
Instituto Superior Técnico
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1. (Gauss–Bonnet Theorem for manifolds with boundary) Let M be a compact, oriented,
2-dimensional manifold with boundary and let X be a vector field in M transverse to
∂M (i.e. such that Xp /∈ Tp∂M for all p ∈ ∂M), with isolated singularities p1, . . . , pk ∈
M\∂M . Prove that ∫
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for any Riemannian metric on M , where K is the Gauss curvature of M and kg is the
geodesic curvature of ∂M .

2. Let (M, g) be a 2-dimensional manifold, with negative Gauss curvature. Show that a
closed geodesic in M cannot be homotopic to a point.


