
INTEGRABILITY OF POISSON BRACKETS

MARIUS CRAINIC AND RUI LOJA FERNANDES

Abstract. We show that various notions of integrability for Poisson brackets
are all equivalent, and we give the precise obstructions to integrating Poisson
manifolds. We describe the integration as a symplectic quotient, in the spirit
of the Poisson sigma-model of Cattaneo and Felder. For regular Poisson man-
ifolds we express the obstructions in terms of variations of symplectic areas.
As an application of these results, we show that a Poisson manifold admits a
complete symplectic realization if, and only if, it is integrable. We discuss also
the integration of submanifolds and Morita equivalence of Poisson manifolds.

1. Introduction

A Poisson bracket on a manifold M is a Lie bracket {·, ·} on the space C∞(M)
of smooth functions on M , satisfying the derivation property

{fg, h} = f{g, h}+ g{f, h}, f, g, h ∈ C∞(M).

The integrability problem for Poisson brackets can be loosely stated as:

• Is there a Lie group integrating this Lie algebra?

The classical answer to this question is the group of Hamiltonian diffeomorphisms,
of which not much is known, as is illustrated by the well known flux conjecture in
symplectic geometry (see [22]). In fact, infinite dimensional groups of diffeomor-
phisms are beyond our current state of knowledge (see, e.g., Milnor’s remarks in
[24]). However, integrability becomes more tractable if instead of infinite dimen-
sional Lie groups one considers finite dimensional objects known as Lie groupoids
into the picture.

A Poisson bracket on a manifold M gives rise to a Lie bracket [·, ·] on the space
Ω1(M) of 1-forms on M . This bracket is uniquely determined by the following two
requirements:

(i) for exact 1-forms it coincides with the Poisson bracket:

[df, dg] = d{f, g}, f, g ∈ C∞(M);

(ii) it satisfies the Leibniz identity:

(1.1) [α, fβ] = f [α, β] + #β(f)α, α, β ∈ Ω1(M), f ∈ C∞(M).

Here # : T ∗M → TM denotes contraction by the Poisson 2-tensor Π ∈ Γ(Λ2TM)
which is associated to the Poisson bracket by Π(df, dg) = {f, g}. An explicit formula
for this bracket is

(1.2) [α, β] = L#αβ −L#βα− dΠ(α, β), α, β ∈ Ω1(M).

The triple (T ∗M, [·, ·], #) is an example of a Lie algebroid. Lie algebroids are geo-
metric versions of vector bundles. In general, a Lie algebroid is a vector bundle
A→M together with a Lie bracket [·, ·] on the space of sections Γ(A) and a bundle
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map # : A → TM , giving rise to a Lie algebra morphism # : Γ(A) → X(M), such
that the analogue of Leibniz’s identity (1.1) is satisfied for all α, β ∈ Γ(A).

The global counterpart to Lie algebroids are Lie groupoids. A Lie groupoid
consists of arrows (transformations) between different objects (points), which can
be (smoothly) multiplied provided they match. More formally, a groupoid is a small
category where every morphism is an isomorphism. A Lie groupoid is a groupoid
in the differentiable category: it consists of a manifold Σ (the arrows), together
with two submersions s, t : Σ→M (the source and the target maps) onto the base
manifold M (the objects), an embedding M → Σ, x 7→ 1x (the unit section), and
a smooth map Σ×M Σ→ Σ, (g, h) 7→ gh (the multiplication) defined on the space
of pairs (g, h) with s(g) = t(h). We will follow the conventions of [3].

To every Lie groupoid there is associated a Lie algebroid (see [3]). The converse
is not true, and the precise obstructions to the integration of Lie algebroids to Lie
groupoids were determined in [8]. Uniqueness, up to isomorphism, can be obtained
by requiring the s-fibers to be simply connected and, given Σ, one can construct

an s-simply connected groupoid Σ̃ by taking universal coverings of the s-fibers (see
[8, 25]). The integrability problem for Poisson manifolds can then be restated as:

• Is there a Lie groupoid integrating T ∗M?

Note that the integrability of T ∗M really amounts to the integrability of the brack-
ets [·, ·] on Ω1(M).

The integration of Poisson manifolds is, of course, a particular case of the integra-
bility problem for general Lie algebroids. As already mentioned above, a complete
solution for the latter was presented in [8]. However, it is important to understand
this special case. On the one hand, the integration of Poisson manifolds is richer due
to the presence of symplectic geometry on the leafs of the characteristic foliation,
which gives rise to many properties that are not present in the general integrability
problem. On the other hand, the integrability problem for Poisson brackets is rele-
vant, for example, to symplectic reduction [10], to Poisson topology [16], to various
quantization schemes [4, 20, 31], and to many other problems. As an example of the
richer geometry presented in the special case of Poisson manifolds, we shall see that
a Lie groupoid integrating a Poisson manifold has a natural symplectic structure,
a well-known fact going back to the earlier works of Weinstein et al.

Recall that a symplectic groupoid is a Lie groupoid Σ together with a symplec-
tic form, such that the graph of the multiplication is Lagrangian. This (apparently
mild) condition is actually quite strong. It induces a natural Poisson structure on
M , satisfying the following properties (see [6]):

(a) s is Poisson and t is anti-Poisson(1);
(b) both s and t are complete maps;
(c) the s-fibers and the t-fibers are symplectic orthogonal;
(d) M , viewed as the unit section, is a Lagrangian submanifold of Σ;
(e) the Lie algebroid of Σ is canonically isomorphic to T ∗M .

The inverse problem (reconstructing Σ) is the symplectic version of the integrability
problem:

• Is there a symplectic groupoid integrating M?

Again, it is not hard to see that if a Poisson manifold admits an integrating sym-
plectic groupoid, then it admits a unique s-simply connected one. In this case we
say that M is an integrable Poisson manifold, and the s-simply connected groupoid
Σ = Σ(M) integrating M will be called the symplectic groupoid of M .

1A Poisson map is a map φ : M → N between two Poisson manifolds that preserves the
Poisson brackets. A Poisson map is called complete if whenever Xh is a complete Hamiltonian
vector field on N then Xφ∗h is also a complete Hamiltonian vector fields on M .
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By property (e) above, if a Poisson manifold is integrable, then its associated al-
gebroid T ∗M is also integrable. The converse is also true as was shown by Mackenzie
and Xu in [21]:

Theorem 1.1. If M is a Poisson manifold such that T ∗M is an integrable Lie
algebroid then M is an integrable Poisson manifold.

Much of such known results have a different and simpler proof in our unified
approach to the integrability problem to be presented below. Let us give a short
overview of our solution to the integrability problem and, at the same time, an
outline of the content of the paper.

In [8], for any Lie algebroid A we have constructed a topological groupoid G(A),
called the Weinstein groupoid of A, and which is a fundamental invariant of the Lie
algebroid. Moreover, this groupoid has a compatible differentiable structure (i.e.,
is a Lie groupoid) if and only if A is an integrable Lie algebroid. In the case of
Poisson manifolds, where A = T ∗M , we will denote G(T ∗M) by Σ(M). One should
think of Σ(M) as the homotopy group(oid) of the Poisson manifold, and in fact it
can be described, as we shall explain in Section 2 below, as a quotient

Σ(M) = cotangent paths/cotangent homotopies.

The obvious similarity with the ordinary homotopy group is related with the fol-
lowing basic philosophical principle:

In analogy with the role played by the tangent bundle TM of man-
ifolds, Lie algebroids can be thought of as the “tangent bundles of
singular structures”.

Accordingly, many constructions/results in differential geometry that can be carried
out in terms of just the tangent bundle, make sense for general Lie algebroids.
However, sometimes this is not entirely obvious, and the Lie algebroid framework
can reveal totally new patterns.

The first example of this is that, while the fundamental groupoid of a manifold
is always smooth, that is not true for a general Lie algebroid A. The main result
of [8] gives the precise obstructions for a differentiable structure to exist in G(A),
and expresses them in terms of so-called monodromy groups. For the special case
of Poisson manifolds, we shall described them in Section 3 below.

There are two special properties of T ∗M that distinguish this case from the
general case. First, the anchor and the bracket are both induced from the Poisson
tensor and so are intimately related. Second, one has the duality between T ∗M
and TM . As we shall see in Section 4, these lead to a description of Σ(M) as a
symplectic quotient, a fact first noted in [4]. Then the symplectic form on Σ(M),
makes the Weinstein groupoid into a symplectic Lie groupoid, hence reproving
Mackenzie-Xu’s result mentioned above.

Our main result, whose proof is given in Section 5 below, can be stated as follows:

Theorem 1.2. For a Poisson manifold M , the following are equivalent:

(i) M is integrable by a symplectic Lie groupoid,
(ii) the algebroid T ∗M is integrable,
(iii) the Weinstein groupoid Σ(M) is a smooth manifold,
(iv) the monodromy groups Nx, with x ∈M , are locally uniformly discrete;

The last condition of the theorem makes no reference to algebroids/groupoids,
and gives an integrability criteria which is computable in explicit examples. More-
over, the monodromy groups Nx (which are just some additive subgroups of the
co-normal vector space ν∗

x(L) to the symplectic leaf L through x) are invariants of
Poisson manifolds which are interesting on their own. For regular Poisson man-
ifolds, as we discuss in Section 6 (improving on results of Alcade Cuesta-Hector
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[1]), the monodromy can be expressed in terms of variations of symplectic areas
of spheres along transverse directions to the symplectic leaves. In Section 7, we
present many examples of integrable and non-integrable Poisson manifolds.

A well-known result of Karasev and Weinstein states that any Poisson manifold
M has a symplectic realization, i.e, there exists a symplectic manifold S and a
surjective Poisson submersion µ : S →M . The existence of symplectic realizations
with µ complete has been an open problem, which can be thought as yet another
instance of the integrability of Poisson manifolds:

• Is there a complete symplectic realization of M?

In Section 8 below we solve this problem (and sketch a different proof of the result
of Karasev and Weinstein):

Theorem 1.3. A Poisson manifold admits a complete symplectic realization if and
only if it is integrable.

This establishes the equivalence of all the different notions of integrability. In the
last two sections of the paper we give some more applications of our integrability
results.

In Section 9 we consider the Poisson brackets induced on a submanifold of a
Poisson manifold (if any). We clarify and improve the results of Xu [34] and Vais-
man [27] on induced Poisson structures. We also discuss, for an integrable Poisson
manifold, when is the induced Poisson bracket on a submanifold integrable.

In Section 10 we discuss Morita equivalence of Poisson manifolds, both for inte-
grable and non-integrable Poisson manifolds. We observe that the original definition
due to Xu only makes sense for integrable Poisson manifolds. For non-integrable
Poisson manifolds we consider a weak notion of Morita equivalence, and we prove
that many invariants of Poisson manifolds, relevant for the integrability problem,
are weak Morita invariant.

Remark 1.4 (Hausdorff Issues). The reader will notice that we are forced to allow
non-Hausdorff manifolds in our paper. There are at least two simple reasons for
this. First of all, a bundle of Lie algebras g over a manifold B, may not integrate
to a bundle G of Lie groups over B (that is, the Lie algebra of the fiber Lie group
Gb coincides with gb, for all b ∈ B), if we require G to be Hausdorff. However,
there exists always at least one which is a (possibly non-Hausdorff) manifold (see
[12]). Secondly, there are simple examples of foliations whose graph, although a
manifold, may be non-Hausdorff.

Let us list here all the notions in this paper which allow manifolds to be non-
Hausdorff:

(a) Lie groupoids (Sections 4 and 5) may be non-Hausdorff manifolds. However,
the base space (denoted M here), as well as the s-fibers and t-fibers, are
always assumed to be Hausdorff.

(b) For a symplectic realization π : S → M (Section 8), S is allowed to be
non-Hausdorff. However, the leaves of the foliation F(π) by fibers of π and
of the symplectic orthogonal foliation F(π)⊥, are all Hausdorff.

In particular, the Poisson manifolds we study are always assumed to be Hausdorff
and paracompact.
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2. Cotangent paths and their homotopy

In the sequel M will denote a Poisson manifold. We let # : T ∗M → TM be
the bundle map determined by contraction with the Poisson tensor, and we let [·, ·]
be the Lie the bracket on 1-forms, which was defined in the introduction. We also
denote by π : T ∗M →M the canonical projection.

Definition 2.1. A cotangent path in M is a path a : I → T ∗M , where I = [0, 1],
satisfying

d

dt
π(a(t)) = #a(t).

For example, given a cotangent path a : I → T ∗M and a vector field X on M
we define, following [17], the path integral:

∫

a

X ≡

∫ 1

0

〈X(γ(t)), a(t)〉dt,

where γ(t) = π(a(t)) is the base path of a. If X = Xh is a Hamiltonian vector field
for some Hamiltonian function h ∈ C∞(M) we see that

∫

a

Xh = h(γ(1))− h(γ(0)).

So for a Hamiltonian vector field the integral only depends on the end-points of the
base of the cotangent path.

From a differential-geometric viewpoint, as was first explained in [15], cotan-
gent paths are precisely the paths along which parallel transport can be performed
whenever a contravariant connection has be chosen. Let us briefly recall how this
works.

First of all, a contravariant connection ∇ on a vector bundle E over M can
be thought of as a bilinear map

Ω1(M)× Γ(E)→ Γ(E), (α, s) 7→ ∇αs,

satisfying the following identities:

(a) ∇fαs = f∇αs,
(b) ∇α(fs) = f∇αs + #α(f)s,

for all f ∈ C∞(M), α ∈ Ω1(M), s ∈ Γ(E). This is the analogue, in the Poisson
category, of the usual covariant connections.

The value of ∇αs at x ∈M only depends on the value of α at x and the values
of s along the integral curve of #α through x. Therefore, given a cotangent path
a and path s in E above π ◦ a, the contravariant derivative ∇as is a well defined
path in E. This leads to the notion of parallel transport along a cotangent path
a: it is the map τa : Eπ(a(0)) → Eπ(a(1)) which takes u ∈ Eπ(a(0)) to s(1) ∈ Eπ(a(1)),
where s : I → E is the solution of the differential equation ∇as = 0, with initial
condition s(0) = u.

We will be mostly interested in contravariant connections on T ∗M . A covariant
connection ∇ on TM induces, apart from the dual covariant connection on T ∗M ,
still denoted by ∇, a contravariant connection ∇ on TM defined by

∇αX = ∇X#α + [#α, X ],

and a dual contravariant connection on T ∗M , also denoted by ∇, and given by:

∇αβ = ∇#βα + [α, β].

These connections satisfy ∇# = #∇ and they form a basic connection in the
sense of [15]. The connection ∇ has contravariant torsion given by

T∇(ω, η) = ∇ωη −∇ηω − [ω, η].
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Fix a covariant connection ∇ on TM . Given a family aε = aε(t) of cotangent
paths with the property that the base paths γε(t) = π(aε(t)) have fixed end points,
we consider the differential equation(2)

(2.1) ∂tb− ∂εa = T∇(a, b).

This equation has a unique solution b = b(ε, t) (running in T ∗M) with initial
condition b(ε, 0) = 0, and we define the variation of aε to be the cotangent path:

var(aε) = b(ε, 1).

Definition 2.2. A cotangent homotopy is a family aε = aε(t) of cotangent paths
with the property that the base paths γε(t) have fixed end points and var(aε) = 0.
Two cotangent paths a0 and a1 are said to be homotopic, and we write a0 ∼ a1 if
there is a cotangent homotopy joining them.

For an alternative definition of cotangent homotopy which avoids the use of
connections we refer to [8].

Cotangent homotopy defines an equivalence relation on the set of cotangent paths
and it enjoys many properties similar to the ones enjoyed by the usual notion of
homotopy. An example is provided by the following proposition:

Proposition 2.3. Let a0 and a1 be cotangent paths. If a0 ∼ a1 then, for any
Poisson vector field X on M , we have∫

a0

X =

∫

a1

X.

Proof. Let a = a(ε, t) and b = b(ε, t) be as above, and set I = 〈a, X〉, J = 〈b, X〉.
Fixing some connection ∇, for any ω ∈ Γ(T ∗M), we have

d

dt
〈ω(γ(t)), X(γ(t))〉 = 〈∇ dγ

dt

ω, X(γ(t))〉+ 〈ω(γ(t)),∇ dγ

dt

X〉.

A straightforward computation using the defining equation (2.1) and expression
(1.2) for the Lie bracket, shows that

dI

dε
−

dJ

dt
= LXΠ(a, b).

Integrating first with respect to t, using b(ε, 0) = 0, and then integrating with
respect to ε, we find that

∫

a1

X −

∫

a0

X =

∫

var(aε)

X +

∫ 1

0

∫ 1

0

LXΠ(a, b) dtdε.

for any vector field X , and any family {aε}. For cotangent homotopies and Poisson
vector fields this gives

∫
a0

X =
∫

a1
X . �

Remark 2.4. In [17], Ginzburg gives a simple example (cf. Example 3.4) showing
that the integral is not invariant under homotopy of the base path. Referring to
the (non-)invariance of the integral under this “naive homotopy” he states: “this
example shows that the above naive definition of homotopy is not a correct extension
of this notion to the Poisson category”. The proposition above shows that cotangent
homotopy gives the desired extension.

Another instance of behavior similar to the usual notion of homotopy, is obtained
by looking at flat contravariant connections. For these connections we have the
following contravariant version of a classical result in differential geometry:

Proposition 2.5. Given a flat contravariant connection, parallel transport along
cotangent paths is invariant under cotangent homotopy.

2Given a covariant connection ∇ on bundle E → M , a path γ(t) in M and a path u(t) in E

over γ, we use the notation ∂tη ≡ ∇γu.
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The proof is similar to the proof of the previous proposition (see Proposition
1.6 in [8]), and will be omitted. Next we give the contravariant analogue of the
fundamental group.

Definition 2.6. Let x ∈M be a point in the Poisson manifold M . The isotropy

group Σ(M, x) is the set of equivalence classes of cotangent paths whose base paths
in M start and end at x. The group structure is defined by concatenation of paths.
We also define the restricted isotropy group Σ0(M, x) by considering only cotan-
gent paths whose base path is a contractible loop.

The groups Σ(M, x) play a fundamental role in Poisson geometry. For instance,
one can show that linear holonomy of Poisson manifolds (defined along cotangent
paths, cf. [15]), only depends on homotopy classes. Also, if µ : S →M is a complete
symplectic realization, then there is a natural action of Σ(M, x) on µ−1(x), and,
if the “reduction” µ−1(x)/Σ(M, x) is smooth, then it carries a natural symplectic
structure. More details and more examples will be given in the later sections.
Notice also that, by Proposition 2.3, integration along closed cotangent paths gives
a group homomorphism ∫

: Σ(M, x)→ H1
Π(M)∗,

where H1
Π(M)∗ denotes the dual of the 1st Poisson cohomology group of M (the

space of Poisson vector fields modulo the Hamiltonian vector fields).
Though one may view the groups Σ(M, x) as analogues of the fundamental

groups of manifolds, there is also a strong analogy with the construction of simply
connected Lie groups integrating Lie algebras. In the remaining part of this section,
we elaborate on these two analogies.

Notice that the two groups we have just defined do relate to the fundamental
groups of the symplectic leaf L through x. We have a short exact sequence

(2.2) 1 // Σ0(M, x) // Σ(M, x) // π1(L, x) // 1,

where the first map is just the inclusion, while the second one associates to a
cotangent path its underlying base path. In the Poisson context however, there
are several new features which are not present in the case of classical fundamental
groups. For example, one can assert that Σ(M, x) and Σ(M, y) are isomorphic only
when x and y lie in the same symplectic leaf of M . Also, the groups Σ(M, x) are
not to be considered as discrete groups and this brings us to our second analogy,
for which we need to recall the reconstruction of simply connected Lie groups in
terms of paths in their Lie algebras, due to Duistermaat and Kolk [13].

Let G̃ be a simply connected Lie group with Lie algebra g. We can identify

elements g ∈ G̃ with homotopy classes of paths g(t) starting at g(0) = e and
ending at g(1) = g. Using derivatives and right translations, we obtain a bijective

correspondence between paths g(t) in the Lie group G̃ starting at e, and paths a(t)
in the Lie algebra g with free end points. Explicitly:

(2.3) a(t) =
d

ds
g(s)g(t)−1

∣∣∣∣
s=t

.

This bijection shows that there is a natural notion of homotopy of paths in g, which
corresponds to the homotopy of paths in G̃ (with fixed end points): if aε is a family
of paths in g, the only thing we have to require is that the induced family gε of
paths in G̃ has fixed end points gε(1). If we let var(aε) = d

dε
gε(1) one can show

that var(aε) can be defined directly in terms of the family aε, i.e., using data in

g and with no reference to the Lie group G̃. This is in complete analogy with
the variation for cotangent paths given above, with the extra-simplification coming
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from the fact that here no connection is involved: var(aε) = b(ε, 1) where b = b(ε, t)
is the solution of the differential equation

db

dt
−

da

dε
= [b, a], b(ε, 0) = 0.

The upshot is that the resulting group G(g) of homotopy classes of paths in g can
be defined directly in terms of the Lie algebra g, and hence makes sense even if
we don’t assume the existence of G̃. Moreover, since the space of paths in g (say
of class C1) carries a natural structure of Banach manifold, G(g) has a natural
quotient topology, and at most one interesting smooth structure (the one for which
the quotient map is a submersion). The fact that a smooth structure always exists,
is far from trivial (see [13]). This gives a proof of Lie’s third theorem asserting the
existence of a simply-connected Lie group G(g) integrating g, and at the same time

a proof of the fact that any simply-connected Lie group G̃ must be G(g).
Let us look now at the isotropy groups Σ(M, x). Since the space of cotangent

paths carries a natural structure of a Banach manifold (for which the underlying
topology is the C1-topology), Σ(M, x) has a natural quotient topology, and there
is no ambiguity when looking for the smooth structure on Σ(M, x) (and similarly
for Σ0(M, x)). However, unlike G(g), the isotropy group Σ(M, x) is not always a
Lie group (see Lemma 2.7 and Corollary 3.1).

To explain precisely how Σ(M, x) may fail to be a Lie group, observe that the
Lie bracket on 1-forms induces a Lie bracket on the kernel of the map #x : T ∗M →
TM . By skew-symmetry, this kernel coincides with the co-normal bundle to the
leaf L through x. We call ν∗

x(L) = Ker (#x) the isotropy Lie algebra at x.
Now, the simply connected Lie group G(ν∗

x(L)) integrating the isotropy Lie algebra
and the restricted isotropy Lie group Σ0(M, x) are both quotients of the space
of paths in ν∗

x(L). Also, two paths in ν∗
x(L) which are homotopic as Lie algebra

paths, are homotopic as cotangent paths. However, the converse is not true since a
cotangent homotopy may force one to go away from x. In other words, Σ0(M, x) is
(topologically) a quotient of G(ν∗

x(L)), and the following result is immediate from
[8]:

Lemma 2.7. Let M be a Poisson manifold, x ∈M , and denote by L the symplectic
leaf through x. The following are equivalent:

(i) Σ(M, x) is Hausdorff;
(ii) Σ(M, x) is a Lie group;
(iii) Σ0(M, x) is Hausdorff;
(iv) Σ0(M, x) is a Lie group.

In this case, Σ(M, x) has Lie algebra the isotropy Lie algebra ν∗
x(L), its connected

component of the identity is Σ0(M, x), and the group of its connected components
π0(Σ(M, x)) is isomorphic to π1(L, x).

One can get a better grasp on the notions of homotopy and variation introduced
above when T ∗M is integrable to a symplectic groupoid Σ. Then, as in our discus-
sion of Lie algebra paths, there is a bijection between cotangent paths and paths
g(t) in Σ which stay in an s-fiber, and which start at an identity element. The
variation of families aε of cotangent paths corresponds then to the derivatives with
respect to ε of the end points of the associated paths in Σ. Hence, aε is a cotangent
homotopy precisely when the corresponding family of paths in Σ is a homotopy
with fixed end points.

Remark 2.8. Let us briefly explain the perspective one gains by using the lan-
guage of algebroids/groupoids, as well as its unifying role. First of all, a cotangent
path can be identified with a Lie algebroid morphism TI → T ∗M . Similarly, two
cotangent paths a0 and a1 are homotopic if and only if there exists a Lie algebroid
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homomorphism adt + bdε : T (I × I) → T ∗M , which covers a (ordinary) homotopy
with fix end-points between the base paths π(ai(t)), and which restricts to ai(t) on
the boundaries. Therefore, all these constructions readily extend to any Lie alge-
broid. For example, in the case A = TM one recovers the usual notions of path and
homotopy of paths, and the fundamental group(oid). For a Lie algebra g, viewed
as a Lie algebroid over a point, one recovers the construction of Duistermaat and
Kolk of the simply connected Lie group G(g).

We point out that we have given above the precise meaning of “cotangent homo-
topy with fix end-points”. For example, a family of cotangent paths aε(t), ε ∈ [0, 1],
such that aε(0) = aε(1) = 0, in general, will not be a cotagent homotopy. In fact,
such a definition would quickly lead to erroneous statements: for example, inte-
gration of Poisson vector fields over cotagent paths would not be invariant under
cotangent homotopy. Similar remarks apply for Lie algebroids. We refer the reader
to [8] for details on these constructions in the general Lie algebroid framework.

3. The monodromy groups of Poisson manifolds

In this section we give various descriptions of the monodromy groups of a Poisson
manifold M at a point x ∈M . We shall see that these are certain additive subgroups

Nx ⊂ ν∗(L)x,

where L is the symplectic leaf through x, and ν∗
x(L) the co-normal space to L at

the point x. Recall that ν∗
x(L) carries a Lie algebra structure induced from the Lie

bracket on 1-forms. The monodromy group actually sits inside the center of this
Lie algebra.

We start with the shortest possible description of monodromy:

Description 1. The monodromy group Nx is the set of vectors v ∈ Z(ν∗
x(L)), with

the property that the constant cotangent path a(t) = v is cotangent homotopic to
the zero cotangent path.

To understand why this group shows up when looking at smoothness issues,
we consider a slightly larger group: Ñx ⊂ G(ν∗

x(L)) consists of those elements
represented by Lie algebra paths which, as cotangent paths, are homotopic to the
zero path. First of all, by its very definition, there exists an exact sequence

(3.1) 0 // Ñx
// G(ν∗

x(L)) // Σ0(M, x) // 0,

so that:

Σ0(M, x) = G(ν∗
x(L))/Ñx.

Next, the group Ñx almost coincides with Nx. The only difference comes from the
fact that, although Ñx does lie in the center Z(G(ν∗

x(L))), it is only the connected
component Z0(G(ν∗

x(L))) of the center that naturally identifies (via the exponen-
tial) with the center of ν∗

x(L). It follows that:

Nx = Ñx ∩ Z0(G(ν∗
x(L)))

In particular, let us point out the following (see also Lemma 2.7)

Corollary 3.1. The isotropy group Σ(M, x) is a Lie group if and only if the mon-
odromy group Nx is discrete.

The next description not only explains the nature of the monodromy, but it is
also suitable for computations.

Description 2. Consider a linear splitting σ : TL → T ∗
LM of the short exact

sequence

(3.2) 0 // ν∗(L) // T ∗
LM

# // TL // 0



10 MARIUS CRAINIC AND RUI LOJA FERNANDES

Assume that σ can be chosen so that its curvature

Ωσ(X, Y ) ≡ σ([X, Y ])− [σ(X), σ(Y )]

is Z(ν∗(L))-valued. Then

Nx =

{∫

γ

Ωσ : [γ] ∈ π2(L, x)

}
⊂ ν∗(L)x.

The integrals involved in this last description should be viewed as integrals of
forms with coefficients in flat vector bundles: the Bott connection gives ν(L) (hence
also ν∗(L), and Z(ν∗(L))) a natural flat vector bundle structure over L. We point
out that the assumption that σ is center-valued is only needed to simplify the
outcome. It is satisfied in many examples (e.g. whenever x is a regular point), but
not always (see Example 7.4 in Section 7). In general, the formula

(3.3) ∂([γ]) =

∫ 1

0

Ωσ

(
dγ

dt
,
dγ

dε

)
dε.

defines a group homomorphisms

∂ : π2(L, x)→ G(ν∗(L)x) ,

and

Ñx = {∂(γ) : [γ] ∈ π2(L, x)} ⊂ G(ν∗(L)x).

In the center-valued case, any center-valued Lie algebra path can be identified with
their integral (viewed as central Lie group element), and we obtain

∂([γ]) =

∫ 1

0

∫ 1

0

Ωσ

(
dγ

dt
,
dγ

dε

)
dεdt =

∫

γ

Ωσ ,

which is the description of the Nx given above.
Let us give a more conceptual explanation for the homomorphism ∂, which also

provides the relation between the previous two descriptions. The “philosophical
idea” on Lie algebroids mentioned in the introduction, and the remark that the
homotopy long exact sequence of a (smooth) fibration can be carried out in terms
of tangent bundles, suggests a construction of such sequences for algebroids.

Description 3. Viewing (3.2) as analogous to a fibration, there is a long exact
sequence

· · · // π2(L, x)
∂ // G(ν∗(L)x)

j // Σ(M, x) // π1(L, x) ,

where ∂ : π2(L, x) → G(ν∗(L)x) is the map given above, and j is the composition
of the projection from G(ν∗(L)x) onto Σ0(M, x) with the inclusion.

One can construct ∂ in complete analogy with the construction of the boundary
map for fibrations: given a 2-loop γ : I×I → L based at x, one lifts its differential dγ
to a morphism adt+bdε : T (I×I)→ A. Since γ on the boundary of I×I takes the
constant value x, the restriction of this morphism to the boundary, gives the path
a(1, t) in the Lie algebra ν∗(L)x, hence an element in the Lie group G(ν∗(L)x). If
we choose a splitting σ, we can use it to lift dγ, and the computation gives precisely
the expression (3.3) for ∂.
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4. The symplectic groupoid Σ(M)

In this section we describe the Weinstein groupoid Σ(M) associated to a Poisson
manifold. Note that, though Σ(M) is just a special case (with A = T ∗M) of the
general construction of the Weinstein groupoid of a Lie algebroid A [8], the extra
structure coming from the Poisson bracket and the cotangent bundle translates
into some special properties of Σ(M). In particular, we explain the relation with
the work of Cattaneo and Felder [4] on the Poisson-sigma model (the Hamiltonian
formulation).

We denote by PΠ(M) the space of cotangent paths in M which are of class C1,
and we denote by ∼ the cotangent homotopy equivalence defined using cotangent
homotopies aε in PΠ(M) which are of class C2 in ε. The Weinstein groupoid is
defined as the quotient(3)

(4.1) Σ(M) ' PΠ(M)/ ∼ .

For the groupoid structure, the source and target maps s, t : Σ(M) → M take
the equivalence class of a cotangent path to the end-points of the base path, while
multiplication is given by concatenation (see [8] for details). We shall see that this
groupoid gives new insights into the global properties of a Poisson manifold.

As a simple example, let us consider the integration of Poisson vector fields along
cotangent paths, discussed in Section 2 above. First, invariance under cotangent
homotopy (see Proposition 2.3) shows that we can view integration as a map which
associates to each Poisson vector field X a map

∫
X : Σ(M)→ R, g = [a] 7→

∫

a

X.

Second, additivity with respect to the concatenation of paths
∫

g0g1

X =

∫

g0

X +

∫

g1

X,

can be viewed as a cocycle condition for
∫

X : if Σ(M) is a smooth manifold, this
means that

∫
X defines a differentiable 1-cocycle on Σ(M). Third, and last, for

a Hamiltonian vector field we can write:∫

g

Xh = h(t(g))− h(s(g)),

which just says that
∫

Xh is a differentiable coboundary. Hence, denoting by
H1

dif(Σ(M)) the first differentiable cohomology group of Σ(M), integration defines
a map H1

Π(M)→ H1
dif(Σ(M)).

On the other hand, there is a Van Est map (see [7]) which takes a differentiable
cocycle into a Poisson cohomology class, and which is defined in all degrees. This
map is known to be an isomorphism in degree one. One can think of the Van Est
map as differentiation of differentiable cocycles. A simple check shows that:

Proposition 4.1. The map
∫

: H1
Π(M) → H1

dif(Σ(M)) is the inverse of the Van
Est map in degree one.

The reader will notice that all this discussion extends to any Lie algebroid with
appropriate changes.

On Σ(M) we consider always the quotient topology, so that it becomes a topolog-
ical groupoid. As in the case of the isotropy groups Σ(M, x), there is no ambiguity
when looking at the smoothness of Σ(M): the smooth structure, if exists, will be
the unique one for which the quotient map PΠ(M)→ Σ(M) is a submersion. It is
also convenient to consider the larger space P (T ∗M) of all C1-curves a : I → T ∗M ,

3In [8], this groupoid was denoted G(T ∗M).
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with base path γ = π ◦ a of class C2. It has an obvious structure of a Banach man-
ifold, and PΠ(M) is a (Banach) submanifold of P (T ∗M) (cf. Lemma 4.6 in [8]).
We need an explicit description of the tangent spaces to these Banach manifolds,
and a more geometric description of the equivalence relation defined on them by
cotangent homotopies.

The tangent space TaP (T ∗M) consists of curves U : I → TT ∗M such that
U(t) ∈ Ta(t)T

∗M . Using a connection ∇ on TM and the associated contravariant

connections ∇ (see Section 2), such a curve can be viewed as a pair (u, φ) consisting
of curves u : I → T ∗M and φ : I → TM over γ (namely, the vertical and horizontal
component of U). The subspace TaPΠ(M) ⊂ TaP (T ∗M) consists (see [8], Section
5.2) of those pairs U = (u, φ) with the property that

#u = ∇aφ.

Now let us describe the equivalence relation defined by cotangent homotopies in
terms of a Lie algebra action. The Lie algebra is formed by time-dependent 1-forms,
vanishing at the end-points

P0Ω
1(M) =

{
ηt ∈ Ω1(M), t ∈ I : η0 = η1 = 0, ηt of class C1 in t

}

with Lie bracket the bracket on 1-forms with time varying as a parameter. The Lie
algebra P0Ω

1(M) acts on P (T ∗M) and this action satisfies the following properties:

(a) it is tangent to PΠ(M);
(b) the orbits in PΠ(M) define a finite codimension foliation;
(c) two cotangent paths are homotopic if and only if they belong to the same

orbit.

This is proved in [8], and here we shall give only the definition of the action. This
means we will define a Lie algebra map

P0Ω
1(M)→ X(P (T ∗M)), η 7→ Xη

So, given a time-dependent 1-form η ∈ P0Ω
1(M) and a path a ∈ P (T ∗M) with

underlying path γ : I → M , we have to describe a path Xη,a in T ∗M above γ.
Let us first assume that a is a cotangent path. To describe Xη,a, we specify the
components (u, φ) with respect to a connection ∇:

u = ∇ab, φ = #b.

This does not depend on the connection, and, by the discussion above, it does define
a vector tangent to PΠ(M). We check that this can also be written as:

Xη,a(t) =
d

dε

∣∣∣∣
ε=0

φε,0
η a(t) +

dηt

dt
(γ(t))

where φs,t
η stands for the flow of the time dependent one form η (4). Now, this

formula make sense for any path a : I → T ∗M and this is our definition of the
action.

What we have said so far makes sense for any Lie algebroid. Let us now take
advantage of the fact that we have A = T ∗M , the cotangent bundle. We have a
natural identification P (T ∗M) ' T ∗P (M), where P (M) denotes the Banach space
of paths γ : I → M of class C2. Hence, P (T ∗M) carries a natural symplectic

4Given a time-dependent one-form η on M , its flow is a map φ
t,s
η (x) : T ∗

x (M) → T ∗

Φ
t,s
#α

(M). It

is uniquely determined by the conditions φ
t,s
η φ

s,u
η = φ

t,u
η , φ

t,t
η =id, and the differential equation

d

dt

˛

˛

˛

˛

t=s

(φt,s
η )∗β = [ηs, β],

where (φt,s
η )∗(β)(x) = φ

s,t
η β(φt,s

#η
(x)), with φ

t,s
#η

the flow of the vector field #η.
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structure. Moreover, the set of cotangent paths PΠ(M) is the level set J−1(0) of
the map J : P (T ∗M)→ P0Ω

1(M)∗ given by:

〈J(a), η〉 =

∫ 1

0

〈
d

dt
π(a(t)) −#a(t), η(t, γ(t))〉dt.

and one has the following result due to Cattaneo and Felder (see [4]):

Theorem 4.2. The Lie algebra action of P0Ω
1(M) on P (T ∗M) is Hamiltonian,

with equivariant moment map J : P (T ∗M)→ P0Ω
1(M)∗.

Hence the Weinstein groupoid can be described alternatively as a Marsden-
Weinstein reduction:

(4.2) Σ(M) = P (T ∗M)//P0Ω(M).

The two alternate descriptions (4.1) and (4.2) for the Weinstein groupoid of a
Poisson manifold give the precise relationship between our integrability approach
introduced in [8], which is valid for any Lie algebroid, and the approach of Cattaneo
and Felder in [4].

Corollary 4.3. If Σ(M) is smooth, then it admits a symplectic form which turns
Σ(M) into a symplectic groupoid.

Proof. We only need to check the compatibility of the symplectic form with the
product, i.e., that the graph of multiplication is a Lagrangian submanifold. This
can be restated in a slightly simpler form using the following proposition which will
also be useful later.

Proposition 4.4. Let G be a Lie groupoid, and let ω ∈ Ω2(G) be a symplectic form.
The following statements are equivalent:

(i) The graph of multiplication γm = {(g, h, gḣ) ∈ G × G × G : (g, h) ∈ G(2)} is
a Lagrangian submanifold of G × G × Ḡ;

(ii) The relation m∗ω = π∗
1ω + π∗

2ω holds;

where we denote by m : G(2) → G the multiplication in G and by π1, π2 : G(2) → G
the projections to the first and second factors.

Using this Proposition we prove the Corollary above. First note that we have
the following explicit formula for the symplectic form ω̃ in P (T ∗M):

ω̃a(U1, U2) =

∫ 1

0

ωcan(U1(t), U2(t))dt,

for all U1, U2 ∈ TaP (T ∗M), where ωcan is the canonical symplectic form on T ∗M .
The additivity of the integral shows that that condition (ii) holds at the level of
P (T ∗M), hence it must hold also on the reduced space Σ(M). �

Proof of Proposition 4.4. We claim that the graph of multiplication γm satisfies the
following two properties

(a) γm is isotropic iff m∗ω = π∗
1ω + π∗

2ω;
(b) γm is isotropic implies that M is also isotropic;

Assuming these claims, it should be clear that (i) implies (ii). Conversely, if (ii)
holds, then by (a) we have that γm is an isotropic submanifold. Since dim γm =
dimG(2) = 2 dimG − dim M , we see that γm is Lagrangian provided that dim M =
1
2 dimG. Since γm is isotropic, we know already that 2 dimG − dim M ≤ 3

2 dimG,
and so we have

dim M ≥
1

2
dim G.



14 MARIUS CRAINIC AND RUI LOJA FERNANDES

But, by (b), M is also an isotropic submanifold of G so that

dim M ≤
1

2
dim G.

and equality must indeed hold.
To prove the claims let us denote by Ω = ω ⊕ ω ⊕ (−ω) the symplectic form on

G × G × Ḡ, and let γ : G(2) → G × G × G be the embedding:

(g, h) 7→ (g, h, g · h).

Obviously, the graph γm is an isotropic submanifold of G × G × Ḡ if and only if
γ∗Ω = 0, and this condition is clearly equivalent to

m∗ω = π∗
1ω + π∗

2ω.

This shows that (a) holds.
In order to show that (b) also holds we observe that M , viewed as the identity

section of G, can be expressed as

M = {x ∈ G : ∃g ∈ G, x · g = g} .

Hence we have M = π(∆ ∩ γm) where π : G × G × G → G is projection onto the
first fact and

∆ ≡ {(h, g, g) ∈ G × G × G} .

Now, it is easy to check that ∆ ⊂ G×G×Ḡ is a coisotropic submanifold, π : ∆→ G
is projection along its characteristic foliation, and ∆ and γm have clean intersection.
By a standard argument in symplectic geometry (see [22], Lemma 5.34), γm being
isotropic implies that the projection M = π(∆ ∩ γm) is also isotropic. �

5. The smoothness of Σ(M)

We are now in position to give a proof of our main result concerning the smooth-
ness of Σ(M). The discussion here depends heavily on our general integrability
criteria for Lie algebroids [8].

Theorem 5.1. For a Poisson manifold M the following statements are equivalent:

(i) M is integrable by a symplectic Lie groupoid,
(ii) the algebroid T ∗M is integrable,
(iii) the Weinstein groupoid Σ(M) is a smooth manifold,
(iv) the exponential map of Σ(M) associated to a (or any) connection is injective

around the zero section,
(v) the monodromy groups Nx, where x ∈M , are locally uniformly discrete.

In this case Σ(M) is the unique s-simply connected, symplectic groupoid which
integrates M .

Before proceeding to the proof, we clarify conditions (iv) and (v).
The exponential map referred to in condition (iv) is defined as follows. Given

a contravariant connection ∇, one can define the notion of cotangent geodesic as
in the classical case, by the equation ∇aa = 0 (see [15]). Then, for a0 ∈ T ∗M
sufficiently close to zero, the geodesic starting at a0 is defined up to the time t = 1,
hence defines an element in PΠ(M). This correspondence defines a map ẽxp∇ :
T ∗M → PΠ(M), and, the map induced on the quotient, exp∇ : T ∗M → Σ(M), is
called the exponential map associated to ∇. As in the classical case, the map is
only defined on a neighborhood of the zero section.

Condition (v) should be viewed as the main “integrability criteria”. The results
of Section 3 show that it is suitable for computation in concrete examples. In
order to measure the discreteness of the monodromy groups we define a function
rN : M → [0, +∞] by

rN (y) = d(Ny − {0y}, {0y}),
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where the distance is induced by some norm on T ∗M . By convention, rN (y) = +∞
if Ny = {0y}. Clearly, Ny is discrete if and only if rN (y) 6= 0. By uniform
discreteness of N around y we mean that

lim inf
y→x

rN (y) 6= 0.

Proof of Theorem 5.1. If Σ is a symplectic groupoid integrating M , then its asso-
ciated algebroid is isomorphic to T ∗M , and this shows that (i) implies (ii). To see
that (ii) implies (iii), we assume that Σ is a Lie groupoid integrating T ∗M . Taking

the universal covers of the s-fibers of Σ together, we get a new groupoid Σ̃ which

still integrates T ∗M , and which is s-simply connected. More precisely, Σ̃ is the
collection of paths lying on the s-fibers, which start at the identity section, where
we identify any two which are homotopic by homotopies with fixed end points (see

[8] for details). It follows from Remark 2.8, that Σ̃ is naturally identified with the
space of cotangent paths, modulo homotopy, i.e. with Σ(M). Since the quotient Σ

of Σ̃ is smooth, so is Σ̃ ∼= Σ(M). That (iii) implies (i) is the content of the previous
section.

For any contravariant connection ∇ the exponential ẽxp∇ : T ∗M → PΠ(M)
always defines a transversal to the foliation on P ∗(TM). In particular, if the
associated leaf space Σ(M) is smooth, the differential of exp∇ at zero elements
is the invertible, and this shows that (iii) implies (iv). Conversely, if (iv) holds,
then one uses exp∇ to define the smooth structure on Σ(M) around the identity
elements, and then, using right translations, one extends the smooth structure to
the entire topological groupoid Σ(M) (cf. [8]). This explains why (iv) implies (iii).

Finally the equivalence with (v) is the main theorem in [8] , for the special case
of the cotangent Lie algebroid of a Poisson manifold. �

6. The regular case

A Poisson manifold is called regular if the Poisson tensor has constant rank.
In the regular case, both F = Im # and ν∗(F) = ker# are vector bundles over
M , and the isotropy Lie algebras ν∗(F)x are all abelian. This amounts to sev-
eral simplifications and leads to a new geometric interpretation of the integrability
criteria.

Let us consider, for instance, the long exact sequence of Section 3. In the regular
case it becomes

· · · // π2(L, x)
∂ // ν∗(L)x

// Σ(M, x) // π1(L, x) .

The monodromy groups can be described (or defined) as the image of ∂, which, in
turn, is given by integration of a canonical cohomology 2-class [Ωσ ] ∈ H2(L, ν∗

x(L)),
and this class can be computed explicitly by using a section σ of # : T ∗

LM → TL.
In this section we will give a different geometric interpretation of monodromy based
on the symplectic geometry of the leaves of M . We state the main results first, and
delay all proofs till the end of the section.

Fix a point x in a Poisson manifold M , let L be the symplectic leaf through
x, and consider a 2-sphere γ : S2 → L, which maps the north pole pN to x. The
symplectic area of γ is given, as usual, by

Aω(γ) =

∫

S2

γ∗ω,

where ω is the symplectic 2-form on the leaf L. By a deformation of γ we mean
a family γt : S2 →M of 2-spheres parameterized by t ∈ (−ε, ε), starting at γ0 = γ,
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and such that for each fixed t the sphere γt has image lying entirely in a symplectic
leaf. The transversal variation of γt (at t = 0) is the class of the tangent vector

varν(γt) ≡

[
d

dt
γt(pN )

∣∣∣∣
t=0

]
∈ νx(F).

We shall see below that the quantity
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Figure 1. Symplectic spheres.

d

dt
Aω(γt)

∣∣∣∣
t=0

only depends on the homotopy class of γ and on varν(γt). Finally, the formula

〈A
′

ω(γ), varν(γt)〉 =
d

dt
Aω(γt)

∣∣∣∣
t=0

,

applied to different deformations of γ, gives a well defined element

A
′

ω(γ) ∈ ν∗
x(L).

The promised result is:

Proposition 6.1. For any regular manifold M , the function rN is lower semi-
continuous, and

Nx = {A
′

ω(σ) : σ ∈ π2(L, x)}.

Next, we form the (set theoretical) bundle of “variations of symplectic areas”,

A
′

(M) =
⋃
Nx ⊂ ν∗(F).
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Similarly, the groups Sx(M) = ν∗
x(L)/Nx fit together into a (set theoretical, again)

bundle of groups,

S(M) = ν∗(F)/A
′

(M) =
⋃

x∈M

ν∗(F)x/Nx,

which will be called the structure groupoid of M . Note that the groups Sx(M)
are closely related to the isotropy groups Σ(M, x) introduced in Section 2. More
precisely, it follows from Section 3 that:

Sx(M) = Σ0(M, x),

and we have a short exact sequence

1 // Sx(M) // Σ(M, x) // π1(L) // 1.

In the sequel we will only be interested on the structures on S(M) coming from

ν∗(F) via the projection ν∗(F)→ S(M), and on structures on A
′

(M) as a subspace

of ν∗(F). In particular, both A
′

(M) and S(M) are topological groupoids, and there

is no ambiguity when asking for the smooth structure on A
′

(M) and on S(M),
respectively.

Theorem 6.2. For a regular Poisson manifold M , the following are equivalent:

(i) M is integrable;
(ii) Σ(M) is a Lie groupoid;
(iii) S(M) is a Lie groupoid;

(iv) A
′

(M) is a Lie groupoid.

Moreover, in this case, A
′

(M) is étale (i.e. its source is a local diffeomorphism),
and there is an exact sequence of Lie groupoids

1 // S(M) // Σ(M)
Φ // π1(F) // 1 .

Here π1(F) stands for the homotopy groupoid of F . This object is well known
in foliation theory (sometimes under the name of monodromy groupoid), and it is
one of the simplest examples of a Weinstein groupoid (namely the one associated
to the Lie algebroid TF). The arrows between x, y ∈M are the leafwise homotopy
classes of paths (paths tangent to F) with end-points in x and y, so that there are
arrows only between points lying in the same leaf.

In the short exact sequence above, S(M) and π1(F) are (in principle) easily
computable from the Poisson geometry of M , and the sequence will give in fact
a pretty good indication to what the integration of M should be. On the other
hand, this sequence shows that the symplectic groupoid of M is an extension of
the monodromy groupoid π1(F) by the structure groupoid S(M). This suggests a
different strategy to integrate a regular Poisson manifold: assuming S(M) to be a
Lie groupoid one looks for an extension of π1(F) by S(M). In [1] it is shown that
this strategy works under some additional technical assumptions, and Theorem 6.2
is actually an improvement over the results of [1].

We now turn to the proofs of the results we have stated so far. Recall that
the normal bundle ν (hence also any associated tensor bundle) has a natural flat
F-connection ∇ : Γ(TF)× Γ(ν)→ Γ(ν), given by

∇XY = [X, Y ].

In terms of the Lie algebroid TF , ∇ is a flat Lie algebroid connection (see [14])
giving a Lie algebroid representation of TF on the vector bundle ν (and also,
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on any associated tensor bundle). Hence, the foliated forms with coefficients in ν,
denoted Ω•(F ; ν) = Γ(∧•T ∗F ⊗ ν), carry a foliated de Rham operator

dFω(X1, . . . , Xp+1) =
∑

i

(−1)i∇Xi
(ω(X1, . . . , X̂i, . . . , Xp+1))

+
∑

i<j

(−1)i+j−1ω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1)),

for which the associated cohomology, called foliated cohomology with coefficients
in ν, is denoted H∗(F ; ν). Similarly one can talk about cohomology with coefficients
in any tensorial bundle associated to ν. The special case of trivial coefficients R,
will be denoted H∗(F).

For instance, the Poisson tensor in M determines a foliated 2-form ω ∈ Ω2(F),
which is just another way of looking at the symplectic forms on the leaves. There-
fore, we have a foliated cohomology class in the second foliated cohomology group:

[ω] ∈ H2(F).

On the other hand, we saw above in “Description 2” of the monodromy groups,
that a splitting σ determines a foliated 2-form Ωσ ∈ Ω2(F ; ν∗), with coefficients in
the co-normal bundle, and that the corresponding foliated cohomology class

[Ω] ∈ H2(F ; ν∗)

does not depend on the choice of splitting.
These two classes are related in a very simple way. In fact, there is a map

dν : H2(F) −→ H2(F ; ν∗),

which can be described as follows. We start with a class [θ] ∈ H2(F), represented

by a foliated 2-form θ. As with any foliated form, we have θ = θ̃|TF for some 2-form

θ̃ ∈ Ω2(M). Since dθ̃|F = 0, it follows that the map Γ(∧2F)→ Γ(ν∗) defined by

(X, Y ) 7→ dθ̃(X, Y,−),

gives a closed foliated 2-form with coefficients in ν∗. It is easily seen that its

cohomology class does not depend on the choice of θ̃, and this defines dν . Now the
formula ω(Xf , X) = X(f), immediately implies that

dν([ω]) = [Ω].

We emphasize that the operator dν is well known in foliation theory and is part,
together with dF , of the spectral sequence of a foliation. The advantage of this
point of view comes from the fact that the construction of dν is functorial with
respect to foliated maps (i.e. maps between foliated spaces which map leaves into
leaves).

From this perspective, a deformation γt of 2-spheres is a foliated map S2 × I →
M , where in S2 × I we consider the foliation F0 whose leaves are the spheres
S2 × {t}. From H2(S2) ' R, we get

H2(F0) ' C∞(I) = Ω0(I)

H2(F0; ν) ' C∞(I)dt = Ω1(I),

where the isomorphisms are obtained by integrating over S2. Hence, dν for F0

becomes the de Rham differential d : Ω0(I) → Ω1(I). Now, the functoriality of dν

with respect to γt when applied to ω gives

d

dt

∫

S2

γ∗
t ω = 〈

∫

γt

Ω,
d

dt
γt(pN )〉.

This proves the last part of the proposition (and also the properties of the variation
of the symplectic area, stated at the beginning of this section).
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Next, we recall (see [1]) that the second homotopy groups of the leaves fit into a
smooth étale groupoid (actually, a bundle of Lie groups)

π2(F) =
⋃

x∈M

π2(Lx, x).

Also, according to “Description 3” in Section 3, we should view ∂ as part of a long
exact sequence (but now of groupoids rather than groups):

· · · // π2(F)
∂ // ν∗(F) // Σ(M)

Φ // π1(F) .

This clearly implies the exactness of the sequence of Theorem 6.2. Now, the smooth-
ness of ∂, together with the fact that π2(F) is étale, imply the following property
of the monodromy groups: for any a ∈ Nx, there is a smooth local section α of
ν∗(F) defined on some open U containing x such that α(x) = a, and α(y) ∈ Ny for
all y ∈ U . This immediately implies that rN is lower semi-continuous.

Let us turn now to the equivalence of the various statements in Theorem 6.2.
We know from the general Lie algebroid case that (i) implies (ii). The fact that (ii)
implies (iii) follows from the exact sequence above. To prove that (iii) implies (iv),
we just have to observe that in the short exact sequence

1 // A
′

(M) // ν∗(F) // S(M) // 1 ,

the projection ν∗(F) → S(M) will be a submersion if S(M) is smooth. We are
left with showing that (iv) implies (i), and for that we will check the integrability
conditions of Theorem 5.1. First of all, (iv) implies that Nx are closed subgroups
of ν∗

x(F). But Nx = ∂(π2(Lx, x)) are at most countable (because second homotopy

groups of manifolds are so), hence Nx must be discrete. This shows that A
′

(M)
must be étale, which, in turn, implies that lim infy→x rN (y) 6= 0. If not, we can
find a sequence an ∈ Nxn

of non-zero elements, with xn → x, an → 0x. This is
impossible since we can find a neighborhood of 0x which only contains zero elements.
This concludes our proof.

Remark 6.3. The last part of this proof can be restated as an interesting property
of any integrable, regular, Poisson manifold: every transverse deformation var(γt)
of a sphere γ0 such that ∂([γ0]) = 0 must be a trivial deformation, i. e., ∂([γt]) = 0
for all small enough t. By the results of this section, we can rewrite this as:

A′
ω(γ0) = 0 =⇒ A′

ω(γt) = 0, ∀t.

This property plays an important role in Alcade Cuesta and Hector approach to in-
tegrability of regular Poisson manifolds, who state it as “every symplectic vanishing
deformation is trivial” (see [1]).

7. Examples

In this section we present several examples of integrable and non-integrable Pois-
son manifolds. First, we give some immediate consequences of Theorem 5.1 and of
the main properties of the monodromy groups.

Corollary 7.1. If all the monodromy groups Nx of the Poisson manifold vanish,
then M is integrable. This happens for instance if (i) for any x ∈M , the symplectic
leaf L through x has finite second homotopy groups; or if (ii) the isotropy Lie algebra
ν∗

x(L) is semi-simple.

Not every Poisson manifold is locally integrable (see the example in Section 7.2
below). However, since the set of regular points is open (and dense), from the local
form of regular foliations we deduce:

Corollary 7.2. If x ∈ M is regular, then M is locally integrable around x, i.e.,
there exists a neighborhood of x in M which is integrable.
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After these simple criteria of integrability, we now turn to the examples.

7.1. Poisson manifolds of dimension 2. The lowest dimension one can have
non-trivial Poisson manifolds is 2. However, it follows immediately from Theorem
5.1 that in dimension 2 all Poisson manifolds are integrable.

Corollary 7.3. Any 2-dimensional Poisson manifold is integrable.

In particular, we recover the main positive integrability result of [4] that states
that any Poisson structure on R2 is integrable.

Corollary 7.3 can be generalized to higher dimensions in the following sense: any
2n-dimensional Poisson manifold whose Poisson tensor has rank 2n on a dense,
open set, is integrable. This, in turn, is a consequence of a general result due to
Debord [11] (see also [8], Corollary 5.9) that states that a Lie algebroid with almost
injective anchor is integrable. The proof is more involved.

7.2. A non-integrable Poisson manifold. Already in dimension 3 there are
examples of non-integrable Poisson manifolds. We consider M = R3 with the
Poisson bracket:

{f, g} = det




x y z
∂f
∂x

∂f
∂y

∂f
∂z

∂g
∂x

∂g
∂y

∂g
∂z


 .

Identifying R3 with su(2)∗, this is just the Kirillov-Poisson bracket (see also the
next example). We choose any smooth function a = a(R) on M , which depends
only on the radius R, and which is strictly positive for R > 0. We multiply the
previous brackets by a, and we denote by Ma the resulting Poisson manifold. The
bracket on Ω1(Ma) is computed using the Leibniz identity and we get

[dx2, dx3] = adx1 + bx1Rn̄,

[dx3, dx1] = adx2 + bx2Rn̄,

[dx1, dx2] = adx3 + bx3Rn̄,

where n̄ = 1
R

∑
i xidxi and b(R) = a′(R)/R. The bundle map # : T ∗Ma → TMa

is just

#(dxi) = av̄i, i = 1, 2, 3

where v̄i is the infinitesimal generator of a rotation about the i-axis:

v̄1 = x3 ∂

∂x2
− x2 ∂

∂x3
, v̄2 = x1 ∂

∂x3
− x3 ∂

∂x1
, v̄3 = x2 ∂

∂x1
− x1 ∂

∂x2
.

The leaves of the symplectic foliation of Ma are the spheres S2
R ⊂ R3 centered at

the origin, and the origin is the only singular point. To compute the function rN ,
using the obvious metric on T ∗Ma, we restrict to a leaf S2

R with R > 0, and we use
“Description 2” of Section 3. As splitting of # we choose the map defined by

σ(v̄i) =
1

a
(dxi −

xi

R
n̄),

with curvature the center-valued 2-form

Ωσ =
Ra′ − a

a2R3
ωn̄,

where ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2. Since
∫

S2
R

ω = 4πR3 it follows

that

N(x,y,z) ' 4π
Ra′ − a

a2
Zn̄ ⊂ Rn̄.
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The canonical generator of π2(S
2
R) defines the symplectic area of S2

R, which is easily
computable:

Aa(R) = 4π
R

a(R)
.

We recover in this way the relationship between the monodromy and the variation
of the symplectic area (Proposition 6.1). Also,

rN (x, y, z) =





+∞ if R = 0 or A′
a(R) = 0,

A′
a(R) otherwise,

so the monodromy might vary in a non-trivial fashion, even nearby regular leaves.
Our computation also gives the isotropy groups

Σ(Ma, (x, y, z)) ∼=





R3 if R = 0, a(0) = 0,
SU(2) if R = 0, a(0) 6= 0,
R if R 6= 0, A′

a(R) = 0,
S1 if R 6= 0, A′

a(R) 6= 0

We leave it to the reader the task of making the description of the groupoid Σ(Ma)
more explicit.

7.3. Heisenberg-Poisson manifolds. The integrability of the Heisenberg-Poisson
manifolds was discussed in [30]. We recall that the Heisenberg-Poisson manifold
M(S) associated to a symplectic manifold S, is the manifold S×R with the Poisson
structure given by {f, g} = t{ft, gt}S, where t stands for the real parameter, and
ft denotes the function on S obtained from f by fixing the value of t. We can now
easily recover the main result of [30]:

Corollary 7.4. For a symplectic manifold S, the following are equivalent:

(i) The Poisson-Heisenberg manifold M(S) is integrable;

(ii) S̃ is pre-quantizable.

We recall that condition (ii) is usually stated as follows: when we pullback the

symplectic form ω on S to a 2-form ω̃ on the covering space S̃, the group of periods
{∫

γ

ω̃ : γ ∈ H2(S̃, Z)

}
⊂ R

is a multiple of Z. Note that this group coincides with the group of spherical

periods of ω

P(ω) =

{∫

γ

ω : γ ∈ π2(S)

}
,

so that (ii) says that P(ω) ⊂ R is a multiple of Z.

Proof of Corollary 7.4. We have to compute the monodromy groups. The singular
symplectic leaves are the points in S × {0} and they clearly have vanishing mon-
odromy groups. The regular symplectic leaves are the submanifolds S×{t}, where
t 6= 0, with symplectic form ω/t. The most straightforward way to compute the
monodromy groups is to invoke Proposition 6.1 of Section 6 (as an instructive exer-
cise, the reader may also try to use “Description 2”of Section 3). We immediately
get

N(x,t) =
1

t
P(ω) ⊂ R,

and the result follows. �

Note that one can be quite explicit in describing Σ(M(S)). Straightforward
computations show that it consists of two types of arrows:



22 MARIUS CRAINIC AND RUI LOJA FERNANDES

(a) arrows which start and end at (x, 0), which form a group isomorphic to the
additive subgroup of T ∗

x,0M(S);
(b) arrows inside the symplectic leaves S × {t}, t 6= 0, which consist of equiv-

alence classes of pairs (γ, v), where γ is a path in S and v ∈ R. Two such
pairs (γi, vi) are equivalent if and only if there is a homotopy γ(ε, s) (with
fixed end points) between the γi’s, such that v1 − v0 = 1

t

∫
γ∗ω.

This explains how the general strategy of putting a smooth structure on Σ(M) (see
the end of Section 4) is related with the blowing-up techniques used in [30].

Remark 7.5. Condition (v) of Theorem 5.1 splits into two conditions:

(a) Each monodromy group Nx is discrete, i.e., rN (x) > 0,
(b) The monodromy groups are uniformly discrete, i.e., lim infy→x rN (y) > 0.

If we choose a symplectic manifold which does not satisfy the pre-quantization
condition, the Poisson-Heisenberg manifold of Section 7.3 gives a non-integrable
Poisson manifold that violates condition (a). On the other hand, the example of
Section 7.2 produces non-integrable Poisson manifolds in which condition (a) is
satisfied, but condition (b) is not. Hence the two conditions are independent.

7.4. Linear Poisson structures. Let g be any Lie algebra and G a simply con-
nected Lie group with Lie algebra g. If we consider the Poisson manifold M = g∗

with the Kirillov-Kostant Poisson bracket, and let A = T ∗g∗ we always obtain an
integrable Lie algebroid: the source-simply connected Lie groupoid integrating g∗

is
Σ(g∗) = G× g∗

with source and target maps

s(g, ξ) = ξ, t(g, ξ) = Ad ∗g · ξ,

and with multiplication (g1, ξ1) · (g2 · ξ2) = (g1g2, ξ2), wherever defined. In spite
of the fact that linear Poisson structures are always integrable, the symplectic
geometry of their leaves varies in a non-trivial fashion, and their monodromy reflects
this behavior.

For a specific example take M = su∗(3). The symplectic leaves (i.e., the coadjoint
orbits) are isospectral sets, and so we can understand them by looking at their point
of intersection with the diagonal matrices with imaginary eigenvalues. There are
orbits of dimension 6 (distinct eigenvalues), dimension 4 (two equal eigenvalues)
and the origin (all eigenvalues equal). Let us take for example the (singular) orbit
L through

x =




iλ 0 0
0 iλ 0
0 0 −2iλ


 .

Then we find its isotropy subalgebra to be

gx =








X 0

0 - tr X


 : X ∈ u(2)





and so we see that the simply connected Lie group integrating the Lie algebra gx

is G(gx) = R× SU(2). We can also compute the isotropy groups

Σ(g∗, x) = {g ∈ SU(3) : Ad ∗g · x = x}

=








g 0

0 det g−1


 : g ∈ U(2)





.
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We conclude that the orbit L is diffeomorphic to SU(3)/U(2) = CP (2). In fact,
one can show that it is symplectomorphic to CP (2) with its standard symplectic
structure (see [15], Example 3.4.5). Also, we see that the long exact sequence

· · · → π2(CP (2), x)
∂
→ G(gx)→ Σ(g∗, x)→ π1(CP (2), x),

reduces to:

· · · → Z
∂
→ R× SU(2)

ρ
→ U(2)→ {1} ,

where ρ(θ, A) = eiθA. We conclude that ∂n = (πn, (−1)nI), so that ∂ takes values
in the center Z(R× SU(2)) = R× {±I}, and

Ñx = Im ∂ = 2Z× {±I} , Nx = 2Z.

Since these two groups are distinct, there can be no splitting with center-valued
curvature. Another argument is that such a splitting would define a flat connection
on the co-normal bundle ν∗(L) = Ker#|L, and since L = CP (2) is 1-connected,
it would follow that the co-normal bundle would be a trivial bundle. This is not
possible. In fact, the total Stiefel-Whitney class of CP (2) is non-trivial, and so
is the Stiefel-Whitney class of the normal bundle, when we embed CP (2) in any
Euclidean space. Hence, the co-normal bundle cannot be trivial.

8. Symplectic realizations

Recall (see [33]) that a symplectic realization of a Poisson manifold M is a
surjective Poisson submersion µ : S →M , with connected fibers, from a symplectic
manifold S onto M(5). The symplectic manifold S comes equipped with a pair of
foliations, in duality with respect to the symplectic structure: the one given by the
fibers of µ, which will be denoted by F(µ), and its symplectic orthogonal F(µ)⊥.
In terms of their tangent bundles (vectors tangent to the leaves) F(µ) is the kernel
of the differential of µ, while F(µ)⊥ is spanned by the Hamiltonian vectors Xµ∗f

(f ∈ C∞(M)). As explained in Remark 1.4, S may be non-Hausdorff, but we do
require that the leaves of F(µ) and of F(µ)⊥ are Hausdorff. In particular, it makes
sense to talk about the completeness of the vector fields Xµ∗f . The symplectic
realization is called complete if, for any complete Hamiltonian vector field Xf on
M , the vector field Xµ∗(f) is complete.

The existence of symplectic realizations is guaranteed by the following basic
result:

Theorem 8.1 (Karasev [19], Weinstein [6]). Any Poisson manifold M admits a
Hausdorff symplectic realization φ : S →M .

Proof. Let M be a Poisson manifold. The Lie algebroid T ∗M integrates to a local
Lie groupoid Σloc(M). The proof of this result in [4] (cf. Corollary 5.1) shows that
one can exhibit this local Lie groupoid as quotient

Σloc(M) = O/ ∼

where O is a open set in the space of cotangent paths PΠ(M). Hence, a local version
of the construction of Section 4, shows that one can perform a Marsden-Weinstein
reduction on a open set of P (T ∗M) to obtain the structure of a local symplectic
groupoid on Σloc(M). The source map (also the target map) s : Σloc(M) → M
gives a symplectic realization. �

The question of existence of complete symplectic realizations is the main topic
of this section, and our main result is the following:

5The reader should be aware that sometimes the definition of a symplectic realization does not
include the requirement that φ is a submersion.
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Theorem 8.2. A Poisson manifold admits a complete symplectic realization if and
only if it is integrable.

The fact that integrability is somehow related to (and implies) the existence
of complete symplectic realizations is well-known (it is probably one of the main
reasons for which symplectic groupoids were introduced): if M is integrable, the
target map s : Σ(M)→M gives the desired realization. Completeness follows from
the remark that a path γ : I → M is an integral curve of Xf if and only if it is of
the form γ(t) = s(γ̃(t)) where γ̃ : I → S is an integral curve of Xf◦s.

The converse implication, which may look surprising at first sight, appears to be
more difficult since there is no obvious way of constructing an integrating groupoid
out of an arbitrary symplectic realization S (note that S may be quite different from
Σ(M)). However, we can now take advantage of the fact that we always have the
groupoid Σ(M) around, and the only issue is to prove its smoothness. This is proved
by pulling everything back to S, which one can think of as a desingularization of
M , where the problem greatly simplifies.

Remark 8.3. We shall see that a complete symplectic realization of M can be
thought of as faithful representation of the Lie algebroid T ∗M . We can use this
representation to integrate T ∗M , in a similar way as one does to integrate a Lie
algebra to a Lie group, with the help of a faithful representation. Unlike the Lie
algebra case, when such a representation always exist (Ado’s theorem), in our case
we have to assume the existence of such a representation, i.e., of the complete
symplectic realization φ : S →M .

Remark 8.4. Note that, in light of Theorem 5.1 (v), the result above can be stated
with no reference to integrability or groupoids (and this suggests that a different
approach might be possible).

Proof of Theorem 8.2. We let µ : S → M be a complete symplectic realization of
M , and we first assume that S is Hausdorff. We split the proof into several steps.

Step 1. The Lie algebroid T ∗M acts on S.
The map df 7→ Xµ∗f defines a bundle map ρ : µ∗T ∗M → TS, which can also

be described as the composition of the dual of the differential of π with the anchor
map T ∗S → TS induced by the symplectic form on S. It induces a Lie algebra
homomorphism Ω1(M)→ X(S), and

(8.1) (dµ)s ◦ ρy = #µ(y), for all y ∈ S.

One should view ρ as an infinitesimal action of T ∗M on S (see also below). Alterna-
tively, we can also think of ρ as the horizontal lift of a flat, non-linear, contravariant
connection (see [15]).

Step 2. The action of T ∗M on S integrates to an action of Σ(M).
Notice that it is for this reason that we need µ to be complete (compare with

the integrability of infinitesimal actions of Lie algebras on manifolds). Given a
cotangent path a : I → T ∗M , with base path γ starting at x0 ∈ M , and given
y ∈ S, the horizontal curve over a starting at y0 is the solution u : I → S of the
initial value problem:

d

dt
u(t) = ρu(t)(a(t)), u(0) = y0.

Let us check that this equation has a unique solution, defined on the entire unit
interval. We choose a time-dependent, compactly supported, one-form α with the
property that α(t, γ(t)) = a(t), and we consider the induced time-dependent vector
field on S, X(t, y) = ρy(α(t, µ(y))). A solution of the equation above is an integral
curve of X with initial condition y0, hence uniqueness. Conversely, if u is an integral
curve of X , (8.1) implies that µ ◦u is an integral curve of #α starting at x0, hence
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it must be γ. It follows that d
dt

u(t) = ρu(t)(α(t, γ(t))) = ρu(t)(a(t)). Finally, u is
defined on the entire I because the completeness of µ implies that ρ(α) is complete
whenever α is compactly supported.

Next we need to understand how the horizontal lifts depend on the cotangent
path:

Lemma 8.5. Let a0 and a1 be cotangent paths which are cotangent homotopic.
Then their horizontal lifts u0 and u1 are homotopic paths relative to the end-points.

Proof of Lemma 8.5. Let us fix the initial point, and consider a family aε of cotan-
gent paths, so that γε = µ◦aε all start at x0 and end at the same point. We obtain
a corresponding family uε of paths in S as above, all starting at y0, and all staying
in the leaf of F(µ)⊥ through y0. Moreover,

(8.2) ρ(var(aε)) =
d

dε
uε(1),

for all ε. Of course, this is related to the very definition of var(aε): by formula (2)
in Proposition 1.3 of [8], we have

(8.3) var(aε) =

∫ 1

0

φt,s
αε

dαε

dε
(s, γε(s))ds,

where αε are time dependent 1-forms such that αε(t, γε(t)) = aε(t). Here φt,s
αε

denotes the flows of αε (see the footnote in Section 4), which are covered by the
flows of the vector field Xε = ρ(αε), and so we find

ρ(var(aε)) =

∫ 1

0

φt,s
Xε

dXε

dε
(s, uε(s))ds.

The left side of this equation is just the variation of parameters formula for flows
of time-dependent vector fields, so (8.2) holds.

In particular, if aε is a cotangent homotopy we have var(aε) = 0 and so the
end-points uε(1) are fixed. �

Hence, for all g = [a] ∈ Σ(M) with s(g) = x0 and t(g) = x1, given y0 ∈ S in the
fiber above x0, there is a well-defined element u(1) ∈ S in the fiber above x1, and
we set g · y0 ≡ u(1). In other words we have an induced action of Σ(M) on S (the
operation g · y does satisfy the usual axioms of an action).

Step 3. The action groupoid of Σ(M) on S is isomorphic to the homotopy
groupoid of F(µ)⊥.

Let us denote by µ∗Σ(M) the space of pairs (g, y), with µ(y) = s(g). Then
µ∗Σ(M) is a Lie groupoid over S, called the action groupoid associated with the
action of Σ(M) on S: the source and target maps are given by s(g, y) = y and
t(g, y) = g · y, while the multiplication is given by

(g, y) · (h, z) ≡ (g · h, z), whenever y = h · z.

Now, notice that equation (8.2) above actually shows that aε is a cotangent homo-
topy if and only if uε is a homotopy with fixed end points. Recall that, similar to
Σ(M), one has a homotopy groupoid G(F) associated to any regular foliation F : it
consists of homotopy classes of paths with fixed end-points, staying in a single leaf.
Now, since ρ is actually an isomorphism from µ∗T ∗M to the symplectic orthogonal
foliation F(µ)⊥, (8.2) shows that

(8.4) µ∗Σ(M) ∼= G(F(µ)⊥)

an isomorphism of topological groupoids.

Step 4. Σ(M) is a Lie groupoid.
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Since the homotopy groupoid G(F) of any regular foliation is always smooth,
the action groupoid µ∗Σ(M) is also smooth and we want to conclude from this
that Σ(M) must be smooth too. To prove it, we will use the exponential map
exp∇ : T ∗M → Σ(M) with respect to a connection ∇ on T ∗M , and verify condition
(iv) of Theorem 5.1.

Consider the induced map µ∗T ∗M → µ∗Σ(M), denoted µ∗ exp∇, and also its
composition F : µ∗T ∗M → G(F(µ)⊥) with the homeomorphism (8.4). Then F
associates to a pair (v, y) (y ∈ S, v ∈ T ∗

µ(y)M) the homotopy class of the path

t 7→ exp∇(tv)y. This map is a local diffeomorphism at the zero section. Indeed,
after the identification µ∗T ∗M ∼= F(µ)⊥, it is just the exponential map of F(µ)⊥

with respect to the pull-back connection µ∗∇. Alternatively, its differential at a
point (0, y) ∈ µ∗T ∗M is an isomorphism since it fits into a commutative diagram
with exact rows:

0 // T ∗M //

ρy

��

T(0,y)µ
∗T ∗M //

dF

��

TyS

id

��

// 0

0 // F(µ)⊥ // T1y
G(F(µ)⊥)

ds
// TyS // 0

It then follows that µ∗ exp∇ is locally injective around the zero section, which
immediately implies the similar property for exp∇. Hence, by (iv) of Theorem 5.1,
it follows that M must be integrable.

When S is not necessarily Hausdorff, basically the same proof applies. All the
complete vector fields we have used were actually tangent to the leaves of F(µ)⊥,
which are Hausdorff. Of course, we also need to know that the construction of the
homotopy groupoid G(F) works well (i.e., is a smooth manifold) for any regular
foliation F (on a possibly non-Hausdorff manifold) with Hausdorff leaves, but this
works exactly as in the Hausdorff case. �

The previous arguments become even more natural when using the language of
algebroids. Recall that an action of an algebroid A over M on a map µ : S →M
consists of a bundle map ρ : µ∗A → TS with the property that it induces a Lie
algebra homomorphism Γ(A)→ X(S) and satisfies:

(dµ)s ◦ ρs = #µ(s), for all s ∈ S.

The action is called complete if ρ(α) is a complete vector field whenever α ∈ Γ(A)
has compact support.

A Lie algebroid action ρ determines a Lie algebroid structure on the pull-back
µ∗A, called the action Lie algebroid of ρ: the anchor is simply ρ, while the bracket
is uniquely determined by the Leibniz rule and [µ∗α, µ∗β] = µ∗[α, β]. Similarly, if a
groupoid G acts on µ : S →M , there is an induced groupoid µ∗G over S, called the
action Lie groupoid: its arrows consist of pairs (g, y) ∈ G × S with the property
that y is in the fiber of µ above s(g). The source of (g, y) is y, its target is g · y,
and the multiplication (g, y) · (h, z), defined when y = h · z, equals to (gh, z).

The same arguments as in the previous proof show that:

(a) A complete action of a Lie algebroid A on µ : S →M determines a (topo-
logical) action of the Weinstein groupoid G(A) on S, and µ∗G(A) ∼= G(µ∗A),
as groupoids. Moreover, for any connection ∇ on A, the pull-back to S of
the associated exponential map exp∇ A → G(A), identifies with the expo-
nential expµ∗∇ : µ∗A → G(µ∗A) with respect to the pull-back connection
µ∗∇.

(b) If a Lie algebroid A admits a complete action on µ : S →M such that the
action Lie algebroid µ∗A is integrable, then A is integrable.
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The proof above consisted in observing that any symplectic realization µ : S →M
comes equipped with an action ρµ of T ∗M , which is complete if and only if µ
is complete. Moreover, df 7→ Xµ∗f defines a Lie algebroid isomorphism between
µ∗T ∗M and TF(µ)⊥. Since the later is integrable, T ∗M must also be integrable.

Let us point out several consequences.

Corollary 8.6. Any complete symplectic realization µ : S → M comes equipped
with a (smooth) locally free action of Σ(M) on S. The action is free if and only if
the leaves of the symplectic orthogonal foliation F(µ)⊥ are simply connected.

Proof. That the action is locally free, but not necessarily free, comes from the fact
that µ∗Σ(M) is isomorphic only to the homotopy groupoid G(F(µ)⊥). Freeness
corresponds to the case where G(F(µ)⊥) is a subset of S × S, or, equivalently, to
the simply connectedness of the leaves. �

Corollary 8.7. For any complete symplectic realization µ : S →M :

(i) there is a natural action of the isotropy group Σ(M, x) on the fiber µ−1(x),
(ii) if µ−1(x)/Σ(M, x) is smooth, then it carries a natural symplectic structure,
(iii) every cotangent path a, starting at x and ending at y, induces a bijection

µ−1(x)/Σ(M, x)→ µ−1(y)/Σ(M, y). It only depends on the homotopy class
of a, and, in the smooth case, it is a symplectic diffeomorphism.

Proof. The reduced symplectic structures comes from the fact that, since the action
of Σ(M) on S is locally free, the tangent space of µ−1(x)/Σ(M, x) at some y ∈
µ−1(x) is given by TyF(µ)⊥y /TyF(µ)∩TyF(µ)⊥. Then linear symplectic reduction,
shows that we have a non-degenerated bilinear form induced by the symplectic
form on S. On the other hand, the action of the cotangent paths on the symplectic
quotients µ−1(x)/Σ(M, x) is just the one induced from the action of Σ(M) on S. �

Corollary 8.8. Let µ : S → M be a complete symplectic realization, and as-
sume that the orbit space S/Σ(M) is smooth. Then it carries a natural Poisson
structure, whose symplectic leaves can be identified with the symplectic manifolds
µ−1(x)/Σ(M, x).

These results show that the map µ : S → M can be can be seen as a moment

map for the groupoid action of Σ(M) on S. In fact, it is easy to see that the graph of
the action {(g, y, g · y) : s(g) = µ(y)} is a Lagrangian submanifold of Σ(M)×S× S̄,
so the groupoid action of Σ(M) on S is symplectic in the sense of Mikami and
Weinstein [23]. In fact, the corollaries above also follow from this observation and
the general results of [23], since we know now that Σ(M) is smooth (see also the
recent preprint [29]).

Notice that a complete symplectic realization gives rise to a two leg diagram

S
µ

����
��

��
��

π

##G
GG

GGGGGG

M S/Σ(M)

where the quotient S/Σ(M) and the map π are Poisson under some favorable cir-
cumstances. Moreover, if the fibers of µ are simply connected, the symplectic
groupoid of this new Poisson manifold is just the gauge groupoid S ×Σ(M) S. Note
also that if one repeats this construction to S/Σ(M) and the symplectic realization
given by π, then one gets back M .

Example 8.9. A well-known instance of this is provided by a complete symplec-
tic realization J : S → g∗ of the dual of some Lie algebra. In this case we have
Σ(g∗) = g∗ ×G, where G is a simply connected Lie group with Lie algebra g, and
Σ(g∗, ν) = Gν is the isotropy group of ν ∈ g∗ for the coadjoint action (see Section
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7.2). Then we obtain a free action of G on S which is Hamiltonian with momen-
tum map J , and the symplectic structures on J−1(ν)/Σ(g∗, ν) are the well-known
Marsden-Weinstein symplectic quotients. They form the leaves of the Poisson man-
ifold S/Σ(g∗) = S/G, provided this quotient is smooth. We will came back to dual
pairs later in our discussion of Morita equivalence (see Section 10).

Corollaries 8.6 through 8.8 improve and explain the results of Mikami and We-
instein [23, 29]. We can summarize this section by saying that we can view a
symplectic realization of a Poisson manifold M as a momentum map for an action
of the groupoid Σ(M) on S. Being the target of a momentum map, M can be
thought of as the dual of the Lie algebra(oid) of its Weinstein group(oid). This fits
well with Alan Weinstein’s remark (see [3], page 46) that “it is tempting to think
of any symplectic manifold as the dual of the Lie algebra of π1(S)”.

9. Induced Poisson structures

In this section we discuss submanifolds which have a canonical induced Poisson
structure.

Let M be a manifold with a smooth foliation F , which may be singular. By a
smooth family of symplectic forms on the leaves we mean a family of symplectic
forms

{
ωL ∈ Ω2(L) : L ∈ F

}
such that for every smooth function f ∈ C∞(M) the

Hamiltonian vector field Xf defined by

iXf
ωL = d(f |L), ∀L ∈ F

is a smooth vector field in M . If (M, {·, ·}) is a Poisson manifold, then the symplectic
foliation with the induced symplectic forms on the leaves, gives a smooth foliation
with a smooth family of symplectic forms.

Conversely, let M be a manifold with a smooth foliation F , furnished with a
smooth family of symplectic forms on the leaves. Then, we have a Poisson bracket
on M defined by the formula

{f, g} ≡ Xf (g),

for which the associated symplectic foliation is precisely F . Hence, a Poisson struc-
ture can be defined by its symplectic foliation instead of the Poisson bracket (see
also [28], Theorem 2.14). This motivates the following definition.

Definition 9.1. Let M be a Poisson manifold. A submanifold N ⊂M is called a
Poisson-Dirac submanifold if N is a Poisson manifold and

(i) The symplectic foliation of N is N ∩ F = {L ∩N : L ∈ F},
(ii) For every leaf L ∈ F , L ∩N is a symplectic submanifold of L.

Let us clarify this definition. First, the intersections N∩L need not be connected,
so in (i) we really mean that:

(ia) N intersects L cleanly, so that N ∩ L is a submanifold of N and L and
T (N ∩ L) = TN ∩ TL,

(ib) the symplectic leaves of N are the connected components of the intersec-
tions N ∩ L.

Also, condition (ii) means that the symplectic forms on L ∩ N are the pull-backs
i∗ωL, where i : N ∩ L ↪→ L is the inclusion. Then we must have

(9.1) TN ∩#(TN0) = {0} ,

since the left-hand side is the kernel of the pull-back i∗ωL.
By the remarks above, a submanifold N has at most one Poisson structure

satisfying these properties, and this Poisson structure is completely determined by
the Poisson structure of M . Poisson submanifolds are obvious examples of Poisson-
Dirac submanifolds, and we will see many other examples later.
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In order to discuss the problem of integrability of Poisson-Dirac submanifolds, it
will be convenient to recall a few facts about Dirac structures. At the same time,
this will allow us to justify our usage of the term Poisson-Dirac submanifold.

9.1. Poisson-Dirac subspaces. Recall (see [5]) that a linear Dirac structure

on a vector space V is a subspace L ⊂ V ⊕ V ∗ which is maximally isotropic with
respect to the canonical symmetric pair 〈·, ·〉 given by:

〈(v, ξ), (w, η)〉 =
1

2
(ξ(w) + η(v)).

We remark that linear Dirac structures can always be restricted to subspaces: if
W ⊂ V is a subspace, then on W one has the induced Dirac structure

LW = {(v, ξ|W ) : (v, ξ) ∈ L, v ∈ W} .

Now a Poisson vector space (V, Π) (a vector space V with a bivector Π ∈ ∧2V )
is the same as a linear Dirac structure on V , with the property that the projection
L → V ∗ is bijective. Namely, a bivector Π is completely determined by its graph
LΠ ⊂ V ⊕ V ∗, where

LΠ ≡ {(#ξ, ξ) : ξ ∈ V ∗} .

Hence, given a subspace W ⊂ V one has the induced Dirac structure

LΠ
W = {(#ξ, ξ|W ) : ξ ∈ V ∗, #ξ ∈ W} .

However, in general, the projection LΠ
W → W ∗ will not be bijective so this Dirac

structure is not defined by some bivector in W . Noticing that the kernel of this
projection is precisely W ∩#(W 0) we introduce the following definition.

Definition 9.2. Let (V, Π) be a Poisson vector space. A subspace W ⊂ V is called
a Poisson-Dirac subspace if

(9.2) W ∩#(W 0) = {0} .

Therefore, a Poisson-Dirac subspace W of a Poisson vector space (V, Π) has a
natural induced bivector ΠW . Let us set

AW ≡ (#(W 0))0 = {ξ ∈ V ∗ : #ξ ∈W} .

The bivector ΠW is given by

(9.3) ΠW (ξ, η) = Π(ξ̃, η̃),

where ξ̃ and η̃ are extensions to V of ξ and η, at least one of which lies in AW . On
the other hand, condition (9.2) can also be written as:

W 0 + AW = T ∗M.

On the other hand, if (9.2) holds, we see that

W 0 ∩ AW = W 0 ∩Ker#,

so we have a short exact exact sequence

0 // W 0 ∩Ker# // AW
// W ∗ // 0 .

The space AW has the role of relating V ∗ and W ∗, and shows that ΠW is obtained
by linear presymplectic reduction. Indeed, AW is a subspace of the (presymplectic)
vector space V ∗, while W ∗ is a quotient of AW with the quotient map just the
restriction to W .

We shall call a Dirac projection of W any projection p : V → W such that
p|#(W 0) = 0. Notice that p : V →W is a Dirac projection if and only if p∗ : W ∗ →
V ∗ is a splitting of the short exact sequence above. The role of a Dirac projection
p : V →W is to eliminate the choice of extensions in the description (9.3) of ΠW :

ΠW (ξ, η) = Π(p∗ξ, p∗η).
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Any projection p : V →W determines a splitting V = W⊕Ep, where Ep = (1−p)V ,
and Dirac projections correspond to Π-orthogonal complements of W in V (that
is, Π(ξ, η) = 0 for all ξ ∈W 0, η ∈ E0

p). This orthogonality condition shows that Π
decomposes as

Π = ΠW + ΠEp
,

for a unique ΠEp
∈ ∧2Ep.

We define the rank of a Poisson-Dirac subspace W ⊂ V to be the number

rankW = dim(W 0 ∩Ker#).

This number r = rankW determines the dimensions of the other spaces involved.
For instance, dim AW = dim W + r and dim V = dim(W + #(W 0)) + r. We find
that

codim W − rankW = rankΠ− rankΠN ,

so that 0 ≤ rankW ≤ codim W .

Example 9.3. A cosymplectic subspace of a Poisson vector space (V, Π) is a
subspace W ⊂ V such that V = W + #(W 0). Hence, a cosymplectic subspace is
the same thing as a Poisson-Dirac subspace of minimal rank (i.e., rankW = 0).
Since this is the same as satisfying the transversality condition W + Im(#) = V ,
a cosymplectic subspace is a non-zero Poisson-Dirac subspace which has a unique
Dirac projection.

At the other extreme, we can consider Poisson-Dirac subspaces W ⊂ V of max-
imal rank (i.e., rankW = codim W ). Then we must have W 0 = ker# or, equiva-
lently, Im #W = Im #. This just means that W is a Poisson subspace.

Finally, note that a Poisson vector space (V, Π) is completely determined by the
linear symplectic space (S, ω), where S = Im # ⊂ V and

ω(#ξ, #η) = Π(ξ, η).

This is the linear counterpart of the remark made at the beginning of the section,
since the leaves of Π are just the linear symplectic affine spaces obtained from (S, ω)
by translation.

Now for any Poisson-Dirac subspace W ⊂ V , we have

Im #W = W ∩ Im #.

Hence, the linear symplectic space (SW , ωW ) that corresponds to W , is such that
SW ↪→ S and ωW = i∗ω, with i the inclusion. Conversely, the canonical splitting

Im # = Im #W ⊕#(W 0),

shows that if W ∩ Im(#) is a symplectic subspace of Im(#) then W is Poisson-
Dirac.

Therefore, if we view a Poisson vector space (V, Π) as a linear symplectic space
(S, ω), the Poisson-Dirac subspaces of V correspond to the symplectic subspaces of
S.

9.2. Poisson-Dirac submanifolds. We now consider the non-linear case. Let
(M, Π) be a Poisson manifold, and consider a submanifold N ⊂M which is “point-
wise Poisson-Dirac”, i.e., TxN is a Poisson-Dirac subspace of TxM (with respect to
Πx ∈ ∧2TxM) for all x ∈ N :

TxN ∩#(TxN0) = {0} .

From the linear case it follows that there is an induced two-tensor on N , denoted
ΠN , but there is nothing to ensure us that it is smooth.
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Example 9.4. Let M = C3 with complex coordinates (x, y, z). We consider the
(regular) foliation of C3 by complex lines defined by

dy = 0, dz − ydx = 0.

The leaves of this foliation are symplectic submanifolds of C3 with the canoni-
cal symplectic form. Hence, we have a Poisson structure on M = C3 with this
symplectic foliation, and we denote it by Π. Now consider the submanifold N =
{(x, y, z) : z = 0} ⊂ M . A complex line in the foliation intersects N in a point (if
y > 0) or in a complex line (if y = 0), which are symplectic submanifolds. This
shows, that

TN ∩#(TN0) = {0} ,

so N is pointwise Poisson-Dirac and that ΠN is not smooth, for its image is a
non-smooth distribution (notice that it is, none less an integrable distribution!).

If ΠN is smooth, it follows that ΠN satisfies automatically the integrability
condition [ΠN , ΠN ] = 0 (i.e., the induced almost Dirac structure on N is integrable):

Proposition 9.5. Let N be a submanifold of the Poisson manifold M , such that

(i) N is pointwise Poisson-Dirac, i.e., TN ∩#(TN 0) = {0},
(ii) The induced tensor ΠN is smooth.

Then ΠN is a Poisson tensor on N .

Proof. Fix any x ∈ N . We claim that [ΠN , ΠN ]x = 0. By the linear theory, we can
choose a splitting TNM = TN ⊕ E where E is some vector bundle over N , such
that

Π = ΠN + ΠE ,

where (ΠE)x ∈ ∧2Ex, and Ex and TxN are Πx-orthogonal complements in TxM(6).
Since [Π, Π] = 0, it follows that

[ΠN , ΠN ]x = [ΠN + Π, ΠN −Π]x,

= −[2ΠN + ΠE , ΠE ]x.

The left-hand side of this expression lies in ∧3TxN ⊂ ∧2TxM ∧ TxN , while the
right-hand side lies in ∧2TxM ∧ Ex. Hence they must both be zero. �

This proposition has the following corollary which justifies our usage of the term
Poisson-Dirac submanifold in Definition 9.1.

Corollary 9.6. A submanifold N ⊂ M of a Poisson manifold is a Poisson-Dirac
submanifold iff it is pointwise Poisson-Dirac and the induced tensor is smooth.

Proof. If N ⊂M is a Poisson-Dirac submanifold then it is pointwise Poisson-Dirac.
Also, the induced tensor coincides with the Poisson tensor on N so it is smooth.

Conversely, if N ⊂ M is pointwise Poisson-Dirac and the induced tensor is
smooth, then by the proposition ΠN is a Poisson tensor, so N is a Poisson manifold.
By the linear theory, the smooth, integrable, distribution defined by ΠN on N
(namely Im (#N )) is just TN ∩ Im (#). Hence, the symplectic foliation of N is
N ∩F , where F is the symplectic foliation of M , and the leaves of N are symplectic
submanifolds of the leaves of M . Therefore, N is a Poisson-Dirac submanifold. �

A Dirac projection of N is a smooth bundle map p : TNM → TN with the
property that px : TxM → TxN is a linear Dirac projection for each x ∈ N . In
other words, {px} is a family of Dirac projections depending smoothly on x. The
following proposition shows that Poisson-Dirac submanifolds which admit a Dirac
projection are the objects which Vaisman calls in [27] quasi-Dirac submanifolds.

6Notice that for y 6= x in general we will have (ΠE)y = (Π − ΠN )y 6∈ ∧2Ey , but that is

irrelevant for the argument.
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Proposition 9.7. Let M be a Poisson manifold and N ⊂ M a submanifold. The
following statements are equivalent:

(i) N is a Poisson-Dirac submanifold admitting a Dirac projection p : TNM →
TN ;

(ii) There exists a bundle E such that TNM = TN ⊕E and #(E0) ⊂ TN .

Proof. To show that (i) ⇒ (ii), we just observe that if p : TNM → TN is a
Dirac projection then E = Ker p is a subbundle such that TNM = TN ⊕ E and
#(E0) ⊂ TN .

For the converse, we observe (as in the linear case) that (ii) gives a decomposition

Π = ΠN + ΠE

with ΠN ∈ Γ(∧2TN) and ΠE ∈ Γ(∧2E), where now both ΠN and ΠE must be
smooth bivector fields. By Corollary 9.6, N is a Poisson-Dirac submanifold. �

Remark 9.8. If, around each point of N , we have local Dirac projections we can
use a partition of unity to glue them into a global Dirac projection. In fact, notice
that a convex combination of linear Dirac projections is a linear Dirac projection.
Therefore, the existence of a Dirac projection for a given Poisson-Dirac submanifold
is a local issue.

Corollary 9.9. Let N be a submanifold of Poisson manifold which is pointwise
Poisson-Dirac and for which the Poisson-Dirac subspaces TxN ⊂ TxM have con-
stant rank. Then N is a Poisson-Dirac submanifold admitting a Dirac projection.

Proof. The assumptions imply the existence of a Dirac projection: if TxN ⊂ TxM
have constant rank then #(TN 0) has constant rank, and so we can choose a bundle
F such that TNM = TN ⊕ #(TN0) ⊕ F . Then projection onto TN is a Dirac
projection. �

Example 9.10. Let N be a submanifold of a Poisson manifold M . If M is a cosym-
plectic submanifold (i.e., each TxN is a cosymplectic subspace of TxM), then N is
a Poisson-Dirac submanifold. Similarly, if N is a Poisson submanifold (i.e., each
TxN is a Poisson subspace of TxM), then N is also a Poisson-Dirac submanifold.

For a general Poisson-Dirac submanifold N ⊂M , the rank of the linear Poisson-
Dirac subspaces TxN ⊂ TxM will vary. Let us call this number the rank of the

Poisson-Dirac submanifold at x, and denote it by rank xN . By the linear theory,
we have:

codim N − rank xN = rankΠx − rank (ΠN )x.

Obviously, cosymplectic and Poisson submanifolds are examples of Poisson-Dirac
submanifolds of constant rank. Here is a simple example of a Poisson-Dirac sub-
manifold with non-constant rank.

Example 9.11. Let M = R3 with coordinates (x, y, z) and the following Poisson
bracket:

{x, y} = f(z), {x, z} = {y, z} = 0,

where f ∈ C∞(R) is such that f(z) = 0 for z ≤ 0 and f(z) > 0 for z > 0. Then
one checks easily that N =

{
(0, 0, z) ∈ R3

}
is a Poisson-Dirac submanifold. This

Poisson-Dirac submanifold has rank two for z ≤ 0, and has rank zero for z > 0.

Example 9.12. In the previous example, a Dirac projection still exists. Now, let
M = R4 with coordinates (x, y, z, w) and Poisson bracket defined by:

{x, y} = x2, {z, w} = z.
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Then one checks easily that N =
{
(x, y, z, w) ∈ R4 : y = 0, x = z2

}
is a Poisson-

Dirac submanifold. Let us use coordinates (z, w) for N . The induced Poisson
bracket on N is simply

{z, w}N = z.

and N is a Poisson-Dirac submanifold of rank 2 at points (0, w) and of rank 0
elsewhere. Hence, for z 6= 0 there is a unique Dirac projection. The subbundle
E ⊂ TNM , whose existence is asserted by Proposition 9.7, is given by

E(z,w) =
{
(−z4a1, z

4a2, 0,−2z2a2) : a1, a2 ∈ R
}

, (z 6= 0).

This bundle can be extended over points with z = 0, where it will have fiber

E(0,w) = {(a1, 0, 0, a2) : a1, a2 ∈ R} .

Note, however, that at these points TN ∩E 6= 0, so in a neighborhood of any point
(0, w) there are no Dirac projections.

Let us restrict now to constant rank Poisson-Dirac submanifolds. Then we have
the vector bundle:

AN (M) ≡ {ξ ∈ T ∗
NM : #ξ ∈ TN} ,

and this has in fact a Lie algebroid structure over N , with bracket induced from
the bracket on T ∗M . On the other hand, we also have the vector bundle

gN (M) ≡ TN0 ∩Ker#,

which is in fact a bundle of Lie algebras over N . Hence, we see that one has a short
exact sequence of Lie algebroids:

(9.4) 0 // gN (M) // AN (M) // T ∗N // 0

The Lie algebroid AN (M) determines a subgroupoid ΣN(M) of the Weinstein
groupoid Σ(M), which consists of equivalence classes [a] ∈ Σ(M) that can be
represented by a cotangent path a with #a ∈ TN . The short exact sequence above
then gives a groupoid homomorphism ΣN (M)→ Σ(N) with kernel a bundle of Lie
groups G(gN ). We shall show now that, in the integrable case, the diagram

ΣN (M)
�

� //

$$J
JJJJJJJJ

Σ(M)

Σ(N)

corresponds in fact to symplectic reduction.

Proposition 9.13. Let N be a constant rank Poisson-Dirac submanifold of a
Poisson manifold M . If M is integrable then ΣN (M) is a Lie subgroupoid of
Σ(M). Moreover, ΣN (M) ⊂ Σ(M) is a presymplectic submanifold with rank equal
to 2 dimN and its characteristic foliation has leaves the orbits of the equivalence
relation on ΣN (M) defined by the bundle of Lie groups G(gN ).

Proof. Subalgebroids of an integrable Lie algebroid integrate to Lie subgroupoids
of the corresponding Weinstein groupoids. Hence, the only thing to check is the
statement about the characteristic foliation. By invariance of the symplectic form
ω ∈ Σ(M), it is enough to check that the kernel of i∗ω, where i : ΣN (M) ↪→ Σ(M)
is the inclusion, coincides with (gN )x at points x ∈M .

Now observe that if x ∈M , we have an isomorphism of symplectic vector spaces

TxΣ(M) ' TxM ⊕ T ∗
xM

where on the right the symplectic form is the the one defined by

ωx((v1, ξ1), (v2, ξ2)) = ξ1(v2)− ξ2(v1) + Π(ξ1, ξ2).
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(the identity section gives a splitting of the differential of the source map). Under
this isomorphism, we have

TxΣN (M) ' TxN ⊕AN (M)x,

and we check that

ωx((v1, ξ1), (v2, ξ2)) = 0, ∀v2 ∈ TxN, ξ2 ∈ AN (M)x ⇐⇒ v1 = 0, ξ1 ∈ gx,

so the result follows. �

We conclude that if both N and M are integrable, the symplectic form on ΣN (M)
is obtained by symplectic reduction from the symplectic form on Σ(M): we first
pullback to ΣN (M), to obtain a presymplectic form, and then we project to Σ(N)
along the characteristic foliation.

Example 9.14. For a cosymplectic submanifold, we have rankN = 0 so ΣN (M)
is a symplectic subgroupoid of Σ(M) of dimension 2 dimN and we have Σ(N) =
ΣN (M) (but not the converse; see below). On the other hand, for a Poisson sub-
manifold we have codimN = rankN and this happens precisely when ΣN (M) is a
coisotropic submanifold of Σ(M).

Notice that M being integrable guarantees that AN is integrable. Although the
foliation of the Lie algebroid AN coincides with the symplectic foliation of N , this
is not enough to guarantee that N is integrable, since the isotropy Lie algebras of
AN and T ∗N are distinct. Also, gN (M) being a bundle of Lie algebras is always
integrable.

Remark 9.15. In general, a Poisson-Dirac submanifold will not have constant rank.
However, we can still define ΣN (M) which will be a non-smooth subgroupoid of
Σ(M). We will still have a diagram as above relating Σ(M), Σ(N) and ΣN(M).
So, morally, Poisson-Dirac submanifolds are the base manifolds of presymplectic
groupoids, with Poisson submanifolds corresponding to base manifolds of coisotropic
submanifolds.

Remark 9.16. One can define a presymplectic groupoid as a Lie groupoid G
with a closed 2-form ω ∈ Ω2(G) such that(7):

(i) ω is compatible with the product: m∗ω = π∗
1ω + π∗

2ω,
(ii) ω has a characteristic foliation defined by a normal Lie subgroupoid H ⊂ G.

Property (i) is similar to the corresponding property for symplectic groupoids
(see Proposition 4.4). Now, to explain (ii), recall that a normal subgroupoid H ⊂ G
is a wide subgroupoid such that that:

∀h ∈ Hx, g ∈ G with s(g) = x =⇒ ghg−1 ∈ H.

Notice that this condition only involves the isotropy groups of H. A normal sub-
groupoid H ⊂ G defines an equivalence relation in G and an equivalence relation in
the base N :

• For g1, g2 ∈ G, g1 ∼ g2 if and only if there exist h, h′ ∈ H such that
hg1h

′ = g2;
• For x, y ∈ M , x ∼ y if and only if there exists h ∈ H with s(h) = x and

t(h) = y;

So condition (ii) means that the leaves of the characteristic foliation are the H
orbits in G.

7The definition given here does not guarantee that to each Dirac structure there will be at
most a unique presymplectic groupoid integrating it. To obtain uniqueness one must require a
non-degeneracy condition which can be expressed as saying that ker ω intersects the fibers of s

and t transversely. Equivalentely, H should have trivial isotropy.
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Presymplectic groupoids are interesting objects which we believe deserve more
attention. Here we just list some of their nice properties. Let G be a presymplectic
groupoid over N with characteristic foliation defined by H ⊂ G. Then:

(a) The base manifold N has a Dirac structure with null foliation the foliation
defined by H ;

(b) Conversely, every Dirac structure has a (Weinstein) presymplectic groupoid;
(c) If the leaf space N/H is smooth it is a Poisson manifold. Its symplectic

groupoid is G/H provided it is smooth;
(d) The groupoid G′ obtained from G by factoring out only the isotropy of H,

has Lie algebroid LN ⊂ TN ⊕ T ∗N (the Dirac subbundle), provided it is
smooth;

(e) By a groupoid-equivariant coisotropic embedding theorem, G should embed
into a symplectic groupoid Σ, whose germ is unique up to isomorphism. The
base M of Σ is a Poisson submanifold and the Dirac structure on N ⊂M
is the one induced from M .

The last property shows that every Dirac structure should be obtained, in a natural
way, as a submanifold of a Poisson manifold.

9.3. Lie-Dirac submanifolds. We consider now Poisson-Dirac submanifolds which
admit a Dirac projection compatible with the Lie brackets on one-forms induced
by the Poisson structures.

Definition 9.17. A submanifold N ⊂ M of a Poisson manifold is called a Lie-

Dirac submanifold if it admits a Dirac projection p : TNM → TN such that
p∗ : T ∗N → T ∗M preserves Lie brackets (i.e., is a Lie algebroid map). Such
projections will be called Lie-Dirac projections.

Lie-Dirac submanifolds were first introduced by Xu in [34], under the name
“Dirac submanifolds”. Note that while the property of being a Poisson-Dirac sub-
manifold is a local property, the property of being a Lie-Dirac submanifold is a
global property. The obstructions will be studied below.

Let us first give alternative characterizations of these submanifolds. The proof
is immediate and is left to the reader.

Proposition 9.18. Let M be a Poisson manifold and N ⊂M a submanifold. The
following statements are equivalent:

(i) N is a Lie-Dirac submanifold;
(ii) There exists a Dirac projection p : TNM → TN such that p([Π, X ]) =

[ΠN , p(X)] for every X ∈ X(M);
(iii) There exists a bundle E such that TNM = TN ⊕ E and E0 ⊂ T ∗M is a

Lie subalgebroid;
(iv) There exists a bundle E such that TNM = TN ⊕E and E is a coisotropic

submanifold of TM .

Note that for property (iv) one considers on TM the tangent Poisson structure.

Example 9.19. Any cosymplectic submanifold is a Lie-Dirac submanifold. How-
ever, Poisson-Dirac submanifolds of constant rank, Poisson submanifolds, or even
symplectic leaves, may fail to be Lie-Dirac submanifolds.

A Poisson-Dirac submanifold N ⊂M of constant rank is Lie-Dirac if and only if
the sequence of Lie algebroids (9.4) has a Lie algebroid splitting. Since this splitting
integrates to a homomorphism of the corresponding Weinstein groupoids, we can
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complete the diagram above to a commutative diagram

ΣN (M)
�

� //

$$J
JJJJJJJJ

Σ(M)

Σ(N)

OO

where the map going up is an embedding.
Now note that even if N does not have constant rank, the Lie-Dirac projec-

tion induces a groupoid homomorphism Σ(N)→ Σ(M) and we have the following
theorem, which is a slight improvement of Xu’s results.

Theorem 9.20. Let M be an integrable Poisson manifold. Then any Lie-Dirac
submanifold N ⊂M is integrable, and Σ(N) is a symplectic subgroupoid of Σ(M).
More precisely, any Lie-Dirac projection p induces a groupoid embedding of Σ(N)
into Σ(M), which is a symplectomorphism onto a symplectic subgroupoid of Σ(M).
Conversely, any such embedding is of this type.

Proof. The first part of the theorem is clear. So assume that i : Σ′ ↪→ Σ(M) is a
symplectic groupoid embedding of a symplectic groupoid Σ′ over N . We can identify
T ∗N ' TNΣ′/TN and T ∗M ' TMΣ/TM . Hence, we obtain a Lie algebroid
map i∗ : T ∗N → T ∗M whose image is a Lie subalgebroid A ⊂ T ∗M which is
transversal to (TN)0. It is clear that E = A0 satisfies (iii) of Theorem 9.18, so N is
a Lie-Dirac submanifold and the embedding i can be identified with the embedding
Σ(N)→ Σ(M). �

Therefore, Lie-Dirac submanifolds of M are the base manifolds of symplectic
subgroupoids of Σ(M). It should be noted that for a given Lie-Dirac subman-
ifold N ⊂ M of a Poisson manifold there can be distinct connected symplectic
subgroupoids of Σ(M) over N . In other words, the Poisson manifold N does not
determine uniquely the subgroupoid of Σ(M) (the image of the embedding). This
is, of course, because there can be several distinct Lie-Dirac projections. Here is a
very simple example.

Example 9.21. A manifold M with the zero bracket integrates to the symplectic
groupoid Σ = T ∗M , where ω is the canonical symplectic structure, s = t is the
projection to M , and the group operation is addition in the fibers. If N ⊂M is any
submanifold, then a vector subbundle E ⊂ T ∗M over N , with rankE = dim N , is a
symplectic subgroupoid Σ′ ⊂ Σ if and only if E ∩ (TN)⊥ = {0}. In this case, N is
obviously a Poisson submanifold of M , but there are many symplectic subgroupoids
with the same base N .

As was already remarked by Xu in [34], not every Poisson submanifold is a Lie-
Dirac submanifold. Here we give the obstruction and show that it is related to the
monodromy of Section 3. So let i : N ↪→ M be a Poisson submanifold, giving rise
to the short exact sequence of Lie algebroids

(9.5) 0 // ν∗(N) // T ∗
NM

i∗ // T ∗N // 0.

Choosing a Dirac projection p : TNM → TN is the same as choosing a splitting
p∗ : T ∗N → T ∗

NM of this exact sequence. This choice gives rise to a contravariant
connection ∇ : Ω1(N)× Γ(ν∗(N))→ Γ(ν∗(N)) defined by:

∇αβ = [p∗(α), β].

If the Lie algebra bundle ν∗(N) is abelian (this is the case, for example, if N consists
only of regular points), this connection is independent of the splitting, and it is flat:

R∇(α, β) ≡ ∇α∇β −∇β∇α −∇[α,β] = 0.
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In other words, ν∗(N) is canonically a flat Poisson vector bundle over N . Then the
curvature 2-form

Ω(α, β) = p∗([α, β]) − [p∗(α), p∗(β)],

defines a Poisson cohomology 2-class [Ω] ∈ H2
Π(N, ν∗(N)) which is the obstruction

for N to be a Lie-Dirac submanifold. For example, for a regular leaf L of a Pois-
son manifold the Poisson cohomology H2

Π(L, ν∗(L)) coincides with the cohomology
H2(L, ν∗(L)) and we conclude that:

Corollary 9.22. Let L be a regular leaf of a Poisson manifold. Then L is a Lie-
Dirac submanifold if and only if the canonical cohomology class [Ω] ∈ H2(L, ν∗(L))
vanishes. If L is simply connected, then L is a Lie-Dirac submanifold if and only
if its monodromy group vanishes.

Example 9.23. Let us return to the Poisson brackets on su∗(2) of Section 7.2.
The origin is always a Lie-Dirac submanifold. The spheres S2

R, for R > 0, are
regular, compact and simply connected leaves, and it follows that S2

R is a Lie-Dirac
submanifold if and only if the variation of the symplectic area A′(R) vanishes.

Let us recall now (see e.g. [28]) that the characteristic form class of the regular
Poisson manifold M is the relative cohomology class [ξ] = [dω] ∈ H3

rel(M,F),
where ω is the foliated symplectic form. The characteristic form class is obviously
the obstruction to the existence of a closed 2-form on M which pulls-back to the
symplectic 2-form on each leaf. Equivalently, by the coisotropic embedding theorem
of Gotay, it is the obstruction for the existence of a leafwise symplectic embedding
of M . From the remarks in Section 6, we have a commutative diagram relating the
different classes associated with a regular Poisson manifold

[ω] ∈ H2(F)

δ

��

dν

((RRRRRRRRRRRRR

[ξ] ∈ H3
rel(M,F) // H2(F , ν∗) 3 [Ω]

where δ is defined from the long exact sequence of the pair (M,F):

. . . // Hk
rel(M,F) // Hk(M) // Hk(F)

δ // Hk+1
rel (M,F) // . . .

In particular we obtain:

Corollary 9.24. Let M be a regular Poisson manifold. Then

(i) If M admits a leafwise symplectic embedding then every leaf of M is a
Lie-Dirac submanifold;

(ii) If every leaf of M is a Lie-Dirac submanifold then M is integrable.

Note that the reverse implications in general do not hold.

10. Morita equivalence

In this section we discuss Morita equivalence of Poisson manifolds. This no-
tion, introduced by P. Xu [35], originates on Weinstein’s dual pairs as a global
form of Lie’s dual function groups. Intuitively, Morita equivalence of Poisson man-
ifolds means isomorphism from the point of view of transversal Poisson geometry
(in particular, it induces Poisson diffeomorphisms between the transversal Poisson
structures).
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10.1. Integrable Poisson manifolds. Let us start by recalling Xu’s definition:

Definition 10.1. Two Poisson manifolds M1 and M2 are Morita equivalent

if there exists a two leg diagram

S
π1

~~~~
~~

~~
~~ π2

  A
AA

AA
AA

A

M1 M2

where S is a symplectic manifold and the maps π1 and π2 satisfy:

(a) each πi is a complete Poisson map;
(b) each πi is a surjective submersion;
(c) π1 and π2 have symplectic orthogonal, simply connected, fibers.

From our section on symplectic realizations we see that

Proposition 10.2. For a Poisson manifold M , the following are equivalent:

(i) M is Morita equivalent to another Poisson manifold;
(ii) M is Morita equivalent to itself;
(iii) M is integrable.

Moreover, if S defines an equivalence between M and N , we also see that S comes
equipped with free (symplectic) actions of Σ(M1) and Σ(M2), and the associated
orbit spaces are M1, and M1, respectively.

Σ(M1)

�� ��

S
π1

||yy
yy

yy
yy

y
π2

""E
EE

EE
EE

EE
Σ(M2)

�� ��
M1 M2

Or, in the terminology of [35, 36], we recover Xu’s result that two integrable Poisson
manifolds are Morita equivalent if and only if their symplectic groupoids Σ(M1)
and Σ(M2) are symplectic Morita equivalent. Now we can proceed as in the ring-
theoretic version of Morita equivalence and compose such equivalences: if Si defines
an equivalence between Mi and Mi+1, i ∈ {1, 2}, then S1 ⊗Σ(M2) S2, that is, the
quotient of S1 ×M2

S2 by the diagonal action of Σ(M2), is an equivalence between
M1 and M3. In particular:

Corollary 10.3. On the class of integrable Poisson manifolds, Morita equivalence
is an equivalence relation.

10.2. Weak Morita Equivalence. For general Poisson manifolds, there are two
important questions one should address:

• Find a satisfactory notion of Morita equivalence which works well also for
non-integrable Poisson manifolds.

• Construct “Morita invariants”, i.e., invariants which allow us to distinguish
non-Morita equivalent Poisson manifolds and eventually classify Morita
equivalence classes.

The notion of weak Morita equivalence of Poisson manifolds is very similar to
that of Morita equivalence of foliations. Recall that, given a submersion φ : Q→M
and a (regular) foliation F on M , the pull-back foliation on Q, denoted φ?F , is
the foliation whose leaves are the connected components of φ−1(L), with L leaf
of F . In terms of the associated involutive subbundles, φ?F consists of vectors X
tangent to Q with the property that dφ(X) ∈ F , and is in general different from the
pull-back vector bundle φ∗F (note the difference in the notation). Two (regular)
foliations Fi on Mi (i ∈ {1, 2}) are Morita equivalent if there exists a manifold
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Q, and submersions φi from Q onto Mi with simply connected fibers, such that
φ∗

1F = φ∗
2F .

For Poisson manifolds we proceed similarly. First of all, for a submersion φ :
Q→M from a manifold Q into a Poisson manifold M , we form the bundle φ?T ∗M
over Q:

φ?T ∗M = {(α, X) ∈ φ∗T ∗M × TQ : #α = φ∗X} .

This is a Lie algebroid over Q with the anchor (α, X) 7→ X , and with the Lie
bracket

[(fφ∗α, X), (gφ∗β, Y )] = (fgφ∗[α, β] + X(g)φ∗β − Y (f)φ∗α, [X, Y ]),

where f, g ∈ C∞(Q), X, Y ∈ X(Q), α, β ∈ Ω1(M), and φ∗α is the induced section
of φ∗T ∗M . In general, this represents the pull-back of the Poisson structure to
Q. The point is that pull-back of Poisson structures only make sense as Dirac
structures, and φ?T ∗M is precisely this pull-back Dirac structure, viewed as a Lie
algebroid.

Definition 10.4. Let M1 and M2 be two Poisson manifolds. We say that they are
weak Morita equivalent if there exists a manifold Q together with two submersions
onto M1 and M2 with simply connected fibers

M1
π1←− Q

π2−→M2,

such that the pull-back algebroids (equivalentely, Dirac structures) on P are iso-
morphic:

π?
1T ∗M1 ' π?

2T ∗M2.

The reader will notice that Dirac structures furnish a natural setting for Morita
equivalence. We refer to [2] for details on this approach.

Proposition 10.5.

(i) Morita equivalence implies weak Morita equivalence;
(ii) weak Morita equivalence is an equivalence relation on the class of all Pois-

son manifolds.

Proof. Let S be as in the definition of Morita equivalence. We denote by ρi :
π∗T ∗Mi → TS the induced actions on S. There are bundle isomorphisms

π?
1T ∗M1 ' π∗

1T ∗M1 ⊕ π∗
2T ∗M2 ' π?

2T ∗M2,

which, for sections α of π∗
1T ∗M1 and β of π∗

2T ∗M2 which are pull-backs of one
forms on M1 and M2, are given by

(α, ρ1(α) + ρ2(β))←−[ (α, β) 7−→ (β, ρ1(α) + ρ2(β)).

A careful computation shows that this is actually a Lie algebroid isomorphism.
Assume now that P defines another weak Morita equivalence between M2 and M3.
We then form the fibered product R = Q ×M2

P and denote by q and p, the
projections into Q, and P , respectively:

R
q

~~||
||

||
|| p

  B
BB

BB
BB

B

Q

π1

~~}}
}}

}}
}} π2

  A
AA

AA
AA

A P
π3

~~}}
}}

}}
}} π4

  A
AA

AA
AA

A

M1 M2 M3

Then R, together with π1q and π4p defines a weak Morita equivalence. This follows
from the functoriality of the operation φ? on Lie algebroids. �
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We now proceed with the description of various (weak) Morita invariants. Due to
the similarity with the notion of Morita equivalence of foliations, it is not surprising
that:

Proposition 10.6. Let M1 and M2 be Morita equivalent Poisson manifolds with
symplectic foliations F1 and F2. Then any weak Morita equivalence Q between
them induces a homeomorphism

φQ : M1/F1 'M2/F2,

and the fundamental groups of corresponding leaves are isomorphic

φQ(L1) = L2 =⇒ π(L1) ∼= π(L2).

Moreover, if one of the two leaf space is a smooth manifold, then so is the other
one, and the map above is a diffeomorphism.

Proof. It is easy to see that given a submersion φ : Q→M onto a Poisson manifold
M , the leaves of φ?T ∗M are of the form φ−1(L), where L is a leaf of M . Hence,

given a Morita equivalence M1
π1←− Q

π2−→ M2, the map L 7→ π2(π
−1
1 (L)) is a

bijective correspondence between the leaves of M1 and the leaves of M2. This
bijection makes the following diagram commute:

Q

π1

{{xx
xx

xx
xx

x
π2

##F
FF

FF
FF

FF

M1

��

M2

��
M1/F1

oo // M2/F2

The statements on the leaf spaces follow from the fact that the maps going down
are quotient maps. On the other hand, the statement about the fundamental
groups of corresponding leaves, follows from the fact that any submersion with
simply connected fibers induces isomorphisms in the first homotopy groups (cf. the
Appendix in [17]). �

Our next result shows that a large number of geometric invariants are weak
Morita invariants, including the monodromy groups we have introduced before. In
this respect, note that the higher homotopy groups of corresponding leaves may
not be isomorphic, so one may think of the monodromy groups (which come from
the second homotopy groups of the leaves), as the next level in the hierachy.

Theorem 10.7. The monodromy groups, isotropy Lie algebras and groups, first
Poisson cohomology groups and integration along cotagent paths, are all weak Morita
invariants. More precisely, let Q be a weak Morita equivalence between M1 and M2,
and x ∈M1, y ∈M2 whose leaves correspond. Then the following are isomorphic:

(i) The monodromy groups Nx(M1) and Ny(M2);
(ii) the isotropy Lie algebras gx and gy;
(iii) the isotropy groups Σ(M1, x) and Σ(M2, x);
(iv) the reduced isotropy groups Σ0(M1, x) and Σ0(M2, x);
(v) the Poisson cohomology groups H1

Π(M1) and H1
Π(M2), and the two maps

Σ(Mi, xi)×H1
Π(Mi) −→ R, ([a], X) 7→

∫

a

X (i = 1, 2).

Proof. The idea is the same as in the previous proof: given a Lie algebroid A over
M , and a submersion φ : Q → M with simply connected fibers, we prove that all
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these groups for φ?A are isomorphic to the ones of A. We use here that all we have
said about T ∗M and Σ(M) works for general Lie algebroids (cf. [8]).

We have already remarked that the leaves of φ?A are of type φ−1L, with L
leaf of A. Since the fibers are simply connected, the maps π2(φ

−1L) → π2(L) are
surjective.

Next, the kernel of the anchor of φ?A is clearly isomorphic to the kernel of the
anchor of A, i.e., the isotropy Lie algebras gq(φ

?A) and gφ(q)(A) are isomorphic.
For the other groups, due to the canonical sequences (2.2), (3.1) (and their obvious
versions for Lie algebroids), and the fact that φ induces isomorphism in the first
homotopy groups, it is enough to prove the statement for the reduced isotropy group
Σ0(M, x) (and its Lie algebroid versions, denoted G0(A, x)). Both groups G(φ?A, q)
and G(A, x) (x = φ(q)) are quotients of the same space (of paths in the isotropy Lie
algebra), and one only has to check that the equivalence relation (homotopy) is the
same. For this one uses that, when working in the smooth category, submersions
do behave like Serre fibrations (cf. the Appendix in [17]). Alternatively, one can
prove all these isomorphisms at once, computing the groupoid G(φ?A) of φ?A (see
[8] for notations):

First of all, a path for φ?A is a pair (a, γ̃), where A is an A-path, and γ̃ is a path
in Q over the base path of a. However, since

(a) for any two paths γ̃0 and γ̃1 in Q covering the same path γ in M , there is
a homotopy γ̃ε between them, covering γ (this follows since the fibers are
simply connected, see the Appendix in [16]);

(b) if γ̃ε is as above, and a is an A-path with base path γ, then (a, γ̃ε) is a
φ?A-homotopy.

It follows that, when looking at homotopy classes of φ?A-paths (a, γ̃), it is only a
and the end points of γ̃ that matter. Then, working with triples (p, a, q), where a
is an A-path, and φ(p) = γ(0), φ(q) = γ(1), and writing down what φ?A-homotopy
means, ones gets G(φ?A) = Q ×M G(A) ×M Q consists of triples (p, g, q) with
φ(p) = s(g), φ(q) = t(g), with the multiplication (q, h, r)(p, g, q) = (p, hg, r). This
immediately imply the rest.

Finally, the statement about Poisson cohomology follows from the fact (see [7],
Theorem 2) that if φ : Q → M is a submersive submersion with simply-connected
fibers then A and φ?A have isomorphic first cohomology groups. �

Example 10.8. Let us look at some examples:

1. The fundamental group π1(S) is a complete Morita invariant for in the
symplectic case.

2. The isotropy Lie algebra at zero is a complete invariant in the case of linear
structures (we actually see that g∗ and h∗ are weakly Morita equivalent
around origin if and only if and only if g and h are isomorphic Lie algebras).

3. Consider the sphere S2 with its standard symplectic structure (area form)
and form the Poisson-Heisenberg manifold M(S2) (see the example in 7.3).
This Poisson manifold is not Morita equivalent to any of the Poisson man-
ifolds Ma considered in the example of Section 7.2, just because they have
different leaf spaces.

4. The Poisson manifolds Ma, for different a’s, all have the same leaf spaces.
However, one can find a’s for which the monodromy groups vary differently,
hence the associated Poisson structures are not weakly Morita equivalent
(this will actually force one of the manifolds to be non-integrable, but this
can be avoided going to higher dimensions).

We say that a Poisson manifold M has simple symplectic foliation if F is regular,
and the leaf space B = M/F is smooth. Equivalently, one has a submersion
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π : M → B with connected symplectic fibers, and M has the induced Poisson
structure. Note that in this case there are canonical identifications νx

∼= Tπ(x)B,
and the monodromy groups Nx define a bundle of subgroups

N (M) ⊂ T ∗B.

We know that the continuity of N (M) is related to the integrability of M . It is not
difficult to see that the class of such Poisson manifolds is closed under weak Morita
equivalence. From the previous proofs we see that

Corollary 10.9. For Poisson manifolds M with simple symplectic foliation, the
pair (B,N (M)) is a weak Morita invariant. More precisely, a weak Morita equiva-
lence Q between two such M1 and M2 induces a diffeomorphism φ : B1 → B2 with
(dφ)∗x(N (M1)) = N (M1).

Remark 10.10. It is important that the isomorphism between the monodromy is
induced by the differential. For instance, consider the Poisson manifolds M

′

a =
Ma \ {0}. They all have the same leaf space, and one can choose a and b such that
the corresponding Poisson manifolds have the same (i.e. isomorphic) monodromy,
without being Morita equivalent.

The following proposition suggests that, in some cases, the leaf space, the homo-
topy groups of the leaves, and the monodromy groups form a complete set of weak
Morita invariants:

Proposition 10.11. Let M be a Poisson manifold with simple symplectic foliation
F and compact simply connected leaves. If N (M) = 0, then M with the induced
Poisson structure is weakly Morita equivalent to B = M/F with the zero Poisson
structure.

Proof. Let σ : F → T ∗M be a splitting of the anchor, and let Ω ∈ Ω2(F ; ν∗) be its
curvature. Since each leaf L is simply connected, the condition on the monodromy
shows that Ω|L is exact. From the Reeb stability theorem each L has a neigborhood
of type T × L, hence Ω is exact in a neigborhood L. By choosing a partition of
unity supported on such opens neigborhoods, and which is constant on each leaf
(e.g. the pullback by π : M → B of an open cover of the base), we see that Ω is
exact. Hence σ has a global splitting compatible with the brackets. This shows
that Σ(M) = π(F)×M ν∗, which is clearly Morita equivalent to T ∗B (as a bundle
of abelian Lie groups over B). �

Remark 10.12. Our aim here was not only to describe Morita invariants, but also
to point out that all the algebraic invariants we know are weak Morita invariants.
In particular, although this notion does behave well for all Poisson manifolds, it is
not in our intention to present it as the “satisfactory” notion of Morita equivalence
that we asked at the beginning of this section.

Let us point out two possible notions of Morita equivalence for non-integrable
Poisson manifolds:

Symplectic Morita Equivalence: We mimic Xu’s definition (see Defini-
tion 10.1) but we remove the completeness assumption. Then we obtain a
symmetric relation which is also reflexive (because of the existence of a local
symplectic groupoid integrating any M). It is however not clear that this
relation is transitive so we should take the equivalence relation it generates.
Algebraic Morita Equivalence: For M1 and M2 to be algebraic Morita
equivalent we require the existence of a Lie algebroid bi-module for T ∗M1

and T ∗M2: there are commuting free actions ρ1 and ρ2 of T ∗M1 and T ∗M2

on Q, with moment maps M1
π1←− Q

π2−→ M2, where each πi is a surjec-
tive submersion with simply connected fibers, such that the orbits of ρ1

(respectively ρ2) are the fibers of π2 (respectively π1).
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It is not hard to see that one has the following chain of implications:

symplectic Morita =⇒ algebraic Morita =⇒ weak Morita

In our opinion, it is an important open question to show that these relations coincide
or else to find new Morita invariants which are not weak Morita invariants.
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