Riemannian Geometry

Homework 2

due on Wednesday, March 8

1. Consider the 2-dimensional differentiable manifold $\mathbb{R P}^{2}$, the set of lines through the origin in \mathbb{R}^{3}, parameterized by

$$
\phi_{1}(y, z)=[1, y, z], \quad \phi_{2}(x, z)=[x, 1, z], \quad \phi_{3}(x, y)=[x, y, 1]
$$

and the map $f: \mathbb{R P}^{2} \rightarrow \mathbb{R P}^{2}$, defined by

$$
f([x, y, z])=[x, z, y]
$$

Show that f is differentiable.
2. Let (x, y, z) be the Cartesian coordinates in \mathbb{R}^{3} and consider the usual spherical coordinates (r, θ, φ) defined by

$$
\left\{\begin{array}{l}
x=r \sin \theta \cos \varphi \\
y=r \sin \theta \operatorname{sen} \varphi \\
z=r \cos \theta
\end{array}\right.
$$

Compute:
(a) The components of the tangent vectors to $\mathbb{R}^{3} \frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \varphi}$ in Cartesian coordinates.
(b) The components of the tangent vectors to $\mathbb{R}^{3} \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$ in spherical coordinates.
3. Let $\Phi: \mathbb{R P}^{2} \rightarrow \mathbb{R}^{3}$ be the map defined by

$$
\Phi([x, y, z])=\frac{1}{x^{2}+y^{2}+z^{2}}(y z, x z, x y)
$$

Show that Φ is smooth and show that it only fails to be an immersion at 6 points.

