Riemannian Geometry

Homework 5

due on Friday, March 31

- 1. Let G_1 and G_2 be Lie groups and let $f: G_1 \to G_2$ be a homomorphism of Lie groups. Show that given a left-invariant vector field X on G_1 there exists a unique left-invariant vector field Y on G_2 such that $Y = f_*X$.
- 2. Let M be a smooth *n*-manifold and let $\omega \in \Omega^n(M)$ be a differential form satisfying $\omega_p \neq 0 \ \forall p \in M \ (\omega \text{ is called a volume form})$. Given a vector field $X \in \mathcal{X}(M)$ the interior product of ω by X is defined by

$$(i_X\omega)_p(v_2,\ldots,v_n) = \omega_p(X_p,v_2,\ldots,v_n)$$

where $v_i \in T_p M$ com i = 2, ..., n. Show that the map

$$\varphi: \mathcal{X}(M) \longrightarrow \Omega^{n-1}(M)$$
$$X \longmapsto i_X \omega$$

is an isomorphism of vector spaces, that is, φ is a bijective linear map.

3. Let M be a smooth manifold. Consider $\omega \in \Omega^2(M)$ and $\eta \in \Omega^1(M)$. Show that

$$(\omega \wedge \eta)(X, Y, Z) = \omega(X, Y)\eta(Z) + \omega(Y, Z)\eta(X) + \omega(Z, X)\eta(Y)$$

where X, Y, Z are vector fields on M.