Riemannian Geometry

Homework 7
due on Wednesday, May 3

1. Consider the 2 -torus T^{2} in the Euclidean space \mathbb{R}^{3} given by the equation

$$
\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}
$$

and the following parameterization of a neighborhood of T^{2} in \mathbb{R}^{3} given by

$$
p(\rho, \theta, \varphi)=((R+\rho \cos \varphi) \cos \theta,(R+\rho \cos \varphi) \sin \theta, \rho \sin \varphi),
$$

where $r-\epsilon<\rho<r+\epsilon$ for some $0<\epsilon<r, 0<\theta<2 \pi$ and $0<\varphi<2 \pi$.
(a) Compute $\omega:=p^{*}(d x \wedge d y \wedge d z)$, where x, y, z are the Cartesian coordinates in \mathbb{R}^{3}.
(b) Compute $\eta:=i_{X} \omega$, where $X=\frac{\partial}{\partial \rho}$ (that is, the interior product of ω by $\frac{\partial}{\partial \rho}$).
(c) Compute $\int_{p^{-1}\left(T^{2}\right)} \eta$.
2. Let M be a compact oriented manifold with volume form $\omega \in \Omega^{n}(M)$. Prove that if $f>0$ then $\int_{M} f \omega>0$. (Remark: in particular, the volume of a compact manifold is always positive).
3. Let M be a compact, connected and oriented 2-manifold with boundary, with ∂M diffemorphic to S^{1}. Let $\omega \in \Omega^{1}(M)$ be a 1-form whose restriction to ∂M is the 1-form $\sigma=\cos \theta d \theta$, where θ is the usual angular coordinate in S^{1}. Show that $d \omega$ has at least one zero in $M \backslash \partial M$.
4. Let (M, g) be a Riemannian manifold and $f \in C^{\infty}(M)$. Show that if $a \in \mathbb{R}$ is a regular value of f then $\operatorname{grad}(f)$ is orthogonal to the submanifold $f^{-1}(a)$.
5. The catenoid is the surface of revolution given by

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=\cosh ^{2}(z)\right\}
$$

The helicoid is the surface H parameterized by the map $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
\phi(u, v)=(u \cos v, u \operatorname{sen} v, v) .
$$

Consider the metrics g and h induced in C and H by the Euclidean metric on \mathbb{R}^{3}.
(a) Show that

$$
g=\cosh ^{2}(z)(d \theta \otimes d \theta+d z \otimes d z)
$$

where (θ, z) are the local coordinates in C obtained from the usual cylindrical coordinates $(r, \theta, z) \in \mathbb{R}^{3}$.
(b) Show that

$$
h=d u \otimes d u+\left(1+u^{2}\right) d v \otimes d v
$$

(c) Show that C and H are locally isometric, that is, show that there exists a local diffeomorphism $\psi: H \rightarrow C$ such that $h=\psi^{*} g$. (A video of the isometric deformation from catenoid to helicoid is available here: Helicoid-Catenoid - Virtual Math Museum).

