}_{g,n})\to\mathbb{C};$$

then the maps

$$I_{g,n} := \sum_{\beta \in H_2(M)} r^{\omega(\beta)} I_{g,n,\beta}$$

form a $\mathbb{C}[r]$ -linear Cohomological Field Theory.

Open-closed TCFT (cf. Costello)

- For an R-linear open-closed TCFT, one needs:
 - ► An *R*-module *C* ('closed-string states');
 - A set of objects L;
 - For each pair of objects L_0 , L_1 , an R-module $\mathcal{O}(L_0, L_1)$ ('open string states');
- One defines algebraic operations like for a CohFT, where now your Riemann surfaces have boundary, and both internal and boundary marked points:
 - Internal marked points are labelled by C;
 - Boundary components are labelled by objects L_i;
 - ▶ Boundary marked points are labelled by $\mathcal{O}(L_{left}, L_{right})$.

A_{∞} categories

If we only look at the part of the open-closed TCFT corresponding to disks with no internal marked points, we get an A_{∞} category:

There are maps

$$\mu^{s}: \mathcal{O}(L_{0}, L_{1}) \otimes \ldots \otimes \mathcal{O}(L_{s-1}, L_{s}) \to \mathcal{O}(L_{0}, L_{s});$$

▶ These maps μ^s satisfy the A_∞ relations:

$$\sum_{i,j} \mu^{s+1-j}(\boldsymbol{p}_1,\ldots,\mu^j(\boldsymbol{p}_i,\ldots,\boldsymbol{p}_{i+j}),\ldots,\boldsymbol{p}_s) = 0$$

for all $s \ge 1$.

What the A_{∞} relations mean

 \blacktriangleright When s=1, this means

$$\mu^1: \mathcal{O}(L_0,L_1) \to \mathcal{O}(L_0,L_1)$$

is a differential.

• When s = 2, this means

$$\mu^2: \mathcal{O}(L_0,L_1)\otimes \mathcal{O}(L_1,L_2)\to \mathcal{O}(L_0,L_2)$$

satisfies the Leibniz rule (hence descends to a product on the cohomology of μ^1).

- ▶ When s = 3, this means the product μ^2 is associative.
- This (+ identity morphisms) means we can define an honest category, with morphism spaces

$$\text{Hom}(L_0, L_1) := H^*(\mathcal{O}(L_0, L_1), \mu^1)$$

The Fukaya category $\mathcal{F}(M)$

- ▶ A submanifold $L \subset M$ is called **Lagrangian** if $\omega|_L = 0$, and $\dim(L) = \dim(M)/2$.
- ▶ Objects of $\mathcal{F}(M)$ are Lagrangian submanifolds of M.
- Morphism spaces are generated by intersection points:

$$\mathcal{O}(L_0,L_1):=R\langle L_0\cap L_1\rangle$$

(where R is the algebraic closure of $\mathbb{C}[r, r^{-1}]$).

▶ The A_{∞} structure maps μ^s are defined by counting holomorphic disks

$$u: \mathbb{D} \to M$$
,

with boundary conditions on the Lagrangians L_0, \ldots, L_s , weighted by $r^{\omega(u)} \in R$.

From open strings to closed strings

- The Fukaya category 'should' fit into an open-closed TCFT with the Gromov-Witten invariants.
- Kontsevich conjectured that (in good cases) the whole TCFT structure of the Gromov-Witten invariants can be reconstructed from the Fukaya category by taking Hochschild cohomology:
 - ▶ There ought to be a natural TCFT structure on the Hochschild cohomology of an A_{∞} category (Deligne conjecture);
 - ▶ There should be an isomorphism

$$H^*(M) \cong HH^*(\mathcal{F}(M))$$

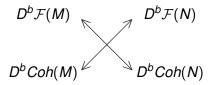
as R-linear TCFT's.

Homological Mirror Symmetry

- ► In 1994, Kontsevich introduced a 'categorified' version of the mirror symmetry conjecture.
- ▶ The A-model should be the **Fukaya category** $\mathcal{F}(M)$, a symplectic invariant.
- ► The B-model should be (a DG enhancement of) the category of coherent sheaves Coh(M), an algebraic invariant.
- ► Note: the Hochschild-Kostant-Rosenberg isomorphism relates $HH^*(Coh(M))$ to the closed-string B-model.

What HMS means

So, Calabi-Yau Kähler manifolds M and N should be mirror if there are quasi-equivalences of (derived) A_{∞} categories:



Mirror Symmetry 2.0 should imply Mirror Symmetry 1.0 by taking Hochschild cohomology, but be much stronger!

The A-model

Let $M^n \subset \mathbb{CP}^{n-1}$ be a smooth hypersurface of degree n. We will think of

$$M^n = \left\{\sum_{j=1}^n z_j^n = 0\right\} \subset \mathbb{CP}^{n-1}.$$

- ► M^3 is an elliptic curve, M^4 is the quartic K3 surface, and M^5 is the quintic threefold.
- ▶ The A-model is the Fukaya category, $\mathcal{F}(M^n)$, which is an R-linear A_{∞} category.

The B-model

Define

$$\widetilde{N}^n := \left\{ u_1 \dots u_n + r \sum_j u_j^n = 0 \right\} \subset \mathbb{P}_R^{n-1}.$$

- ▶ $G_n \cong (\mathbb{Z}_n)^{n-2}$ acts on \widetilde{N}^n (multiplying coordinates by nth roots of unity), and we define $N^n := \widetilde{N}^n/G_n$.
- ▶ Consider the category of coherent sheaves on N^n :

$$Coh(N^n) \cong Coh^{G_n}\left(\widetilde{N}^n\right).$$

Main result

Theorem (S.)

There is a quasi-equivalence of R-linear triangulated A_{∞} categories

$$D^{\pi}\mathcal{F}(M^n) \cong \Psi \cdot D^b Coh(N^n),$$

where Ψ is an automorphism (the 'mirror map')

$$\Psi: R \rightarrow R$$
, sending $r \mapsto \psi(r)r$,

where $\psi(r) \in \mathbb{C}[\![r]\!]$ satisfies $\psi(0) = 1$. We are not yet able to determine the higher-order terms in $\psi(r)$.

The Lagrangians

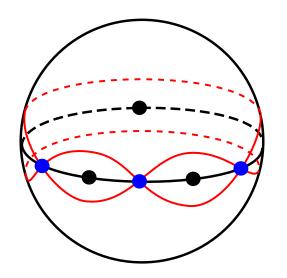
We consider the branched cover

$$M^n \cong \left\{ \sum_j z_j^n = 0 \right\} \rightarrow \left\{ \sum_j z_j = 0 \right\} \cong \mathbb{CP}^{n-2}$$

 $[z_1 : \ldots : z_n] \mapsto [z_1^n : \ldots : z_n^n],$

branched along the divisors $D_j = \{z_j = 0\}$. We construct a single Lagrangian $L \subset \mathbb{CP}^{n-2} \setminus \cup D_j$ (the 'pair-of-pants'), and look at all of its lifts to M^n .

The one-dimensional case



Computing $\mathcal{O}(L, L)$

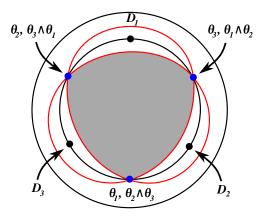
- ▶ $\mathcal{O}(L,L) \cong \Lambda^* R^n$ as an R-vector space.
- $\mu^1 = 0$, μ^2 = wedge product.
- ▶ It has higher (A_{∞}) corrections, which correspond to terms

$$u_1 \dots u_n + r \sum_j u_j^n \in R[u_1, \dots, u_n] \otimes \Lambda^* R^n$$

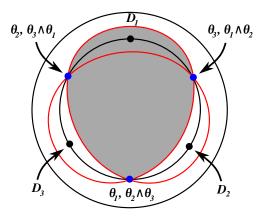
 $\cong HH^*(\Lambda^* R^n)$ (HKR isomorphism).

▶ They correspond to the defining equation of the mirror N^n .

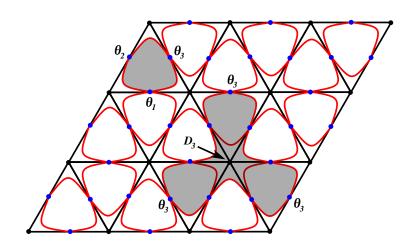
Holomorphic disks giving the exterior algebra



Holomorphic disks giving the higher-order terms



Lifts to $N^3 =$ elliptic curve



Split-generation

 As part of the open-closed TCFT structure, we get an algebra homomorphism

$$\Phi: H^*(M) \to HH^*(\mathcal{F}(M)).$$

- ▶ By work of Abouzaid-Fukaya-Oh-Ohta-Ono, if the restriction of this map to the Hochschild cohomology of some subcategory does not kill the top-degree class, then the subcategory split-generates F(M).
- We apply this to show that the lifts of our Lagrangian split-generate the Fukaya category; so we have 'computed' the Fukaya category, in a sense.

The coherent sheaves

- ▶ We consider the restrictions of the Beilinson exceptional collection $\Omega^{j}(j)$ (j = 0, ..., n-1) to \widetilde{N}^{n} .
- ► There are $|G_n^*| = n^{n-2}$ ways of making each one into a G_n -equivariant coherent sheaf.
- ► These G_n -equivariant coherent sheaves on N^n are mirror to the lifts of the Lagrangian L to M^n .
- We can show that their morphisms and compositions agree, and they generate their respective categories.