Riemannian Geometry

Homework 12

due on Wednesday, June 7

1. (Torus of zero curvature) Consider the map $f: (0, 2\pi) \times (0, 2\pi) \to \mathbb{R}^4$ given by

 $f(\theta,\varphi) = (\cos\theta, \sin\theta, \cos\varphi, \sin\varphi)$

which parameterizes the 2-torus

$$T = \{(x,y,z,w) \in \mathbb{R}^4 \, : \, x^2 + y^2 = 1; \, z^2 + w^2 = 1 \}.$$

(a) Show that, in the coordinates (θ, φ) , the metric h on T induced by the Euclidean metric on \mathbb{R}^4 is given by

$$h = d\theta \otimes d\theta + d\varphi \otimes d\varphi.$$

(b) Compute the connection forms associated to the orthonormal frame

$$E_1 = \frac{\partial}{\partial \theta}, \quad E_2 = \frac{\partial}{\partial \varphi}.$$

- (c) Show that the Gauss curvature of the metric h is zero.
- 2. Consider the 2-torus T^2 in the Euclidean space \mathbb{R}^3 given by

$$T^{2} = \left\{ (x, y, z) \in \mathbb{R}^{3} : z^{2} + (\sqrt{x^{2} + y^{2}} - 2)^{2} = 1 \right\}.$$

and the parameterization of T^2 given by the map $\phi: (0, 2\pi) \times (0, 2\pi) \to \mathbb{R}^3$ defined by

$$\phi(\theta,\varphi) = ((2 + \operatorname{sen} \theta) \cos \varphi, (2 + \operatorname{sen} \theta) \operatorname{sen} \varphi, \cos \theta).$$

(a) Show that in the coordinates (θ, φ) the metric on T^2 induced by the Euclidean metric on \mathbb{R}^3 is given by

$$g = d\theta \otimes d\theta + (2 + \sin \theta)^2 d\varphi \otimes d\varphi.$$

(b) Compute the connection forms associated to the orthonormal frame

$$E_1 = \frac{\partial}{\partial \theta}, \quad E_2 = \frac{1}{2 + \sin \theta} \frac{\partial}{\partial \varphi}.$$

(c) Show that the Gauss curvature of T^2 is given by

$$K = \frac{\operatorname{sen} \theta}{2 + \operatorname{sen} \theta}.$$

(d) Without doing calculations indicate the value of the integral

$$\int_T \frac{\operatorname{sen} \theta}{2 + \operatorname{sen} \theta}.$$

Justify your answer.