On the string Lie algebra

Friedrich Wagemann (j/w Salim Rivière)

Laboratoire de Mathématiques Jean Leray, Université de Nantes, France

June 10, 2015

Crossed modules of Lie algebras

Definition

A crossed module of Lie algebras is a homomorphism $\mu:\mathfrak{m}\to\mathfrak{n}$ together with an action of \mathfrak{n} on \mathfrak{m} by derivations such that

- (a) for all $n \in N$, $m \in M$: $\mu(n \cdot m) = [n, \mu(m)]$, and
- (b) for all $m, m' \in M$: $\mu(m) \cdot m' = [m, m']$.

Main features of crossed modules include the realization of 3-cohomology classes and the interpretation of $\mathfrak{m} \rtimes \mathfrak{n} \to \mathfrak{n}$ as a strict Lie 2-algebras with target map $\beta(m,n) = \mu(m) + n$.

Construction of abelian representatives

Given a short exact sequence of \mathfrak{g} -modules

$$0 \to V_1 \stackrel{i}{\to} V_2 \stackrel{\pi}{\to} V_3 \to 0$$

and an abelian extension

$$0 \to V_3 \to V_3 \times_{\alpha} \mathfrak{g} \to \mathfrak{g} \to 0$$
,

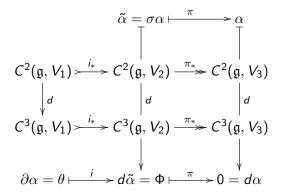
their Yoneda product is a crossed module

$$V_2 \rightarrow V_3 \times_{\alpha} \mathfrak{g}$$

with 3-cohomology class $\partial[\alpha] \in H^3(\mathfrak{g}, V_1)$. It is called an *abelian representative* of the equivalence class of crossed modules associated to the 3-cohomology class $\partial[\alpha] = [\theta]$.

Construction of the connecting homomorphism

Let $\sigma: V_3 \to V_2$ be a linear section of π .



Example of an abelian representative

Let $W_1 = \prod_{n \geq -1} \mathbb{C} z^{n+1} \frac{d}{dz}$ Lie algebra of formal vector fields in one variable, $\overline{F_i}$ the W_1 -module of formal *i*-forms (i = 0, 1), then

$$F_0 \rightarrow F_1 \times_{\alpha} W_1$$

is a crossed module representing the Godbillon-Vey 3-class $[heta] \in H^3(W_1,\mathbb{C})$ with

$$\alpha(f,g) = \left| \begin{array}{cc} f' & g' \\ f'' & g'' \end{array} \right| (dz)^1, \quad \theta(f,g,h) = \left| \begin{array}{cc} f & g & h \\ f' & g' & h' \\ f'' & g'' & h'' \end{array} \right|.$$

For the subalgebra $\mathfrak{sl}_2(\mathbb{C}) \subset W_1$, we get a crossed module representing the Cartan cocycle $\langle [,], \rangle \in Z^3(\mathfrak{sl}_2(\mathbb{C}), \mathbb{C})$.

Explicit formula for the cochain α

Let $\mathfrak g$ be a Lie algebra and $U\mathfrak g$ its universal enveloping algebra. Furthermore

$$\begin{split} \mathrm{pr}(x) &:= \sum_{k \geq 0} \frac{(-1)^k}{k+1} (\mathrm{Id} - \eta \epsilon)^{\star (k+1)}(x), \ \phi_t(x) := \sum_{n \geq 0} \frac{t^n}{n!} \mathrm{pr}^{\star n}(x), \\ A_t(x,g) &:= \sum_{(x)} \phi_{-t}(x^{(1)}) \phi_t(x^{(2)}g). \end{split}$$

Define α for $g_1, g_2 \in \mathfrak{g}$ and $x \in U\mathfrak{g}$ by

$$\tilde{\alpha}(x,g_1,g_2) := \sum_{(x)} \int_0^1 dt \, \theta(\operatorname{pr}(x^{(1)}),A_t(x^{(2)},g_1),A_t(x^{(3)},g_2)).$$

Proposition

If θ is a 3-cocycle with values in \mathbb{C} , then α is a 2-cocycle in $C^2(\mathfrak{g}; U\mathfrak{g}^+)$ and $[\theta] = \partial[\alpha]$ in $H^3(\mathfrak{g}; \mathbb{C})$.

Application: quasi-invariant tensors

Definition

A quasi-invariant tensor for $\mu : \mathfrak{m} \to \mathfrak{n}$ is a triple (r, c, ξ) where:

- (a) $r = \sum_{q} s_q \otimes t_q$ is a symmetric tensor;
- (b) $\xi : \mathfrak{n} \to (\mathfrak{n} \otimes \mathfrak{m}) \oplus (\mathfrak{m} \otimes \mathfrak{n})$ is a linear map whose image is symmetric,
- (c) c is an \mathfrak{n} -invariant element in $\ker(\mu) \subset \mathfrak{m}$.

This data is supposed to satisfy the following conditions:

- (a) $X \cdot r = \beta(\xi(X))$ for all $X \in \mathfrak{n}$,
- (b) $u \cdot r = \xi(\mu(u))$ for all $u \in \mathfrak{m}$,
- (c) $\xi([X,Y]) = X \cdot \xi(Y) Y \cdot \xi(X)$ for all $X, Y \in \mathfrak{n}$.

Construction of quasi-invariant tensors

- (a) Let \overline{r} be a lift of r to $V_3 \times_{\alpha} \mathfrak{g} =: E$,
- (b) let $\xi = -\xi_0 C : E \to (E \otimes V_2) \oplus (V_2 \otimes E)$ where
 - (i) $\xi_0(\overline{X}) = \sum_i \widetilde{\alpha}(s_i, X) \otimes \overline{t}_i + \overline{s}_i \otimes \widetilde{\alpha}(t_i, X)$ and
 - (ii) $\xi_0(\overline{h}) = \sum_i (s_i \cdot \sigma(h)) \otimes \overline{t}_i + \overline{s}_i \otimes (t_i \cdot \sigma(h))$, and
 - (iii) $C(h,X) = 1_{V_2} \otimes \overline{X} + \overline{X} \otimes 1_{V_2}$.
- (c) and let $c \in \ker(\mu) = \mathbb{C} \subset V_2$.

Compatibility condition: We have for all $X, Y \in \mathfrak{g}$

$$\sum_{i} \Phi(s_i, X, Y) \otimes t_i = 1_{V_2} \otimes [X, Y], \sum_{i} s_i \otimes \Phi(t_i, X, Y) = [X, Y] \otimes 1_{V_2}.$$

Theorem (RW 2015)

Suppose that in the above situation the compatibility condition is satisfied. Then the triplet (\overline{r}, ξ, c) is a quasi-invariant tensor for the crossed module $\mu: V_2 \to V_3 \times_{\alpha} \mathfrak{g}$.

