Riemannian Geometry

Homework 4

due on Wednesday, March 22

1. Consider the vector fields defined on \mathbb{R}^{2} by

$$
X(x, y)=x \frac{\partial}{\partial y}, \quad Y(x, y)=y \frac{\partial}{\partial x} .
$$

(a) Compute the flow of $X, \phi_{t}\left(x_{0}, y_{0}\right)$, and the flow of $Y, \psi_{t}\left(x_{0}, y_{0}\right)$.
(b) Compute $\left(d \phi_{-t}\right)_{\phi_{t}\left(x_{0}, y_{0}\right)} Y_{\phi_{t}\left(x_{0}, y_{0}\right)}$.
(c) Compute the Lie derivative $L_{X} Y$ using (b), and confirm your result computing [$X, Y]$.
2. Consider the set of symplectic matrices

$$
\operatorname{Sp}(2 n)=\left\{A \in \mathcal{M}_{2 n \times 2 n}(\mathbb{R}) \mid A^{t} J A=J\right\},
$$

where

$$
J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

and I is the $n \times n$ identity matrix.
(a) Show that $\operatorname{Sp}(2 n)$ is a Lie group of dimension $n(2 n+1)$.
(b) Determine its Lie algebra, $\mathfrak{s p}(2 n)$.
(c) Compute the tangent space to $\mathrm{Sp}(2 n)$ at $J, T_{J} \mathrm{Sp}(2 n)$.
(d) Determine a matrix $B \in \mathfrak{s p}(2 n)$ such that $e^{B}=J$. (Note that $\left.J^{2}=-I\right)$

