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ABSTRACT. We give a soft geometric proof of the classical result due to Conn
stating that a Poisson structure is linearizable around a singular point (zero)
at which the isotropy Lie algebra is compact and semisimple.

INTRODUCTION

Recall that a Poisson bracket on a manifold M is a Lie bracket {-,-} on the
space C*°(M) of smooth functions on M, satisfying the derivation property

{fg,n} = f{g,h} +g{f. 1}, f.g,h € CF(M).

Let us fix a zero of the Poisson bracket, i.e., a point g € M where {f, g}(z¢) = 0,
for all functions f,g € C>°(M). Then T M becomes a Lie algebra with the Lie
bracket:

[d$0f7 dxog] = dlo{f7g}

This Lie algebra is called the isotropy Lie algebra at xy and will be denoted by
0z, Equivalently, the tangent space T, M = g}, carries a canonical linear Poisson
bracket called the linear approximation at xzo. The linearization problem for
(M, {-,-}) around z is the following:

e Is there a Poisson diffeomorphism ¢ : U — V from a neighborhood U C M
of z¢ to a neighborhood V' C T, M of 07

When ¢ exists, one says that the Poisson structure is linearizable around zg. The
deepest known linearization result is the following theorem due to Conn [4]:

Theorem 1. Let (M,{-,-}) be a Poisson manifold with a zero xo € M. If the
isotropy Lie algebra g,, is semisimple of compact type, then {-,-} is linearizable
around xg.

Note that there exists a simple well-known criterion to decide if g,, is semisimple
of compact type: its Killing form K must be negative definite.

The proof given by Conn in [4] is analytic. He uses a combination of Newton’s
method with smoothing operators, as devised by Nash and Moser, to construct a
converging change of coordinates. This proof is full of difficult estimates and, in
spite of several attempts to find a more geometric argument, it is the only one
available up to now. See, also, the historical comments at the end of this paper.

In this paper we will give a soft geometric proof of this result using Moser’s path
method. At the heart of our proof is an integration argument and an averaging
argument. The averaging enters into the proof in a similar fashion to the proofs of
other linearization theorems, such as Bochner’s Linearization Theorem for actions of
compact Lie group around fixed points. Our proof gives a new geometric insight to
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the theorem, clarifies the compactness assumption, and should also work in various
other situations. More precisely, the proof consists of the following four steps:

Step 1: Moser’s path method. Using a Moser’s path method, we prove a
Poisson version of Moser’s theorem (see Theorem 2), which is inspired by
the work of Ginzburg and Weinstein [14]. It reduces the proof of Conn’s
Theorem to showing that the 2nd Poisson cohomology around x( vanishes.

Step 2: Reduction to integrability around a fized point. Using the vanishing
of cohomology for proper Lie groupoids and the general Van Est theorem
relating groupoid and algebroid cohomology [5], we show that it is enough
to prove integrability of the Poisson structure around a fixed point zg.

Step 3: Reduction to the existence of symplectic realizations. Using the equiv-
alence of integrability in the Poisson case and the existence of complete
symplectic realizations [7], we show that it is enough to construct a sym-
plectic realization of a neighborhood of xy with the property that the fiber
over xg is 1-connected and compact.

Step 4: Existence of symplectic realizations. The same path space used in [6]
to determine the precise obstructions to integrate a Lie algebroid and to
explicitly construct an integrating Lie groupoid, yields that a neighborhood
of xp admits the desired symplectic realization.

The fact that the tools that we use only became available recently probably ex-
plains why it took more than 20 years to find a geometric proof of Conn’s Theorem.

The four sections that follow describe each of the steps in the proof. We conclude
the paper with two appendices: the first one contains an auxiliary proposition on
foliations (which is used in the last step), while in the second one make some
historical remarks.

Finally, we would like to mention that our method works in other situations as
well. A similar linearization result around symplectic leaves instead of fixed points
is being worked out in [17]. The analogue of Conn’s Theorem for Lie algebroids
(conjectured in [25] and proved in [20]) can also be proved by our method, the only
missing step being the proof of the vanishing conjecture of [8] (one must replace the
Poisson cohomology of Step 1 by the deformation cohomology of [8]). Details will
be given elsewhere. It would also be interesting to find a similar geometric proof of
the smooth Levi decomposition theorem of Monnier and Zung [20].

STEP 1: MOSER’S PATH METHOD

Let us start by recalling that a Poisson bracket {-, -} on M can also be viewed as a
bivector field 7 € T'(A2T M) with zero Schouten bracket 7, 7] = 0. One determines
the other through the relation

ﬂ'(df /\dg) = {fmg}’ (f?g € COO(M))

Recall also, that the Poisson cohomology of M (with trivial coefficients) is the
cohomology of the complex (X*(M),d,), where X*(M) is the space of k-vector
fields, and the differential is defined by

d0 :=[m,0].

When z is a zero of m, we can consider the local Poisson cohomology groups
HF(M;z0). By this we mean the Poisson cohomology group of the germ of (M, )
at xg, i.e., the group hﬂHﬁ(U) obtained by taking the direct limit of the ordinary
Poisson cohomology groups of U, when U runs over the filter of open neighborhoods
of xg.
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Theorem 2. Let (M,{-,-}) be a Poisson manifold with a zero xo. Assume that the
Lie algebra cohomology groups H*(g.,) and H*(gx,, 8z,) vanish. If H2(M;zo) = 0,
then {-,-} is linearizable at xg.

For the proof, we will apply a Poisson version of Moser’s path method. Since
this is a local result, we can assume that M = R" and x¢o = 0. Also, to simplify
the notation we denote by g the isotropy Lie algebra at 0. We consider the path of
Poisson structures m; on R™ defined by the formula

m(z) = %W(tx), (t € [0,1)).

Then m, = 7, while g = 7y, is the linearization of 7 at the origin. Moser’s method
will give us an isotopy {¢:}, 0 < ¢ < 1, defined in a neighborhood of the origin, and
such that

(G¢)sm = Thin, (€ [0,1]).

Therefore ¢, will be the desired linearization map. To construct ¢; let us consider

the bivector field 7; := %.

Lemma 1. There exists a vector field X around the origin 0 € R™, whose first jet
at 0 vanishes, such that

(1) ,Cx’]'r = —7.T1,
Proof. Differentiating the equation [, 7] = 0 with respect to ¢, we obtain
dn7ry = [m, 1] =0,

so 71 is a Poisson 2-cocycle. Hence its restriction to a ball around the origin will
be exact, i.e., we find a vector field Y on the ball such that

71 =dgY.

This relation has two consequences:

(a) Since 7r; vanishes at 0, if we evaluate both sides on a pair of 1-forms and set
x = 0, we see that Yy([a, 8]) = 0, for a, 3 € g. Since H'(g) =0 (i.e. [g,g] = g),
we conclude that Yy = 0. Let Y);, be the linearization of Y at the origin.

(b) Since 71 has zero linearization at the origin, the linearization at 0 of our equa-
tion becomes

dﬂ'lin }/lin = O'

Note that the complex X}, (V) of linear multi-vector fields on V' = R", endowed
with dr,, , identifies canonically with the Eilenberg-Chevalley complex C*(g, g) with
coefficients in the adjoint representation. Hence, Y}, becomes a 1-cocycle in this
complex; since H'(g,g) = 0, Yii, must be exact, so Vi, = dy,, v for some v € g =
C%g,g) 2 X% (V). The vector field X =Y — d,v has the desired properties. O
Proof of Theorem 2. If X is a vector field as in the Lemma, consider the time-
dependent vector field X¢(z) := s X (tz). From (1) we obtain immediately that

EXtWt = *7:(,5.
Let ¢; be the flow of X;. Since X;(0) = 0, we see that ¢; is defined in some
neighborhood V' of the origin for 0 < ¢ < 1. Also, we compute:

d

@(@)*Wt = (1)« (Exnrt + CZ?) =0.

We conclude that ¢; is a diffeomorphism of V' with the desired property. O
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STEP 2: REDUCTION TO INTEGRABILITY AROUND A FIXED POINT

In this section we explain the statement and we prove the following proposition
which, when combined with Theorem 2, reduces the proof of Conn’s Theorem to
integrability around a fixed point:

Proposition 1. Let (M, ) be a Poisson manifold, o € M a fixed point. If some
neighborhood of xo is integrable by a Hausdorff Lie groupoid with 1-connected s-
fibers, then

HZ(M,z0) = 0.

More precisely,

(i) There exist arbitrarily small neighborhoods V' of x¢ which are integrable by
Hausdorff proper groupoids G = V' with homological 2-connected fibers.
(ii) For any such V., H:(V) = H2(V) = 0.

The geometric object behind the Poisson brackets which provides the bridge
between Poisson geometry and Lie-group type techniques is the cotangent Lie
algebroid A = T*M and the associated groupoid G(A) (see [6, 7]). For a Poisson
manifold M we will denote by X(M,n) = G(T*M) its associated groupoid. We
recall that (M) is defined as the set of cotangent paths in M modulo cotangent
homotopies, and that it is a topological groupoid with 1-simply connected s-fibers. A
Poisson manifold M is said to be integrable if the associated Lie algebroid T* M
is integrable. This happens iff ¥(M,7) is a Lie groupoid. In this case, X(M, )
carries a natural symplectic structure, that makes it into a symplectic groupoid.

Proof of Proposition 1. Let’s assume that U is a neighborhood of zy which is inte-
grable by an Hausdorff Lie groupoid G = U. The fiber of the source map s : G — U
above z( is a Lie group integrating g.,, so it is compact and 1-connected. Hence,
by Reeb stability, there exists a neighborhood Vj of xg such that s=1(Vj) is diffeo-
morphic to the product Vo x G. If we let V = t(s71(Vy)) C U be the saturation
of Vp, the restriction Gy of G to V' will be a groupoid whose source map has com-
pact, 1-connected, fibers: using right translations, each fiber will be diffeomorphic
to s71(xp) =~ G. Moreover, a compact Lie group has the same rational homology
type as a product of odd dimensional spheres, so G is automatically homological
2-connected, so the s-fibers are also homological 2-connected.

The proof of the second part is a combination of two classical results on Lie
groups which have been extended to Lie groupoids. The first result states that
the differentiable cohomology (defined using groups cocycles which are smooth)
vanishes for compact groups, and this follows immediately by averaging. This
result immediately extends to groupoids, i.e. H}4(G) = 0 for any proper groupoid
G ([5], Proposition 1).

The second result is the Van Est isomorphism. As explained in [5], differentiable
group(oid) cocycles can be differentiated and they give rise to Lie algebra(oid)
cocycles. The resulting map ® : HY+(G) — H¥(A), called also the Van Est map,
is an isomorphism for degree k < n provided the s-fibers of G are homological n-
connected ([5], Theorem 3). Again, the proof is just an extension of the classical
proof of Van Est.

If we apply these two results to our groupoid G = V, the second part of the
proposition follows since the Poisson cohomology of V' coincides with the Lie alge-
broid cohomology of A =T*V. O
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STEP 3: REDUCTION TO THE EXISTENCE OF SYMPLECTIC REALIZATIONS

In the previous step, we have reduced the proof of Conn’s Theorem to integrabil-
ity around a fixed point. The integrability of a Poisson manifold (M, ) is strongly
related to the existence of symplectic realizations.

Recall that a symplectic realization of (M, ) consists of a symplectic manifold
S together with a Poisson map v : S — M which is a surjective submersion. One
calls it complete if for any complete Hamiltonian vector field X¢ on M, the vector
field X, «(s) is complete. It is known that the existence of complete symplectic
realizations is equivalent to integrability (Theorem 8 in [7]), but that depends on
subtleties regarding the (required) Hausdorflness conditions on S which are not
relevant for us since we are interested on Hausdorfl Lie groupoids. Instead, in this
paper we do require S to be Hausdorff and we extract from [7] the following result.
In the statement we use the following conventions: for a symplectic realization
v: S — M we denote by F(v) the foliation of S by the (connected components
of the) fibers of v, and F(v)' is its symplectic orthogonal. Also, we recall that a
foliation is simple if it is induced by a submersion.

Theorem 3. A Poisson manifold (M, ) is integrable by a Hausdorff Lie groupoid
with 1-connected s-fibers if and only if it admits a complete symplectic realization
v : S — M with the property that the foliation F(v)* is simple and has simply-
connected leaves.

Proof. One direction is clear: the source map of a Lie groupoid as in the statement
provides the desired symplectic integration (the symplectic orthogonals of the s-
fibers are the t-fibers). Assume now that v : S — M is a symplectic integration
as in the statement. Theorem 8 in [7] insures that ¥ = X (M, ) is smooth (but
possibly non-Hausdorff). A simple remark on the proof of the cited theorem implies
that, under our hypothesis, ¥ is actually Hausdorff. Recall the main steps of the
proof : the assignment Xy + X, () induces an action of the Lie algebroid 7™ M on
S which integrates to an action of the Lie groupoid ¥ on S and that the associated
action groupoid is homeomorphic to the monodromy groupoid of F(v)*, which we
denote by G(F1). In other words, we have

Y xS = G(Fh).

where the fibered product is over s and v. Since the right hand side is smooth, it
follows easily [7] that X is smooth as well and the previous homeomorphism is a
diffeomorphism. Finally, note that F* is induced by a submersion 7 : S — B, for
some manifold B, and that its leaves are simply connected. Therefore, we see that
G(Ft) =8 xp S is Hausdorff. We conclude that ¥ is Hausdorff as well. O

Remark 1. The proof actually shows that the conditions on F~ can be replaced by
the fact that it has no vanishing cycles.

The following corollary reduces the proof of Conn’s Theorem to the existence of
symplectic realizations around a fixed point:

Corollary 1. Let (M, ) be a Poisson manifold, xo € M a fixed point and assume
that a neighborhood U of xo admits a symplectic realization v : S — U with the
property that v=1(xg) is simply connected and compact. Then there exists a neigh-
borhood of xy which is integrable by a Hausdorff Lie groupoid with 1-connected
s-fibers.

Proof. Note that v~!(zg) is a Lagrangian submanifold of S. Therefore, v~*(z¢) is a
compact, 1-connected, leaf of 7+ (v). By Reeb stability, nearby leaves are compact,
I-connected and F=*(v) is simple. Hence we can apply Theorem 3. O
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STEP 4: EXISTENCE OF SYMPLECTIC REALIZATIONS
The proof of Conn’s Theorem can now be concluded by proving:

Theorem 4. Let (M, n) be a Poisson manifold, xy € M a fized point, and assume
that the isotropy Lie algebra g at xo is semi-simple of compact type, with associated
simply connected Lie group G. Then there exists a symplectic realization v : S — U
of some open neighborhood U of xqg such that v (zg) = G.

We first recall some of the general properties of £(M) (see [6]). To construct it
as a topological space and possibly as a smooth manifold (in the integrable case),
we consider the Banach manifold P(T* M) consisting of paths a : I — T*M of class
C?2, with the topology of uniform convergence of a map together with its derivatives.
Inside this Banach manifold we have the space of cotangent paths:

X = {a € PP M) : 7¥(alt)) = Tp(a(t)},

where p : T*M — M is the bundle projection. Then X is a submanifold of P(T* M)
which carries a canonical foliation F: two cotangent paths ay and a; belong to the
same leaf if they are cotangent homotopic. This foliation has finite codimension and
leaf space precisely X(M). Concatenation of paths, makes (M) into a topological
groupoid which is smooth precisely when M is integrable.

The symplectic structure on (M) is a consequence of the following general
property: the restriction of the canonical symplectic form of P(T*M) ~ T*P(M)
to X has kernel F and is invariant under the holonomy of 7. We conclude, also, that
any transversal to F carries a symplectic structure invariant under the (induced)
holonomy action. Therefore, the quotient of such a transversal by the holonomy
action gives a symplectic manifold, provided the quotient is smooth. Unfortunately,
achieving smoothness is difficult (and it would imply integrability directly). Instead,
we will perform a quotient modulo only some holonomy transformations, so that
the result is smooth, and we will see that this is enough for our purposes.

Proof. First of all, we consider the source map s : X — M which sends a cotangent
path a(t) to its initial base point p(a(0)). This is a smooth submersion, and we
look at the fiber Y = s~ !(zq). Since zq is a zero of m, Y is saturated by leaves of
F and we set Fy = Fl|y. The quotient G = Y/Fy is the 1-connected Lie group
integrating the isotropy Lie algebra g.,, so it is compact. Moreover, note that
we can canonically identify Y with paths in the Lie group G which start at the
origin, so that the quotient map Y — Y/Fy = G sends a path to its end point.
Also, two points in Y belong to the same leaf of Fy if the corresponding paths are
homotopic relative to the end points. Since the first and second homotopy groups
of G vanish, the leaves of Fy are 1-connected fibers of a locally trivial fibration
Y — G with compact base. For the local triviality: using right translations by
contracting homotopies, one finds even that the restriction of our bundle to any
contractible open is trivializable. By the proposition one can find:

(i) atransversal Tx C X to the foliation F such that Ty := Y NT is a complete
transversal to Fy (i.e., intersects each leaf of Fy at least once).

(ii) a retraction r: Tx — Ty.

(iii) an action of the holonomy of Fy on r: Tx — Ty along F.
Moreover, the orbit space S := Tx / Holp, (Fy) is a smooth (Hausdorff) manifold.
Notice that the source map induces a map v : S — U, where U is an open neigh-
borhood of xg. Also, v™1(zg) = Y/Fy = G is compact. It follows that S carries
a symplectic form and that v : S — U is a Poisson map, so it satisfies all the
properties in the statement of the theorem. O
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APPENDIX 1: A TECHNICAL RESULT ON FOLIATIONS

The aim of this section is to prove the proposition below which was used in
the proof of Theorem 4. This proposition concerns the “transversal geometry” of a
foliation of finite codimension, so in spite of being a result about foliations of Banach
manifolds it is essentially of a finite dimensional nature. We follow the approach
first proposed by Haefliger which consists of of giving a meaning to “transversal
geometry” by using the language of étale groupoids (the holonomy groupoid of the
foliation restricted to a complete transversal).

Proposition 2. Let F be a foliation of finite codimension on a Banach manifold
X and let Y C X be a submanifold which is saturated with respect to F (i.e., each
leaf of F which hits Y is contained in'Y ). Assume that:

(HO) The holonomy of F at all points in'Y is trivial.

(H1) The foliation Fy := Fly is simple, i.e. its leaves are the fibers of a sub-
mersion p: Y — B into a compact manifold B.

(H2) The fibration p: Y — B is locally trivial.

Then one can find:

(i) a transversal Tx C X to the foliation F such that Ty := Y NTx is a complete
transversal to Fy (i.e., intersects each leaf of Fy at least once).
(ii) a retraction r: Tx — Ty .
(iii) an action of the holonomy of Fy onr:Tx — Ty along F.
Moreover, the orbit space Tx /Holp, (Fy) is a smooth (Hausdorff) manifold.

Remark 2. The proposition states that under some conditions one can lift germ-
wise actions to actual actions. A similar, more familiar, situation occurs with
group actions: given a discrete group I' and a group homomorphism from I' to
the group of germs of diffeomorphisms of some Euclidean space R¥, preserving the
origin, then one can promote this germ-wise action to an actual action of I' on some
open neighborhood of the origin. The proposition can be seen as an instance of
a more general phenomena of this type, where one considers actions of (proper)
étale groupoids instead of (finite) discrete ones. Even in the case of finite groups,
although the proof is straightforward, the details are somewhat tedious.

Remark 3. In this proposition, by an action of the holonomy of Fy onr: Tx — Ty
we mean an action of the holonomy groupoid of Fy restricted to Ty, denoted
Holq, (Fy), on the map r : Tx — Ty (recall that groupoids act on smooth maps
over the space of units). Also, when we say “along the leaves of 77 we mean that
the orbits of the action lie inside the leaves of F.

In the situation described by the proposition, Fy is simple and the action can be
made more explicit in the following way. The action is given by a smooth family of
diffeomorphisms h,,, : 77 (z) — r7(y) defined for any z,y € Ty with p(z) = p(y),
satisfying hy . o hy y = hg . and hy . = I. Also, the action being along the leaves
of F means that h,,(u) and u are in the same leaf of F, for any u € r~(z).

Remark 4. In a preliminary version of this paper, we stated the proposition without
(HO) and requiring instead in condition (H1) the leaves of (Y, Fy) to be simply
connected. This would be enough for the application we have in mind since the
fibers of our fibration p are 1-connected, a consequence of the fact that 7o (G) = 0 for
any Lie group G. This improved version resulted from a question of Ezra Getzler,
who asked if one could use the much simpler fact that H%(G) = 0 (for a proof
of this, see e.g. [12]). Indeed, the condition H*(G) = 0 does imply (HO) for our
fibration.

We now turn to the (straightforward but tedious) detailed proof of Proposition
2. We will consider cross-sections of the fibration p : Y — B whose fibers are the
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leaves of Fy. A cross-section o : U — Y, defined over an open set U C B, can be
identified with its image o(U) C Y, which is a transversal to Fy.
Given a cross-section o : U — Y, by a transversal tubular neighborhood of

g we mean:
EC ¢ X
U

where r : E — U is a vector bundle and 6 : E — X is an embedding defining a
tubular neighborhood of o(U) in some transversal T' to F containing ¢(U). Hence
oly = o and 6(F) is an open subset of T. We will assume that the vector bundle
comes equipped with a norm || ||. The proof of existence of transversal tubular
neighborhoods can be found in [16]. Similarly, one can talk about a transversal
partial tubular neighborhood of o (loc. cit. pp. 109): in this case & is only
defined on an open neighborhood of the zero-section in E. Any such transversal
partial neighborhood contains a transversal tubular neighborhood (loc. cit.). By
abuse of notation we write 6 : F — T for a transversal partial tubular neighbor-
hood, even if it is only defined in a open neighborhood of the zero section in E. Also,
we have the following extension property which follows from general properties of
tubular neighborhoods (see, e.g., Exercise 3, pp. 118 in [16]).

Lemma 2. Let 0 : U — Y be a cross-section, V. and W opens in U such that
V CW CW CU (where the closures are in B). Let also T be a transversal to F
containing o(U). Assume that ow : Ew — T is a transversal tubular neighborhood
of olw. Then there exists a transversal tubular neighborhood 6 : E — T of o,
defined on some vector bundle E over U, such that Ew|y = E|v (as vector bundles)
and & = ow on Ely.

A homotopy of two cross-sections oy, 01 : U — Y defined over the same open
set U C B is a smooth family {o; : t € [0, 1]} of cross sections over U connecting
oo and op. Since the fibration p : Y — B is locally trivial with connected fibers it
follows that any two cross-sections over a small enough contractible open set are
homotopic.

Let 0 = {0} be a homotopy between two cross-sections og,01 : U = Y. Two
transversal partial tubular neighborhoods ; : E — X of o; (i € {0,1}) are said to
be o-compatible if the map

Gole) — 51 (e)

(defined for e € FE in the intersection of the domains of ¢;) has the following
properties:

(a) x and h(x) are in the same leaf of F for all x;
(b) the germ of h at each point og(u), where u € U, coincides with the holonomy
germ of the foliation F along the path ¢ — o¢(u).

Lemma 3. Let 0g,01 : U = Y be two cross-sections over an open U C B con-
nected by a homotopy o = {o:}. Let 69 : E — X be a transversal partial tubular
neighborhood above oo and let T be a transversal to F containing o1(U). Then, for
any V C B open with V. C U, there exists

(i) an open subset F' C Ely containing V (so that 6olr is a transversal partial
tubular neighborhood of ooy );
(it) a transversal partial tubular neighborhood &1 : F — T of o1|v;

such that 6o|p and &1 are o|y = {ot|v }-compatible.
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Proof. Fix oy, 01, 69 : F — X and T as in the statement. As a temporary
terminology, we say that an open subset V C U is good if V' C U and the conclusion
of the lemma holds for V. An open subset of a good open set is also good.

We first show that any v € U admits a good open neighborhood. Consider
the holonomy transformation along the path o“(t) := o(t,u) from the transversal
Go(E) to the transversal T. This is the germ of a diffeomorphism h,,, defined in
some neighborhood of og(u), which can be taken of the form &¢(F') for some open
set F' C F containing u. Choosing F' a small enough open ball (relative to || ||)
and setting &1 := hy, 0 6¢|F, we conclude that V' is a good open set.

Let V be an arbitrary open set with V' C U. We can find a cover of V by good
open sets, so we can extract a finite subcover {U; : 1 <14 < p} of V in which each U;
is good. We prove by induction on p that V' must be a good open set. Obviously,
the result holds if p = 1. For the induction step, assume the assertion is true for
p — 1 and assume that V is covered by p good open sets U; C U. Choose another
cover {V;} of V with V; C U;. Then, by the induction hypothesis, U; = V; and
Uy := Vo U...UV, will be good open sets. Moreover, V C U; U Us, so all that
remains to show is the case p = 2.

Let Uy, Us C U be good opens sets and V. C U; UU; C U. We need to show that
V' is a good open set. Let F; C E, 7; : F; — T be the associated transversal partial
tubular neighborhoods. Consider also the induced maps h; : 6¢(F;) — &;(F;). We
consider two new open sets V; such that V C V3 UV, and V; C U;. Compactness
of V; shows that we can find R > 0 such that:

z € Ely,,||z|]]| < R= =z € F,.
Due to the properties of h; (properties (a) and (b) above), we see that hy and hs

coincide in a neighborhood of og(u) in o¢(U). Hence, choosing eventually a smaller
R, we may assume that
z € Elviaw, ||z]]| < R = 61(z) = 62(x).
It follows that o1 and &2 will glue on
F={z € Ev,un, : ||z|| < R}

and the resulting transversal partial tubular neighborhood will have the desired
properties so that V is a good open set. U

For the next lemma, we introduce the following notation. A F-data is a tuple

(2) {Uiao-iaa-iao-(i,j)vE: 1 Sl;j S k}

consisting of the following:

(a) {U;:i=1,...,k} is a family of open sets in B and E is a vector bundle over
U=U,U---UU,.

(b) o;:U; = Y are cross-sections and 0(i,5) are homotopies between o;
Uj u;nU; -

(¢) 6; : E|ly, = X are transversal tubular neighborhoods over o; such that the
restrictions of ; and ¢; to E|UmUj are o0; j-compatible for all 7 and j.

U;NU; and

Assume now that:
(i) Ug41 C B is another open set, op41 : Ury1 — Y is a cross-section above U1
and T is a transversal to F containing oj11(Ug+t1).
(ii) for each 1 < ¢ < k we have a homotopy o(; y+1) between o;|y,nv,,, and
Ok+1 |UiﬂUk+1 .
Let V; C B be open sets with
VicU (1<i<k+1)
and set V=V U... Vi, V' =V UViy1. Then:



10 MARIUS CRAINIC AND RUI LOJA FERNANDES

Lemma 4. Under the above assumptions, one can find a vector bundle E' over
V' together with an embedding ¢ : E'|yv — E|v of bundles, as well as a map
&;€+1 : E'ly,,, = X which is a transversal tubular neighborhood of oy41|v,., inside
T such that

{Vi,0i,Gi0 9, L E 1<, j<k+1}

is a F-data.

Proof. For 1 < 4 < k 4+ 1, choose open sets V; C Vi/ C V, C U;. We can apply
Lemma 3 to:

e the restrictions of o; and o1 to U; N Ugy1 and the homotopy O (i, k1)
which is the restriction

Of (}i to E‘UiﬁUk-H'
e the open set V; N VkJrl whose closure is inside U; N Uy .
It gives a transversal tubular neighborhood of o1 vl denoted
i +1
=) |
O'kz_,’_l . EZkJrl _>T

defined on some E, ki1 C E‘V’ﬂV’ an open set containing V; N Vk+1

Now choose open sets V; C V C V C V Since the closure of V N V;C+1 is
compact, we find R; > 0 such that

x e ElV.NﬂV” ,H.’EH <R,=—=zx€ E;’kJrl.

Next, for each 1 < 4,5 < k, the restrictions of & ak_H and a,ij_gl to E;’kﬂ ﬂE k1 are

transversal partial tubular neighborhoods above the same cross-section o1y, -

i J
Moreover, they are o-compatible, where ¢ is the concatenation of the homotopies
O(ikt1)» (i) and oy ;). Since all paths 0*(—) = o(u, —) induced by the homo-
topy o are inside leaves of Fy and the holonomy of F along loops inside Y is trivial
(the first assumption in the statement), the holonomy germs induced by the closed
loops UE‘]H_LJ,) o U@,z’) o O'ztlv,k_"_l) are trivial. We conclude that

{0 € B NEjpir 2 50, () = 60, ()}

contains an open subset in E;)kﬂ NE, k41 containing V N V N VkJrl Again, we
can find constants R; ; such that:
n Ej7k+1|V;/ﬁVj”ﬁVk” HI’H < R i,j = ~’(€Z_3_1(I’) = 5,2]_21(I)

!’
T Ei,k+1‘v”nv VY,

Let us set:
R=min{R,R;;:1<i,j<k}, E ={zekE:|z <R}

The maps &ZH glue together to give a smooth map defined on E" |V”r1vk” where
+1

V//:Vl U...UVk.

Denote this map by 5,:+1. Consider now A : [0,00) — [0,1) be a diffeomorphism
equal to the identity near 0 and define the embedding

MlzlD |

|l

¢:E—E hiz)=R
Composing with this embedding, we obtain
6k+1 : E|Vk”+1rﬂ/” — T

which is a transversal tubular neighborhood of 0k+1|Vk~ Avr- We can now apply
+1
Lemma 2 to find:



A GEOMETRIC APPROACH TO CONN’S LINEARIZATION THEOREM 11

(i) a vector bundle Ej1; over Vjq1 such that Ep1]v, ,nv = Elv,,,nv-
(ii) a transversal tubular neighborhood &, ,, of ox11]v;,, defined on the entire
Ej 41 and which coincides with 5, on Ely,, av.

Finally, if we let E’ be the vector bundle over V' = V U Vi1, obtained by gluing
Ely (over V) and Ej41 (over Viy1), we have obtained the desired F-data. O

Proof of Proposition 2. Let UM) = {Ul(l), cee U,(LU} be a finite good cover of B in
the sense of [2]. Since B is compact, good covers exist- actually, any cover can
be refined by a finite good cover (see loc. cit.). Hence, refining covers consisting
of opens over which p : Y — B is trivial, we may assume that there are cross-
sections o; : Ui(l) — Y, with the image of each o; is inside some transversal T; of F.
Since all intersections Ui(l) NnU ;1) are contractible and the fibers of p: Y — B are
connected, there are homotopies o(; ;) between o;

v;nu; and oj|y;nu; - Finally, we

choose new good covers U %) = {Ul(k), cey U,gk)}, k=1,...,n, with the property
v cu®™ (G k=1,...n).
We then apply inductively Lemma 4: at each step one gets a vector bundle over

Ul(k) U...uJ U,gk) and an F-data. For k = n, we obtain a vector bundle over B, a

complete transversal to Fy (the images of the Ui(”)’s by the cross sections) and the
transversal to F (the transversal tubular neighborhoods of the final F-data).

It only remains to show that Tx/Holp, (Fy) is Hausdorff manifold. This can
be checked directly (for instance, if the starting transversals T; are chosen so that
their closures are disjoint, then the quotient is just the resulting vector bundle F
over B). Here we indicate a more conceptual argument which is based on general
properties of groupoids and their representations (in the sense of spaces on which the
groupoid act). For Morita equivalences, we refer to [18]. First of all, representations
can be transported along Morita equivalences and, provided the groupoids and the
Morita equivalences used are Hausdorff, the Hausdorff property of representations
is preserved by this transport. Secondly, since Fy is induced by the submersion
p : Y — B, the groupoid Holp, (Fy) = Ty is Morita equivalent to the trivial

groupoid B = B, via the bimodule Ty 44 Ty 25 B. Finally, one just remarks
that under this equivalence, Tx / Holp, (Fy) is the representation of B = B which
corresponds to the representation Tx of Holp, (Fy ). O

APPENDIX 2: HISTORICAL REMARKS

The study of the linearization problem for Poisson brackets was initiated by
Alan Weinstein in the foundational paper [23]. There, he states the problem and
he shows that the formal linearization problem can be reduced to a cohomology
obstruction. If the isotropy Lie algebra is semisimple this obstruction vanishes.
For analytic linearization he conjectured that, provided the isotropy Lie algebra is
semisimple, this can always be achieved, a result later proved by Conn [3].

In [23], Alan Weinstein also considers the smooth linearization problem. He
gives an example of a smooth, non-linearizable, Poisson bracket with isotropy Lie
algebra sl(2,R). The situation is remarkable similar to the case of Lie algebra
actions, and this counter-example is analogous to the example of a non-linearizable
smooth action of s[(2,R), given by Guillemin and Sternberg in [13]. By contrast,
he suggests that linearization when the isotropy is s0(3) could be proved as follows
(see [23], page 539):

The first step would be to use the theorems of Reeb and Moussu
to “linearize” the foliation by symplectic areas. Next, a “volume
preserving Morse lemma” would be used to put in standard form the
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Sfunction which measures the symplectic area of the leaves. Finally,
the deformation method of Moser and Weinstein would have to be
applied to each symplectic leaf, with care taken to assure reqularity
at the origin.

The proof sketched was actually implemented by Dazord in [9]; it is less known that
this result and a proof of it can be traced back to the thesis of Reeb [21] (but in
the dual language of completely integrable Pfaffian forms- which, in dimension 3,
correspond to bivectors which are Poisson). Weinstein goes on to conjecture that
smooth linearization can be achieved for compact semisimple isotropy. This again
was proved to be so by Conn in [4].

Conn’s proof of smooth linearization is a highly non-trivial analytic argument.
He views the effect of changes of coordinates upon the Poisson tensor as a non-linear
partial differential operator. A combination of Newton’s method with smoothing
operators, as devised by J. Nash and J. Moser, is used to construct successive
approximations to the desired linearizing coordinates. The linearized equations that
need to be solved at each step are non-degenerate and overdetermined (the operator
differentiates only along the symplectic foliation). However, by working at the level
of Lie algebra cohomology of g with coeflicients in the space of smooth functions on
g*, Conn is able to find accurate solutions to the linearized equations. This involves
many estimates on the Sobolev norms, which are defined from the the Killing form,
and so take advantage of its invariance, non-degeneracy and definiteness.

After Conn’s work was completed attention turned to other Lie algebras. In
[24], Weinstein showed that semisimple Lie algebras of real rank greater than one
are non-linearizable, in general. The case of real rank 1, with the exception of
5[(2,R), remains open. In [10], Dufour studied linearization when the isotropy
belongs to a certain class of Lie algebras, called non-resonant, which allowed him
to classify all the 3-dimensional Lie algebras that entail linearizability. Dufour
and Zung proved formal and analytic linearization for the Lie algebra of affine
transformations aff(n) [11]. There are also examples of Poisson structures for which
linearization can be decided only from knowledge of its higher order jets (see [1]).
More recently, a Levi decomposition for Poisson brackets, generalizing linearization,
has been introduced by Wade ([22], formal category), Zung ([27], analytic category)
and Zung and Monnier ([20], smooth category). The methods are entirely similar
to the ones of Weinstein and Conn. A survey of these results can be found in [19].

In spite of Conn’s master work, the question remained if a simple, more geomet-
ric, proof of smooth linearization would be possible. In the Introduction of [25],
Alan Weinstein writes:

Why is it so hard to prove the linearizability of Poisson structures
with semisimple linear part? Conn published proofs about 15 years
ago in a pair of papers full of elaborate estimates (...) no simpli-
fication of Conn’s proofs has appeared.

This is a mystery to me, because analogous theorems about lin-
earizability of actions of semisimple groups near their fized points
were proven (...) using a simple averaging.

In this paper he goes on to propose to use Lie algebroid/groupoid theory to tackle
this and other linearization problems. After this work, it become clear that this
would indeed be the proper setup for a geometric proof of linearization. However,
his attempt would not be successful because some of the techniques needed were not
available yet. Some basic results on proper groupoids, as well as a full understanding
of the integrability problem for Poisson manifolds and Lie algebroids was missing,
and this was done later by us in [5, 6, 7.
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In the end, the geometric proof we have given here, is really a combination of
classical results on Lie groups extended to the groupoid context. Once the groupoid
is brought into the picture, one has the usual differential geometric machinery at
hand, and hence also all the standard techniques to deal with linearization problems
one finds in different contexts (Moser trick, Van Est argument, Reeb stability,
averaging). It is curious that the methods used are so close to the proof suggested
by Alan Weinstein for the case of s0(3), that we have quoted above. A general
setup to discuss linearization problems and its relation to deformation problems
will be given elsewhere (work in progress).

Finally, note that it would be possible to combine our Proposition 1 with the
linearization theorem for proper groupoids around fixed points (see [26, 28]), to
obtain another proof of Conn’s theorem (this would be a geometric-analytic proof,
since the linearization of proper groupoids also involves some estimates.)
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