Riemannian Geometry

Homework 10

due on Wednesday, May 24

1. Recall from Homework 7 that the helicoid is the surface H parameterized by the map $\phi: \mathbb{R}^2 \to \mathbb{R}^3$ given by

 $\phi(u, v) = (u \cos v, u \sin v, v).$

Consider the metric h induced on H by the Euclidean metric of \mathbb{R}^3 .

(a) Show that H is geodesically complete. Hint: Consider the diffeomorphism $F : \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$F(x, y, z) = (x \cos z - y \sin z, x \sin z + y \cos z, z)$$

and note that $\phi(u, v) = F(u, 0, v)$.

- (b) Determine, without calculating the geodesic equations in local coordinates, two images of distinct geodesics of H passing through (0, 0, 0).
- 2. Let *M* be a differentiable manifold of dimension n, ∇ the Levi-Civita connection associated to the metric $\langle \cdot, \cdot \rangle$ and $\widetilde{\nabla}$ the Levi-Civita connection associated to the metric $\langle \langle \cdot, \cdot \rangle \rangle = e^{2\rho} \langle \cdot, \cdot \rangle$, where ρ is a smooth function. (The metrics $\langle \cdot, \cdot \rangle$ and $\langle \langle \cdot, \cdot \rangle \rangle$ are said to be **conformal metrics**).
 - (a) Show that

$$\widetilde{\nabla}_X Y = \nabla_X Y + d\rho(X)Y + d\rho(Y)X - \langle X, Y \rangle \operatorname{grad} \rho.$$

Recall that grad ρ is the vector field satisfying $\langle \operatorname{grad} \rho, X \rangle = d\rho(X)$, for all $X \in \chi(M)$. *Hint: Use the Koszul formula.*

(b) The **Laplacian** of $f \in C^{\infty}(M)$ is defined locally by

$$\Delta f = \sum_{i=1}^{n} dx^{i} \left(\nabla_{\frac{\partial}{\partial x^{i}}} \operatorname{grad} f \right).$$

Show that if n = 2 then $\widetilde{\Delta}f = e^{-2\rho}\Delta f$.