Riemannian Geometry

Homework 3

due on Wednesday, March 15

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function which is homogeneous of degree $k \neq 0$ (that is, $f(t x)=t^{k} f(x)$ for all $\left.t>0, x \in \mathbb{R}^{n}\right)$.
(a) Show that if $a \neq 0$ and $f^{-1}(a) \neq \emptyset$ then $f^{-1}(a)$ is a submanifold of dimension $n-1$.
(b) Show that if $a b>0$ then $f^{-1}(a)$ is diffeomorphic to $f^{-1}(b)$.
2. Consider the following vector fields in \mathbb{R}^{3}

$$
X=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}, \quad Y=z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}, \quad Z=\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}
$$

(a) Compute $[X, Y]$ e $[X, Z]$.
(b) Compute the flow of the vector field $X+Y$.
(c) Do the flows of Y and Z commute? Justify your answer.
(d) Are there coordinates $\left(x^{1}, x^{2}, x^{3}\right)$ in \mathbb{R}^{3} such that $Y=\frac{\partial}{\partial x^{2}}$ and $Z=\frac{\partial}{\partial x^{3}}$? Justify your answer.

