Riemannian Geometry

Homework 3

due on Wednesday, March 15

- 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function which is homogeneous of degree $k \neq 0$ (that is, $f(tx) = t^k f(x)$ for all $t > 0, x \in \mathbb{R}^n$).
 - (a) Show that if $a \neq 0$ and $f^{-1}(a) \neq \emptyset$ then $f^{-1}(a)$ is a submanifold of dimension n-1.
 - (b) Show that if ab > 0 then $f^{-1}(a)$ is diffeomorphic to $f^{-1}(b)$.
- 2. Consider the following vector fields in \mathbb{R}^3

$$X = y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y}, \qquad Y = z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}, \qquad Z = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}.$$

- (a) Compute $[X, Y] \in [X, Z]$.
- (b) Compute the flow of the vector field X + Y.
- (c) Do the flows of Y and Z commute? Justify your answer.
- (d) Are there coordinates (x^1, x^2, x^3) in \mathbb{R}^3 such that $Y = \frac{\partial}{\partial x^2}$ and $Z = \frac{\partial}{\partial x^3}$? Justify your answer.