Bisections of Lie groupoids as a link between infinite-dimensional and higher geometry

Christoph Wockel (Hamburg)

(with A. Schmeding, NTNU Trondheim)

June 10, 2015

Outline

Motivating examples

Reconstructing Lie groupoids from their bisections

Constructing Lie groupoids from candidates for their bisections

 (M, ω) : symplectic manifold.

 (M,ω) prequantisable \leadsto prequantum bundle $P \xrightarrow{U(1)} M$ induces

$$C^{\infty}(M,U(1)) o \operatorname{\mathsf{Aut}}(P) o \operatorname{\mathsf{Diff}}(M)_0$$

(extension of Lie groups) with Lie algebra extension

$$C^{\infty}(M) \to \underbrace{\Gamma(TP/U(1))}_{\cong C^{\infty}(M) \oplus_{\omega} \mathcal{V}(M)} \to \mathcal{V}(M)$$

 (M,ω) : symplectic manifold.

 (M,ω) prequantisable \rightsquigarrow prequantum bundle $P \xrightarrow{U(1)} M$ induces

$$C^{\infty}(M, U(1)) o \operatorname{Aut}(P) o \operatorname{Diff}(M)_0$$

(extension of Lie groups) with Lie algebra extension

$$C^{\infty}(M) \to \underbrace{\Gamma(TP/U(1))}_{\cong C^{\infty}(M) \oplus_{\omega} \mathcal{V}(M)} \to \mathcal{V}(M)$$

If (M, ω) is not prequantisable, then

$$C^{\infty}(M) \to C^{\infty}(M) \oplus_{\overline{\omega}} \mathcal{V}(M) \to \mathcal{V}(M)$$
 (1)

(extension of Lie algebras) with

$$[(f,X),(g,Y)] := (X.g - Y.f + \omega(X,Y),[X,Y])$$

still exists.

Question 1: Could it be that (1) integrates to an extension of Lie groups although (M, ω) is not prequantisable?

$$\mathcal{L} := (A \to M, [\cdot, \cdot], \rho)$$
: Lie algebroid

If $\mathcal L$ is integrable $(\mathcal L=\mathbf L(\mathcal G)$ for $\mathcal G=(\mathcal G\rightrightarrows M)$ some Lie groupoid), then

$$\mathsf{Bis}(\mathcal{G}) := \{ \sigma \in C^{\infty}(M,G) \mid s \circ \sigma = \mathsf{id}_{M}, t \circ \sigma \in \mathsf{Diff}(M) \}$$

is a Lie group with Lie algebra $L(Bis(\mathcal{G})) \cong \Gamma(L(\mathcal{G}))$.

 $\mathcal{L} := (A \to M, [\cdot, \cdot], \rho)$: Lie algebroid

If $\mathcal L$ is integrable $(\mathcal L=\mathbf L(\mathcal G)$ for $\mathcal G=(\mathcal G\rightrightarrows M)$ some Lie groupoid), then

$$\mathsf{Bis}(\mathcal{G}) := \{ \sigma \in C^{\infty}(M, G) \mid s \circ \sigma = \mathsf{id}_{M}, t \circ \sigma \in \mathsf{Diff}(M) \}$$

is a Lie group with Lie algebra $L(Bis(\mathcal{G})) \cong \Gamma(L(\mathcal{G}))$.

Question 2: Could it be that $\Gamma(\mathcal{L})$ integrates to a Lie group although \mathcal{L} does not integrate to a Lie groupoid?

Note: Obstructions for integrability of extensions of Lie algebras and Lie algebroids look very similar (e.g. $\pi_2(\text{Diff}(M))$) and $\pi_2(M)$)

→ suggests a geometric relation b/w them!

 (M,ω) : symplectic manifold

$$\Lambda:=F(\pi_1(\mathsf{Symp}(\mathsf{M},\omega)))\subseteq H^1(M,\mathbb{R})$$
 Flux (sub)group, where

$$F \colon \widetilde{\mathsf{Symp}} o H^1(M,\mathbb{R}), \quad [\gamma_t] \mapsto \int_0^1 \omega(\gamma(t)^{-1}\gamma'(t),\cdot) dt$$

is the Flux homomorphism.

 (M,ω) : symplectic manifold

 $\Lambda:=F(\pi_1(\mathsf{Symp}(\mathsf{M},\omega)))\subseteq H^1(M,\mathbb{R})$ Flux (sub)group, where

$$F : \widetilde{\mathsf{Symp}} \to H^1(M,\mathbb{R}), \quad [\gamma_t] \mapsto \int_0^1 \omega(\gamma(t)^{-1}\gamma'(t),\cdot)dt$$

is the Flux homomorphism.

Flux Conjecture (Ono '06) implies that Λ is always discrete and that $\operatorname{Ham}(M,\omega) := \langle \exp(\mathfrak{ham}(M,\omega)) \rangle \subseteq \operatorname{Symp}(M,\omega)$ is a closed Lie subgroup (in the C^{∞} -topology).

 (M, ω) Γ -prequantisable (for $\Gamma \subseteq \mathbb{R}$ discrete) $\Rightarrow \Lambda \subseteq H^1(M, \Gamma)$ (trivial case of the Flux conjecture)

 (M,ω) : symplectic manifold

 $\Lambda:=F(\pi_1(\mathsf{Symp}(\mathsf{M},\omega)))\subseteq H^1(M,\mathbb{R})$ Flux (sub)group, where

$$F \colon \widetilde{\mathsf{Symp}} \to H^1(M,\mathbb{R}), \quad [\gamma_t] \mapsto \int_0^1 \omega(\gamma(t)^{-1}\gamma'(t),\cdot)dt$$

is the Flux homomorphism.

Flux Conjecture (Ono '06) implies that Λ is always discrete and that $\operatorname{Ham}(M,\omega) := \langle \exp(\mathfrak{ham}(M,\omega)) \rangle \subseteq \operatorname{Symp}(M,\omega)$ is a closed Lie subgroup (in the C^{∞} -topology).

 (M,ω) Γ -prequantisable (for $\Gamma \subseteq \mathbb{R}$ discrete) $\Rightarrow \Lambda \subseteq H^1(M,\Gamma)$ (trivial case of the Flux conjecture)

Question 3: Where does the non-discreteness go if (M, ω) is not prequantisable?

Outline

Motivating examples

Reconstructing Lie groupoids from their bisections

Constructing Lie groupoids from candidates for their bisections

The naïve way

Question: What does Bis(G) know of G?

$$\mathsf{Bis}(\mathcal{G}) := \{ \sigma \in C^{\infty}(M, G) \mid s \circ \sigma = \mathsf{id}_{M}, t \circ \sigma \in \mathsf{Diff}(M) \}$$

 \rightsquigarrow obtain smooth action $Bis(\mathcal{G}) \xrightarrow{t_*} Diff(M)$

$$\overset{\text{obtain}}{\longrightarrow} \underbrace{\mathsf{Bis}(\mathcal{G}) \rtimes M} \overset{\mathsf{ev}}{\longrightarrow} \mathcal{G}, \quad \underbrace{(\sigma, m) \mapsto \sigma(m)}_{\mathsf{morphism}}$$

The naïve way

Question: What does Bis(G) know of G?

$$\mathsf{Bis}(\mathcal{G}) := \{ \sigma \in C^{\infty}(M, G) \mid s \circ \sigma = \mathsf{id}_{M}, t \circ \sigma \in \mathsf{Diff}(M) \}$$

$$\rightsquigarrow$$
 obtain smooth action $Bis(\mathcal{G}) \xrightarrow{t_*} Diff(M)$

Theorem

ev is a quotient morphism of Lie groupoids if $\mathcal G$ is source-connected. In particular,

$$(\mathsf{Bis}(\mathcal{G}) \rtimes M) / \mathsf{ker}(\mathsf{ev}) \cong \mathcal{G}.$$

More generally, ev is the counit of an adjunction

$$LieGroups_{Diff(M)} \xrightarrow{\boxtimes} LieGroupoids_{M}^{\Sigma}$$

The naïve way

Question: What does Bis(G) know of G?

$$\mathsf{Bis}(\mathcal{G}) := \{ \sigma \in C^{\infty}(M, G) \mid s \circ \sigma = \mathsf{id}_{M}, t \circ \sigma \in \mathsf{Diff}(M) \}$$

$$\rightsquigarrow$$
 obtain smooth action $Bis(\mathcal{G}) \xrightarrow{t_*} Diff(M)$

obtain
$$\underbrace{\mathsf{Bis}(\mathcal{G}) \rtimes M}_{\mathsf{Lie\ groupoid}} \xrightarrow{\mathsf{ev}} \mathcal{G}, \quad \underbrace{(\sigma, m) \mapsto \sigma(m)}_{\mathsf{morphism}}$$

Theorem

ev is a quotient morphism of Lie groupoids if G is source-connected. In particular,

$$(\mathsf{Bis}(\mathcal{G}) \rtimes M) / \mathsf{ker}(\mathsf{ev}) \cong \mathcal{G}.$$

Upshot: In addition to a smooth action $H \to Diff(M)$, we need a candidate for ker(ev) in order to identify H with some $Bis(\mathcal{G})$. Problem: Construction of quotients of Lie groupoids by normal subgroupoids only works in the transitive (finite-dimensional) case.

The elaborate way

Choose once and for all a base-point $m \in M$ (and restrict from now on to the transitive case).

Definition

A transitive pair is a smoothly transitive action $H \xrightarrow{\theta} \text{Diff}(M)$, together with $N_m \leq H_m$ (regular, co-Banach).

Note: Transitive pairs are Klein geometries for principal bundles!

Example

 $P \to M$: principal K-bundle $\Rightarrow \operatorname{Aut}(P) \to \operatorname{Diff}(M)$, together with $\operatorname{Aut}_p(P)$ is a transitive pair.

The elaborate way

Choose once and for all a base-point $m \in M$ (and restrict from now on to the transitive case).

Definition

A transitive pair is a smoothly transitive action $H \stackrel{\theta}{\to} \text{Diff}(M)$, together with $N_m \leq H_m$ (regular, co-Banach).

Note: Transitive pairs are Klein geometries for principal bundles!

Example

 $P \to M$: principal K-bundle $\Rightarrow \operatorname{Aut}(P) \to \operatorname{Diff}(M)$, together with $\operatorname{Aut}_P(P)$ is a transitive pair.

Theorem

 (θ, N) trans. pair $\Rightarrow H/N_m \rightarrow M$ principal H_m/N_m -bundle.

Proof: Use ∞ -dim. implicit function theorems for co-Banach Lie subgroups.

Example

$$P \cong \operatorname{Aut}(P)/\operatorname{Aut}_p(P) \to M \text{ w.r.t. } K \cong \operatorname{Aut}(P)_m/\operatorname{Aut}_p(P) = -2$$

The elaborate way

Choose once and for all a base-point $m \in M$ (and restrict from now on to the transitive case).

Definition

A transitive pair is a smoothly transitive action $H \stackrel{\theta}{\to} \text{Diff}(M)$, together with $N_m \leq H_m$ (regular, co-Banach).

Note: Transitive pairs are Klein geometries for principal bundles!

Example

 $P \to M$: principal K-bundle $\Rightarrow \operatorname{Aut}(P) \to \operatorname{Diff}(M)$, together with $\operatorname{Aut}_P(P)$ is a transitive pair.

Theorem

 (θ, N) trans. pair $\Rightarrow H/N_m \rightarrow M$ principal H_m/N_m -bundle.

Proof: Use ∞ -dim. implicit function theorems for co-Banach Lie subgroups.

Example

$$P \cong \operatorname{Aut}(P)/\operatorname{Aut}_p(P) \to M \text{ w.r.t. } K \cong \operatorname{Aut}(P)_m/\operatorname{Aut}_p(P) = -2$$

Outline

Motivating examples

Reconstructing Lie groupoids from their bisections

Constructing Lie groupoids from candidates for their bisections

Setting: M: 1-connected, $K \leq \text{Diff}(M)$ connected, K.m = M, $\omega \in \Omega^2(M)$ closed $\leadsto \overline{\omega} \colon \mathfrak{k} \times \mathfrak{k} \to C^\infty(M)$, $(X,Y) \mapsto \omega(X,Y)$ abelian cocycle

 $\rightsquigarrow \operatorname{\mathsf{per}}_{[\overline{\omega}]} \colon \pi_2(K) \to \mathbb{R}, \ [\sigma] \mapsto \int_{\mathbb{S}^2} \sigma^* \overline{\omega}^{\operatorname{\mathsf{eq}}} \ \operatorname{\mathsf{period}} \ \operatorname{\mathsf{homomorphism}}$

Setting: M: 1-connected, $K \leq \text{Diff}(M)$ connected, K.m = M, $\omega \in \Omega^2(M)$ closed $\leadsto \overline{\omega} \colon \mathfrak{k} \times \mathfrak{k} \to C^\infty(M)$, $(X,Y) \mapsto \omega(X,Y)$ abelian cocycle

 $\leadsto \omega$. $\mathfrak{t} \times \mathfrak{t} \to \mathfrak{C}$ (M), $(X, T) \mapsto \omega(X, T)$ abelian cocycle $\leadsto \operatorname{per}_{[\overline{\omega}]} \colon \pi_2(K) \to \mathbb{R}$, $[\sigma] \mapsto \int_{\mathbb{S}^2} \sigma^* \overline{\omega}^{\operatorname{eq}}$ period homomorphism

 \rightarrow per_[$\overline{\omega}$]: $\pi_2(\mathbf{N}) \rightarrow \mathbb{R}$, $[\sigma] \mapsto \int_{\mathbb{S}^2} \sigma^* \omega^{\mathsf{sq}}$ period nomomorphism Theorem (Neeb)

If $\operatorname{\mathsf{per}}_{[\overline{\omega}]}(\pi_2(K)) \subseteq \Gamma$ with $\Gamma \leq \mathbb{R}$ discrete, then

$$C^{\infty}(M) \to C^{\infty}(M) \oplus_{\overline{\omega}} \mathfrak{k} \to \mathfrak{k}$$

integrates (with $T_\Gamma := \mathbb{R}/\Gamma$) to

$$C^{\infty}(M, T_{\Gamma}) \to \widehat{K} \to \widetilde{K}.$$

Theorem (Neeb)

If
$$\operatorname{\mathsf{per}}_{[\overline{\omega}]}(\pi_2(\mathsf{K})) \subseteq \Gamma$$
 with $\Gamma \leq \mathbb{R}$ discrete, then

$$C^{\infty}(M) \to C^{\infty}(M) \oplus_{\overline{\omega}} \mathfrak{k} \to \mathfrak{k}$$

integrates (with
$$T_{\Gamma} := \mathbb{R}/\Gamma$$
) to

$$C^{\infty}(M,T_{\Gamma}) \to \widehat{K} \to \widetilde{K}.$$

Example

$$K = \operatorname{\mathsf{Symp}}(M,\omega)$$
 for ω symplectic (then $\operatorname{\mathsf{per}}_{[\overline{\omega}]} \equiv 0$).

Theorem (Neeb)

If $\operatorname{per}_{[\overline{\omega}]}(\pi_2(K)) \subseteq \Gamma$ with $\Gamma \leq \mathbb{R}$ discrete, then

$$C^{\infty}(M) \to C^{\infty}(M) \oplus_{\overline{\omega}} \mathfrak{k} \to \mathfrak{k}$$

integrates (with $T_{\Gamma} := \mathbb{R}/\Gamma$) to

$$C^{\infty}(M,T_{\Gamma}) \to \widehat{K} \to \widetilde{K}.$$

Example

 $K = \operatorname{Symp}(M, \omega)$ for ω symplectic (then $\operatorname{per}_{[\overline{\omega}]} \equiv 0$).

 \rightsquigarrow obtain: action $\theta \colon \widehat{K} \to \widetilde{K} \to K \to \mathsf{Diff}(M)$

 \rightsquigarrow need: normal subgroup $N_m \unlhd \widehat{K}_m$

Candidate: Integration of $C_m^{\infty}(M) \oplus_{\overline{\omega}} \mathfrak{k}_m$ (if possible) $(C_m^{\infty}(M) \oplus_{\overline{\omega}} \mathfrak{k}_m \cong \mathbf{L}(\operatorname{Aut}_p(P))$ if $[\omega] \in H^2(M,\Gamma)$)

The main theorem

The fibration $K \xrightarrow{\operatorname{ev}_{m}} M$ and $\operatorname{per}_{[\omega]} \colon \pi_{2}(M) \to \mathbb{R}$ induce

$$\operatorname{im}(\pi_2(K) \to \pi_2(M)) \longrightarrow \pi_2(M) \longrightarrow \Delta := \ker(\pi_1(K_m) \to \pi_1(K))$$

$$\downarrow^{\operatorname{per}_{[\overline{\omega}]}} \qquad \qquad \downarrow^{\operatorname{per}_{[\omega]}} \qquad \qquad \downarrow^{\operatorname{per}_{[\omega]}}$$

$$\Gamma \longrightarrow \mathbb{R} \longrightarrow T_{\Gamma}$$

The main theorem

The fibration $K \xrightarrow{\operatorname{ev}_m} M$ and $\operatorname{per}_{[\omega]} \colon \pi_2(M) \to \mathbb{R}$ induce

$$\operatorname{im}(\pi_2(K) \to \pi_2(M)) \longrightarrow \pi_2(M) \longrightarrow \Delta := \ker(\pi_1(K_m) \to \pi_1(K))$$

$$\downarrow^{\operatorname{per}_{[\overline{\omega}]}} \qquad \downarrow^{\operatorname{per}_{[\omega]}} \qquad \downarrow^{\operatorname{per}_{[\omega]}}$$

$$\Gamma \longrightarrow \mathbb{R} \longrightarrow T_{\Gamma}$$

Theorem

The following are equivalent:

- 1. (M, ω) is prequantisable.
- 2. $\operatorname{per}_{[\overline{\omega}]}(\pi_2(K))$ and $\operatorname{per}_{[\omega]}^{\flat}(\Delta)$ are discrete.
- 3. The Lie algebroid $C^{\infty}(M) \oplus_{\overline{\omega}} \mathfrak{k}$ integrates to a Lie groupoid.
- 4. $C^{\infty}(M) \oplus_{\overline{\omega}} \mathfrak{k}$ integrates to an extension of Lie groups and $C^{\infty}_{m}(M) \oplus_{\overline{\omega}} \mathfrak{k}_{m}$ to a closed Lie subgroup thereof.

The main theorem

The fibration $K \xrightarrow{\operatorname{ev}_{M}} M$ and $\operatorname{per}_{[\omega]} \colon \pi_{2}(M) \to \mathbb{R}$ induce

$$\operatorname{im}(\pi_2(K) o \pi_2(M)) \longrightarrow \pi_2(M) \longrightarrow \Delta := \ker(\pi_1(K_m) o \pi_1(K))$$

$$\downarrow^{\operatorname{per}_{[\omega]}} \qquad \qquad \downarrow^{\operatorname{per}_{[\omega]}} \qquad \qquad \downarrow^{\operatorname{per}_{[\omega]}}$$

$$\Gamma \longrightarrow \mathbb{R} \longrightarrow T_{\Gamma}$$

Theorem

The following are equivalent:

- 1. (M, ω) is prequantisable.
- 2. $\operatorname{per}_{[\overline{\omega}]}(\pi_2(K))$ and $\operatorname{per}_{[\omega]}^{\flat}(\Delta)$ are discrete.
- 3. The Lie algebroid $C^{\infty}(M) \oplus_{\overline{\omega}} \mathfrak{k}$ integrates to a Lie groupoid.
- 4. $C^{\infty}(M) \oplus_{\overline{\omega}} \mathfrak{k}$ integrates to an extension of Lie groups and $C^{\infty}_{\mathfrak{m}}(M) \oplus_{\overline{\omega}} \mathfrak{k}_{\mathfrak{m}}$ to a closed Lie subgroup thereof.

Upshot: Discreteness of $\operatorname{per}^{\flat}_{[\omega]}(\Delta)$ is *not* relevant for abstract integrability, but for the integrability of a subalgebra to a closed Lie subgroup (cf. $\langle \exp(\mathfrak{ham}(M,\omega)) \rangle$).