Riemannian Geometry

Homework 7

due on Wednesday, May 3

1. Consider the 2-torus T^2 in the Euclidean space \mathbb{R}^3 given by the equation

$$\left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = r^2,$$

and the following parameterization of a neighborhood of T^2 in \mathbb{R}^3 given by

$$p(\rho, \theta, \varphi) = ((R + \rho \cos \varphi) \cos \theta, (R + \rho \cos \varphi) \sin \theta, \rho \sin \varphi),$$

where $r - \epsilon < \rho < r + \epsilon$ for some $0 < \epsilon < r$, $0 < \theta < 2\pi$ and $0 < \varphi < 2\pi$.

- (a) Compute $\omega := p^*(dx \wedge dy \wedge dz)$, where x, y, z are the Cartesian coordinates in \mathbb{R}^3 .
- (b) Compute $\eta := i_X \omega$, where $X = \frac{\partial}{\partial \rho}$ (that is, the interior product of ω by $\frac{\partial}{\partial \rho}$).
- (c) Compute $\int_{p^{-1}(T^2)} \eta$.
- 2. Let M be a compact oriented manifold with volume form $\omega \in \Omega^n(M)$. Prove that if f > 0 then $\int_M f\omega > 0$. (Remark: in particular, the volume of a compact manifold is always positive).
- 3. Let M be a compact, connected and oriented 2-manifold with boundary, with ∂M diffemorphic to S^1 . Let $\omega \in \Omega^1(M)$ be a 1-form whose restriction to ∂M is the 1-form $\sigma = \cos \theta d\theta$, where θ is the usual angular coordinate in S^1 . Show that $d\omega$ has at least one zero in $M \setminus \partial M$.
- 4. Let (M,g) be a Riemannian manifold and $f \in C^{\infty}(M)$. Show that if $a \in \mathbb{R}$ is a regular value of f then $\operatorname{grad}(f)$ is orthogonal to the submanifold $f^{-1}(a)$.
- 5. The **catenoid** is the surface of revolution given by

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = \cosh^2(z)\}.$$

The **helicoid** is the surface H parameterized by the map $\phi : \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\phi(u, v) = (u \cos v, u \sin v, v).$$

Consider the metrics g and h induced in C and H by the Euclidean metric on \mathbb{R}^3 .

(a) Show that

 $g = \cosh^2(z)(d\theta \otimes d\theta + dz \otimes dz),$

where (θ, z) are the local coordinates in C obtained from the usual cylindrical coordinates $(r, \theta, z) \in \mathbb{R}^3$.

(b) Show that

$$h = du \otimes du + (1 + u^2) \, dv \otimes dv$$

(c) Show that C and H are **locally isometric**, that is, show that there exists a local diffeomorphism $\psi : H \to C$ such that $h = \psi^* g$. (A video of the isometric deformation from catenoid to helicoid is available here: Helicoid-Catenoid - Virtual Math Museum).