Riemannian Geometry

Homework 12

due on Wednesday, June 7

1. (Torus of zero curvature) Consider the map $f:(0,2 \pi) \times(0,2 \pi) \rightarrow \mathbb{R}^{4}$ given by

$$
f(\theta, \varphi)=(\cos \theta, \sin \theta, \cos \varphi, \sin \varphi)
$$

which parameterizes the 2 -torus

$$
T=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x^{2}+y^{2}=1 ; z^{2}+w^{2}=1\right\} .
$$

(a) Show that, in the coordinates (θ, φ), the metric h on T induced by the Euclidean metric on \mathbb{R}^{4} is given by

$$
h=d \theta \otimes d \theta+d \varphi \otimes d \varphi .
$$

(b) Compute the connection forms associated to the orthonormal frame

$$
E_{1}=\frac{\partial}{\partial \theta}, \quad E_{2}=\frac{\partial}{\partial \varphi} .
$$

(c) Show that the Gauss curvature of the metric h is zero.
2. Consider the 2-torus T^{2} in the Euclidean space \mathbb{R}^{3} given by

$$
T^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}+\left(\sqrt{x^{2}+y^{2}}-2\right)^{2}=1\right\}
$$

and the parameterization of T^{2} given by the map $\phi:(0,2 \pi) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}$ defined by

$$
\phi(\theta, \varphi)=((2+\operatorname{sen} \theta) \cos \varphi,(2+\operatorname{sen} \theta) \operatorname{sen} \varphi, \cos \theta) .
$$

(a) Show that in the coordinates (θ, φ) the metric on T^{2} induced by the Euclidean metric on \mathbb{R}^{3} is given by

$$
g=d \theta \otimes d \theta+(2+\operatorname{sen} \theta)^{2} d \varphi \otimes d \varphi
$$

(b) Compute the connection forms associated to the orthonormal frame

$$
E_{1}=\frac{\partial}{\partial \theta}, \quad E_{2}=\frac{1}{2+\operatorname{sen} \theta} \frac{\partial}{\partial \varphi} .
$$

(c) Show that the Gauss curvature of T^{2} is given by

$$
K=\frac{\operatorname{sen} \theta}{2+\operatorname{sen} \theta} .
$$

(d) Without doing calculations indicate the value of the integral

$$
\int_{T} \frac{\operatorname{sen} \theta}{2+\operatorname{sen} \theta}
$$

Justify your answer.

