Riemannian Geometry

Homework 9
due on Wednesday, May 17

1. Recall from Homework 7 that the catenoid is the surface of revolution given by

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=\cosh ^{2}(z)\right\}
$$

and that the expression of the Riemannian metric induced on C by the Euclidean metric of \mathbb{R}^{3} is

$$
g=\cosh ^{2}(z)(d \theta \otimes d \theta+d z \otimes d z)
$$

where (θ, z) are the local coordinates in C obtained from the usual cylindrical coordinates $(r, \theta, z) \in \mathbb{R}^{3}$.
(a) Compute the Christoffel symbols for the Levi-Civita connection in these coordinates.
(b) Show that the geodesic equations in these coordinates are given by

$$
\begin{aligned}
& \ddot{\theta}+2 \tanh (z) \dot{\theta} \dot{z}=0 \\
& \ddot{z}+\tanh (z)\left(\dot{z}^{2}-\dot{\theta}^{2}\right)=0 .
\end{aligned}
$$

(c) Show that the circle defined by the equations $x^{2}+y^{2}=1$ and $z=0$ is the image of a geodesic.
(d) Let $c: \mathbb{R} \rightarrow C$ be the curve given by $c(t)=\left(\cosh z_{0} \cos t, \cosh z_{0} \sin t, z_{0}\right)$ where $z_{0} \in \mathbb{R}$.
(i) Show that if $z_{0} \neq 0$ then c is not a geodesic.
(ii) Let V be a vector field parallel along c such that $V(0)=\frac{\partial}{\partial \theta}$. Compute the angle by which V is rotated when it returns to the initial point.

