Riemannian Geometry

Homework 6
due on Wednesday, April 12

1. Let M be a smooth manifold. Show that if $\omega \in \Omega^{1}(M)$ and $X, Y \in \mathcal{X}(M)$ then

$$
d \omega(X, Y)=X \cdot(\omega(Y))-Y \cdot(\omega(X))-\omega([X, Y])
$$

2. Consider the following vector field defined on $\mathbb{R}^{2} \backslash\{(0,0)\}$,

$$
X=-\frac{y}{x^{2}+y^{2}} \frac{\partial}{\partial x}+\frac{x}{x^{2}+y^{2}} \frac{\partial}{\partial y}
$$

and $\omega \in \Omega\left(\mathbb{R}^{2}\right)$ given by $\omega=d x \wedge d y$.
(a) Compute the Lie derivative of ω along $X, L_{X} \omega$, using

$$
L_{X}\left(\omega_{1} \wedge \omega_{2}\right)=\left(L_{X} \omega_{1}\right) \wedge \omega_{2}+\omega_{1} \wedge\left(L_{X} \omega_{2}\right)
$$

and

$$
d\left(L_{X} \omega\right)=L_{X}(d \omega)
$$

(b) Compute $L_{X} \omega$ using Cartan's formula (see exercise 3.8(7)).
(c) Calculate X and ω in polar coordinates.
(d) Compute $L_{X} \omega$ using polar coordinates and $L_{X} \omega=\frac{d}{d t}\left(\psi_{t}^{*} \omega\right)_{\mid t=0}$, where ψ_{t} is the flow of X.
3. A k-form ω is called closed if $d \omega=0$. If it exists a $(k-1)$-form β such that $\omega=d \beta$ then ω is called exact. Note that every exact form is closed. Let Z^{k} be the set of all closed k-forms on M and define a relation between forms on Z^{k} as follows: $\alpha \sim \beta$ if and only if they differ by an exact form, that is, if $\beta-\alpha=d \theta$ for some $(k-1)$-form θ.
(a) Show that this relation is an equivalence relation.
(b) Let $H^{k}(M)$ be the corresponding set of equivalence classes (called the k-dimensional de Rham cohomology space of M). Show that addition and scalar multiplication of forms define indeed a vector space structure on $H^{k}(M)$.
4. Consider the 2 -form

$$
\omega=\frac{x d y \wedge d z-y d x \wedge d z+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

defined on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$.
(a) Show that ω is closed.
(b) Calculate $\int_{S^{2}} \omega$. Is ω exact?
(c) Using the previous questions what can you say about $H^{2}\left(\mathbb{R}^{3} \backslash\{(0,0,0)\}\right)$?

