Exame de 1ª época

Programação Matemática 1º Semestre de 2008/2009

19 de Janeiro de 2009

Duração: 3 horas

1- [3 val.] Determine os invólucros afim, aff(S), convexo, conv(S), e cónico, cone(S), para o seguinte conjunto:

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 2 \land |z| = 1\}$$

2- [3,5 val.] Considere o seguinte problema de programação linear:

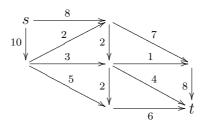
Maximizar: $2x_1 - x_2$

Sujeito a: $x_1 + x_2 \le 5$

 $x_1 - x_2 \le 1$

Com: $x_1, x_2 \ge 0$

Resolva o problema usando o método do Simplex, iniciando com $x_1=0$ e $x_2=0.$


3- [3,5 val.] Um governante de um pequeno reino medieval de cinco cidades tinha um serviço de mensageiros que podiam enviar uma mensagem de uma dada cidade para uma outra de acordo com a seguinte tabela de preços (em moedas de cobre):

	A	В	C	D	E
A		1	2		
B	1		2	3	
C	2	2		4	5
D		3	4		2
E			5	2	

Certo dia quis enviar uma mensagem da sua cidade de residência para as restantes quatro cidades a um preço mínimo (assume-se que em cada cidade haviam mensageiros em número suficiente para reenviarem a mensagem a quantas cidades fosse necessário).

- (a) Formalize o problema como problema de árvore geradora mínima.
- (b) Resolva o problema usando o algoritmo de Kruskal e responda qual o valor que o governante teve que pagar pelo envio da mensagem.

4- [3,5 val.] Determine, com o auxílio do algoritmo genérico do fluxo máximo, um fluxo-st com valor máximo e um corte-st de capacidade mínima do seguinte grafo dirigido:

Os números que aparecem sobre as arestas indicam as capacidades destas.

5- [3,5 val.] Uma dada agência de viagens organiza excursões a quatro locais de interesse turístico l_1 , l_2 , l_3 e l_4 . Um dado dia tem cinco grupos de excursionistas g_1 , g_2 , g_3 , g_4 e g_5 que pretendem visitar os locais l_1 , l_2 , l_3 e l_4 de acordo com o seguinte quadro:

	l_1	l_2	l_3	l_4	l_5
l_1	X	X			
l_2			X		X
l_3		X		X	X
l_4	X			X	

Atendendo que cada visita dura uma hora (incluindo tempo de viagem e tempo de permanência no local) e que cada grupo cabe num só autocarro pretende-se arranjar um programa de viagens que satisfaça o que é pedido.

- (a) Mostre que é possível arranjar um horário de modo que todas as visitas estarão realizadas num período de 3 horas.
- (b) Mostre que o horário da alínea anterior pode ser feito de modo que só sejam necessárias 3 autocarros.
- (c) Apresente um horário que nas condições das alíneas anteriores, ou seja todas as visitas serão feitas num máximo de 3 horas usando apenas 3 autocarros.

6- [3 val.] Seja $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ um poliedro **não-vazio**. Mostre que P é limitado se e só se cone $(\{a_i : i = 1, \dots, m\}) = \mathbb{R}^n$ onde $\{a_i : i = 1, \dots, m\}$ é o conjunto dos vectores linha da matriz A. [Sugestão: Use um corolário do lema de Farkas.]