
1. Channels, Block Codes and Shannon’s Theorem

In order to study in detail the problem of channel encoding, we must start by
defining precisely the mathematical model of a channel of communication.

Definition 1. A Discrete Memoryless Channel consists of an input alphabet
I = {x0, · · · , xm−1}, an output alphabet O = {y0, · · · , yv−1}, and a channel
matrix M = [p(yj |xi)] of forward channel probabilities satisfying

∀i, j p(yj |xi) ≥ 0; ∀i
∑
j

p(yj |xi) = 1.

The adjectives discrete and memoryless have the meaning that symbols are com-
municated through the channel one by one and that each symbol received depends
only on the corresponding symbol that was sent. From now on these properties
are implicitly assumed to hold and a Discrete Memoryless Channel will be named
simply a channel.
The forward channel probability p(yj |xi) is to be interpreted as the conditional
probability of receiving yj given that xi was sent.

Example 2. The fundamental example is the Binary Symmetric Channel with
matrix [

1− p p
p 1− p

]
.

In this case both input and output alphabets consist of two symbols and we may
assume I = O = {0, 1}.

In most cases the input and output alphabet will be the same, e.g. a finite field,
but the possibility of distinct alphabets should not be ruled out in coding theory.
A simple example is motivated by the property of forward probabilities

∀i
∑
j

p(yj |xi) = 1;

this means that a sent symbol is not ”lost” in the communication; however, it is
desirable to consider the possibility not only of a symbol being changed into another
but also of being erased or become illegible by the receiving device. For this reason,
coding schemes may include an extra output symbol ?.

Example 3. The simplest example is the Binary Erasure Channel with matrix[
1− λ− µ µ λ

λ µ 1− λ− µ

]
where the input alphabet is {0, 1} and the output alphabet is {0, ?, 1}. We have
p(1|0) = λ and p(?|0) = µ, and similarly for x = 1.

Remark 4. We may also add artificially, the new symbol ? to the input alphabet,
fixing p(?) = 0 and p(y|?) = 0 for any y ̸= 0. In the example above, we would have
with input and output alphabets {0, ?, 1}, the matrix 1− λ− µ µ λ

0 1 0
λ µ 1− λ− µ
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Due to the type of codes we are discussing, we will always assume that the input
and output alphabet are the same, either a finite set I or I ∪{?}. Later we will use
finite sets with some extra structure.

Given a input probability distribution p(xi) in I, the channel determines an
output probability distribution in O by

p(yj) =
∑
i

p(yj |xi)p(xi).

p(xi, yj) = p(yj |xi)p(xi)

is the joint distribution of the the input and output variables.

When the problem of decoding a message is considered, it is natural to ask for
the backward channel probabilities: given that some yj is received we would
like to know the probability that some xi was sent. These are defined, of course
only in the case that p(yj) > 0, by

p(xi|yj) =
p(yj |xi)p(xi)

p(yj)
.

Exercise 5. Deduce the formula for the output probability distribution and for the
backward conditional probabilities in the case of the Symmetric Binary Channel and
of the Binary Channel with Erasure, described above.
Confirm that adding the erasure symbol ? to the input does not change the output
probabilities as well as the backward probabilities (with p(x =?|y = yj) = 0, for any
yj).

Remark 6. Both input and output data are more precisely modeled by random
variables x and y and all probability distributions refer to values of these variables:
p(yj |xi) = p(y = yj |x = xi), and so on. But we will use whenever possible the
simplified notation and keep the reference to Probability Theory to a minimum.

1.1. Channels and Information. The notions of Conditional Entropy and Mu-
tual Information find a natural application in this context.

Example 7. For a binary symmetric channel with crossover probability p < 0.5,
if the input probability is uniform (p(x = 0) = p(x = 1) = 0.5), then the output
probability is also uniform (a fact to be generalized later) and H(x|y) = H(y|x) =
H(p). For example, taking p = 0.01, we have

H(x) = H(y) = 1, H(x|y) = H(y|x) ≈ 0.08,

while with p = 0.1, H(x|y) = H(y|x) ≈ 0.469.
If the input distribution is not uniform then, for the same channel, the results are
different: suppose that p = 0.1 and that the input probability distribution is

p(x = 0) = 0.6, p(x = 1) = 0.4.

Then the output distribution is

p(y = 0) = 0.58, p(y = 1) = 0.42;

the forward conditional entropy is still H(y|x) ≈ 0.469, but

H(x) ≈ 0.971, H(y) ≈ 0.9815 and H(x|y) ≈ 0.4587.
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Notice how the channel increased the uncertainty on the value of the output
compared to that of the input. Also, H(y|x) does not depend on the probability
distribution in the input.

Here is another example with a Binary Erasure Channel:

Example 8. Let I = {0, 1} and O = {0, ?, 1}. The input probabilities are

p(0) = 1/4, p(1) = 3/4,

and the matrix of forward channel probabilities is[
1/2 1/2 0
0 1/3 2/3

]
.

The output probability distribution is then

p(0) = 1/8, p(?) = 3/8, p(1) = 1/2,

and the backward probabilities p(xi|yj) are
p(0|0) = 1 p(0|?) = 1/3 p(0|1) = 0
p(1|0) = 0 p(1|?) = 2/3 p(1|1) = 1

.

The interpretation of these values is useful for the understanding of the notion of
conditional probability in coding: for example, the value p(0|0) = 1 is obvious from
the observation of the forward probabilities,as y = 0 may be only (in probabilistic
terms) the result of x = 0.
In this case H(x) ≈ 0.811 and

H(x|0) = H(x|1) = 0, H(x|?) ≈ 0.918,

and finally H(x|y) ≈ 0.344.
It is interesting to observe that although H(x|y) ≤ H(x) always holds, for particular
values of the output it may happen that H(x|yj) > H(x). In the example, the
uncertainty on the value of X increases in consequence of ? being received.

The next definition identifies extreme cases:

Definition 9. A channel is

i) lossless if for any j such that p(yj) > 0 there exists i such that p(xi|yj) = 1;
equivalently, H(x|y) = 0.

ii) deterministic if
∀i∃j : p(yj |xi) = 1,

or equivalently H(y|x) = 0.
iii) noiseless if it is both lossless and deterministic.
iv) useless if, for any input probability distribution x and y are independent

random variables, i.e., H(x|y) = H(x).

Exercise 10. Verify the equivalences stated in the definition.

Another useful definition is the following:

Definition 11. A channel is row symmetric (respectively, column symmetric)
if each row (respectively, column) is obtained by a permutation of the entries of the
first row (respectively, column).
The channel is said to be symmetric if it is both row and column symmetric.
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Theorem 12. For a row symmetric channel, H(y|x) is independent of the input
distribution.

Proof. (HW). □

Theorem 13. In a column symmetric channel, a uniform input distribution gives
rise to a uniform output distribution.

Proof. (HW). □

Exercise 14. find a row-symmetric but not column-symmetric and a column-
symmetric but not row-symmetric channel matrix.

Remark 15. The matrix of a symmetric channel is not, in general, a symmetric
matrix.

Following a previous definition, we have

Definition 16. The mutual information of a channel is

I(x; y) = H(x)−H(x|y).

I(x; y) measures the decrease of the uncertainty on the knowledge of an unknown
x produced by the knowledge of y.
Accordingly, for a lossless channel I(x; y) = H(x), while for a useless channel
I(x; y) = 0.

The mutual information depends on the channel forward probabilities but also on
the input probability distribution. We get finally to the crucial notion of capacity
of a channel:

Definition 17. The capacity of a channel is

Cap = max
P (x)

I(x; y)

where the maximum is over all probability distributions P (x) on the input.

Although the capacity of a channel may be hard to compute, in the special case
of a symmetric channel we have an explicit formula:

Theorem 18. The capacity of a symmetric channel is

Cap = log(v) +
∑
j

p(yj |xi) log(p(yj |xi))

for any i, where v = |O|. Moreover, this value is achieved as I(x; y) for the uniform
probability distribution on I.

Proof. We know that, as a consequence of symmetry, H(y|x) is independent of the
probability distribution P (x) and

H(y|x) = −
∑
j

p(yj |xi) log(p(yj |xi))

for any i. So
C = max

P (x)
I(y;x) = max

P (x)
H(y)−H(y|x).
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On the other hand, the maximum log(v) of H(y) is achieved with the uniform
distribution p(yj) = 1/v for all j. But by theorem 12 uniform distribution on the
output is obtained if we have uniform distribution on the input. □

Exercise 19. Determine the capacity of the Binary Erasure Channel with matrix 1− λ− µ µ λ
0 1 0
λ µ 1− λ− µ


and the optimal input probability distribution.

1.2. Block codes.

Definition 20. Given two strings x and y of the same length m over an alphabet
A, the distance d(x, y) is defined to be the number of coordinates where they differ.
More precisely,

dist : A×A → Z, dist(a, b) =

{
0 if a = b
1 if a ̸= b

is extended to sequences of length m, x{= x1 · · ·xm} and y = {y1 · · · ym} as
dist(x, y) =

∑m
i=1 d(xi, yi).

It is clear that dist defines a distance in Am for any m ∈ N. This distance, called
Hamming distance, is essential for what follows.

Exercise 21. Prove that Hamming distance is translation invariant.

Definition 22. A q-block code C of length n is a subset of An. M = |C|, the
number of codewords, is the size of the code.

The information rate of C is defined to be
logq(M)

n .
The distance of the code is defined to be d(C) = min{dist(c, c′) : c, c′ ∈ C; c ̸= c′}.

The channel encoding problem consists basically in the following: when a code-
word c ∈ C is sent, a word x is received; we will use the notation c ⇝ x. x may
differ from c because of interferences in the transmission. We want to construct
codes that allow efficient transmission, that we identify with high information rates,
and capability of error detection and/or correction:

Definition 23. C is u-error detecting if it is possible to identify the existence of,
at least, u errors in the transmission of any codeword.
C is t-error correcting if it is possible to correct at least t errors in the transmission.
C is said to be exactly u-error detecting if it is u-error detecting but not u+1-error
detecting. A similar definition applies to error correcting.

Implicit in these definitions lies a concept of decoding:

Definition 24. Minimal Distance Decoding consists in decoding each received
x as the codeword c that minimizes dist(x, c). In case there is more than one code-
word that minimizes that distance, there is the option of not decoding (incomplete
decoding) or of choosing one of the codewords (complete decoding).
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Example 25 (Repetition Codes). A simple example of a code is given by encoding
each symbol a ∈ {0, 1} as the ”constant” word a · · · a of length 2r + 1, for some
r ∈ N. The information rate is clearly 1

2r+1 , while the distance is 2r + 1 so this
repetition code corrects r errors.
In this case there are only two codewords and Minimal Distance Decoding consists
simply in choosing the symbol that occurs in the majority of the entries (that is why
the length is odd).
Of course, repetition codes may also be defined for larger alphabets A.

Example 26. A second example, that will be much explored later, is the following:
we consider again the alphabet {0, 1}, but we identify it with the finite field F2 =
Z/2Z; the message to be sent is decomposed in strings of length 4 and (x1, x2, x3, x4)
is encoded as (ci)∈F7

2 as 
ci = xi ∀ 1 ≤ i ≤ 4
c5 = c2 + c3 + c4
c6 = c1 + c3 + c4
c7 = c1 + c2 + c4

In particular, this code has information rate 4
7 .

If a vector (ui) ∈ F7
2 is received, the decoding procedure consists in computing s1 = u5 − (u2 + u3 + u4)

s2 = u6 − (u1 + u3 + u4)
s3 = u7 − (u1 + u2 + u4)

It is clear that the vector (s1, s2, s3) is the zero vector if and only if (ui) is a code-
word. Moreover, if it is not and we assume that an error occured in transmission
in a single coordinate, we are able to correct it because if

ui = ci + 1, uj = cj ∀ j ̸= i,

each possible nonzero vector (s1, s2, s3) is obtained for each value of 1 ≤ i ≤ 7.
In other words, for each vector (ui) there is a unique codeword at minimal distance
from it and that distance is 1 unless, of course, if (ui) is a codeword.

Let’s consider the situation where one of these codes is used for transmission
through a Binary Symmetric Channel with cross-over probability of error p:

If the repetition code described above is used with this channel, the decoding
delivers a wrong codeword if and only if more than r coordinates are changed. So
the probability of decoding error is

Pde =

2r+1∑
k=r+1

(
2r + 1

k

)
pk(1−p)2r+1−k =

(
2r + 1

r + 1

)
pr+1+ terms with higher powers of p.

On the other hand, if the code described in the second example is used, the
decoding procedure delivers a wrong codeword if and only if more than 1 coordinate
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is changed, since the codeword chosen is at distance 0 or 1 from the received vector.
So

Pde =

7∑
k=2

(
7

k

)
pk(1− p)7−k =

(
7

2

)
p2 + terms with higher powers of p.

We now confirm that error detecting/correcting capability is closely related to
the distance of the code:

Proposition 27. If a block code C with minimal distance d is used and minimal
distance decoding is applied, then

a) C is u-error detecting if and only if d > u;
b) C is t-error correcting if and only if d ≥ 2t+ 1.

Proof. (HW). □

Remark 28. It is important to clarify that error detection capability refers to
detection of the existence of errors and not to the identification of the errors. In
fact, if the codeword c is sent and the received vector x satisfies dist(x, c) = u < d,
then we know that x is not a codeword and so detect the presence of an error; but
minimal distance decoding may lead to correct x to a different codeword c′ and so, in
a certain sense, the true error was not detected. On the other hand, if dist(x, c) ≥ d,
the received vector may be a codeword and in that case the existence of errors is not
even detected.

In other words, if we use the code for error detection only (ie, we merely identify
the existence of errors in transmission) then we are sure to detect all cases where
less than d errors occur; if we use it for error correction we are sure to correct all
cases where less than d−1

2 errors occur.
In certain cases, we may use the code to simultaneously detect and correct errors:
suppose that the minimal distance of the code is even, say d = 2t+2, and that x is
received. If there exists a unique codeword c at minimal distance from x we decide
to correct x to c, otherwise we declare the existence of errors; in this way, if t (or
less) errors occur in the transmission, we decode correctly, while if t+1 errors occur
we still detect correctly. Notice that (HW) if d is odd this is no longer true.

1.3. Channels, Vector random variables and Codes. We start the discussion
of the application of the model of a channel, discussed earlier, and the notions of
conditional entropy, mutual information, etc., to the process of encoding, transmis-
sion and decoding of messages using a block code.
We deduce a relation between the information rate of a code, the capacity of the
channel and the probability of error in that process. This result is superseded by
the main result, Shannon’s theorem.
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We consider a block code of length n and size M as a subset C of Fn
q with

|C| = M . The notions of input, output and forward and backward conditional
probabilities are generalized in the natural way:

if y = (y1, · · · , yn) ∈ On, p(y|c) =
∏

i p(yi|ci);
the output probability distribution is given by p(y) =

∑
c∈C p(y|c)p(c),

depending on a probability distribution on the code C;

and similarly for the backward probabilities and joint probabilities. As for indi-
vidual symbols, codewords and output strings are values of vector random variables
X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn).
In our typical application codewords c ∈ Fn

q are used to encode messages u ∈ Fk
q .

If p() is a probability distribution on the alphabet Fq, the coordinates ui of a mes-
sage u are values of independent random variables Ui, so we have a probability

distribution on Fk
q given by p(u) =

∏k
i=1 p(ui) and we may define the probability

distribution on the code by p(c) = p(u).
In this overview, and in the applied examples discussed later, we will assume always
that the probability distribution on the alphabet is uniform; as a consequence, the
probability distribution on C is also uniform: p(c) = M−1, for all c ∈ C.

Similarly, the final decoding of the output y will be a v ∈ Fk
q , which is the value

of another random variable V = (V1, · · · , Vk).

Exercise 29. Show that the above formulas for p(y|c) and p(y) define forward
conditional probabilities and a probability distribution on the output strings.

The definitions and properties of entropy, conditional entropy and mutual infor-
mation generalise directly to the case of vector random variables.
However, for this generalisation to be coherent we must use the base M for the loga-
rithm. This will be particularly relevant when the entropy and mutual information
related to different codes are compared.

In particular, we get a version of Fano’s inequality. This is relevant because,
as we’ll confirm later, the exact computation of the conditional entropy associated
with a code may be difficult, depending on a detailed knowledge of its structure.

Proposition 30 (Fano’s inequality). If X and Y are the random variables associ-
ated, respectively, to the input and output of the transmission of codewords from a
size M code, and pe = p(X ̸= Y ), then

H(X|Y ) ≤ H(pe) + pe log(M − 1).

We have also that the sequence of random variables

U −→ X −→ Y −→ V

corresponding to the three steps coding-transmission-decoding, form a Markov
chain, and we may conclude (HW) that I(U ;V ) ≤ I(X;V ) ≤ I(X;Y ).

On the other hand, the first and last of these mutual informations may be com-
pared to the ones of their coordinates.
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Proposition 31. Let U = (U1, · · · , Uk) and V = (V1, · · · , Vk) be random vectors,
with the Ui (resp. the Vi) taking values in the same set I (resp. O), |I| = q, such
that the components Ui are independent. Then

1

logq(M)

∑
i

I(Ui;Vi) ≤ I(U ;V ).

Proof. To simplify the notation, we will denote the values of the Ui by x and the
ones of the Vi by y. In the same way the values of U and V will be denoted u and
v. Notice that the probability distributions of the Ui (as those of the Vi) may be
distinct. We will denote p(Ui = x) by pi(x), p(Vi = y|Ui = x) by pi(y|x), and so
on.
First, according to the definition of mutual information,∑

i

I(Ui;Vi) =
∑
i

∑
x,y

pi(x, y) logq

(
pi(x|y)
pi(x)

)
.

In the same way,

I(U ;V ) =
∑
u,v

p(u, v) logM

(
p(u|v)
p(u)

)
=

1

logq(M)

∑
u,v

p(u, v) logq

(
p(u|v)
p(u)

)
,

and the hypothesis of independence of the Ui implies that, for u = (u1, · · · , uk),

p(u) =
∏
i

pi(ui) =
∏
i

p(Ui = ui).

To compare the two quantities, we view the Ui and Vi, and so also the functions

fi(x, y) = logq

(
pi(x|y)
pi(x)

)
as being defined in the same sample space of U × V ,

ie, Ik × Ok = (I × O)k: if u = (u1, · · · , uq) ∈ Ik and v = (v1, · · · , vk) ∈ Ok,
fi(u, v) = fi(ui, vi).
Because mutual information is an expected value, we compute now the expected
value, over Ik ×Ok of

∑
i fi(u, v):∑

u,v

p(u, v)
∑
i

logq

(
pi(x|y)
pi(x)

)
=
∑
i

∑
u,v

p(u, v) logq

(
pi(x|y)
pi(x)

)
=

=
∑
i

∑
x,y

∑
u:ui=x
v:vi=y

p(u, v) logq

(
pi(x|y)
pi(x)

)
=
∑
i

∑
x,y

pi(x, y) logq

(
pi(x|y)
pi(x)

)
=
∑
i

I(Ui;Vi).

So, ∑
i

I(Ui;Vi) =
∑
u,v

p(u, v)
∑
i

logq

(
pi(x|y)
pi(x)

)
=

=
∑
u,v

p(u, v) logq

(∏
i

pi(x|y)
pi(x)

)
.

To make the notation clear, for each u = (u1, · · · , uk) and v = (v1, · · · , vk),(∏
i

pi(x|y)
pi(x)

)
=

(∏
i

p(Ui = ui|Vi = vi)

p(Ui = ui)

)
.
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But then∑
i

I(Ui;Vi)−logq(M)I(U ;V ) =
∑
u,v

p(u, v) logq

(∏
i

pi(x|y)
pi(x)

)
−
∑
u,v

p(u, v) logq

(
p(u|v)∏
i pi(x)

)
=

=
∑
u,v

p(u, v) log

(∏
i pi(x|y)
p(u|v)

)
≤ logq

(∑
u,v

p(u, v)

p(u|v)
∏
i

pi(x|y)

)
,

by Jensen’s inequality. As p(u,v)
p(u|v) = p(v), we get∑

u,v

p(v)
∏
i

pi(x|y) =
∑
v

p(v)
∑
u

∏
i

pi(x|y);

but for a fixed v,∑
u

∏
i

pi(x|y) =
∑
u1

∑
u2

· · ·
∑
uk

∏
i

pi(x|y) =
∑
u1

p1(x|y)
∑
u2

p2(x|y) · · ·
∑
uk

pk(x|y) = 1;

therefore ∑
v

p(v)
∑
u

∏
i

pi(x|y) =
∑
v

p(v) = 1,

and ∑
i

I(Ui;Vi)− logq(M)I(U ;V ) ≤ 0.

□

Proposition 32. Let X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn) be the input and
output of a memoryless channel (ie, p((y1, · · · , yn)|(x1, · · · , xn)) =

∏n
i=1 p(yi|xi)).

Then

I(X;Y ) ≤ 1

logq(M)

n∑
i=1

I(Xi;Yi).

Proof. (HW). □

Let’s consider now the consequences of these results to our coding-transmission-
decoding process sketched above. We will restrict ourselves to the simplest non-
trivial case: we’ll assume the channel is binary, and that the source messages u =
(u1, · · · , uk) are the values of a random vector U = (U1, · · · , Uk) where the Ui are
independent and uniformly distributed. The reasoning applies, essentially, in the
general case.
Suppose we want to guarantee that this process satisfies pe = p(Ui ̸= Vi) < ε for
some small ε.
We know that

I(U ;V ) ≥ 1

logq(M)

∑
i

I(Ui;Vi) =
1

logq(M)

∑
i

(H(Ui)−H(Ui|Vi)),

and Fano’s inequality gives us

H(Ui|Vi) ≤ H(pe) + pe log(q − 1) ≤ H(ε).

Since the distribution of the Ui is uniform, we get

I(U ;V ) ≥ k

logq(M)
(1−H(ε)).
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On the other hand, I(X;Y ) ≤ 1
logq(M)

∑
i I(Xi;Yi) ≤ n

logq(M)Cap, where Cap

denotes the channel’s capacity. We arrive at

Proposition 33. Suppose that a binary code with information rate k/n is used
for transmission through a channel with capacity Cap, and that the probability of
decoding error is bounded above by ε. THen

k(1−H(ε)) ≤ nCap ⇔ k

n
≤ Cap

1−H(ε)
.

This shows, roughly speaking, that if our code has rate larger than the channel
capacity, the decoding error is bounded below away from zero. On the other hand,
a fixed small ε implies an upper bound on the rate of the code. In another section,
we’ll see how Shannon’s theorem answers the question of how close can we get to
that upper bound.
Before that, we are going to study the problem of bounding the probability of error
from a different point of view.

2. Probability of error, Ideal observers, and Maximum Likelywood
Decision

We want to understand the properties and relation with probability of error of
a general decoding procedure.
Considering the decoding procedure, it is necessary to admit the possibility that
some received strings can not be decoded, according to the decoding criteria used.
We formalize that possibility by adding a new codeword:

A decision scheme (or decoding scheme) is a function f : Fn
q → C ∪ {∗}.

f(u) = ∗ occurs if the output u is not decoded, and corresponds in practice to ask
instead for a retransmission or simply report an error. The definition of backward
conditional probabilities is generalized putting p(∗|u) = 0 for any u ∈ Fn

q .
The function f determines a partition of Fn

q in sets

Bc = {u ∈ Fn
q : f(u) = c}

together, eventually, with the set B∗ = {u ∈ Fn
q : f(u) = ∗} of undecodable strings.

If c is sent, u is received and f(u) ̸= c we have a decision error. The probability
of a decision error, given that c is sent, is

p(error|c) =
∑
u/∈Bc

p(u|c).

Averaging over all codewords, we have

pe =
∑
c∈C

p(error|c)p(c) =
∑
c∈C

∑
u/∈Bc

p(u|c)p(c).

This depends on the input distribution as well as on the decision scheme.
In principle, a good decision scheme is one that minimizes pe. In order to identify
more clearly how to achieve this, we take the point of view of the decoder and
rewrite the error probability in terms of the output: given that u is received, a
correct decision happens if f(u) = c, so

p(error|u) = 1− p(f(u)|u);
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averaging over all u

pe =
∑
u∈Fn

q

p(error|u)p(u) = 1−
∑
u∈Fn

q

p(f(u)|u)p(u)

and this is minimized by maximizing the sum on the right. But the factors p(u) =∑
c∈C p(u|c)p(c) do not depend on the decision scheme. So the choice is to maximize

p(f(u)|u) for each u.

Definition 34. A decision scheme f such that

∀u p(f(u)|u) = max
c∈C

p(c|u)

is called an ideal observer.

So an ideal observer chooses for each output string u the codeword most likely
to have been sent, given that u was received.

The definition of an ideal observer depends not only on the channel forward
probabilities but also on the input probability distribution. This dependence may
be avoided by choosing not to minimize the average probability of error but the
maximum probability of error

pmax
e = max

c∈C
p(error|c).

This has the advantage of not depending on the input probability distribution and
giving a uniform bound on the error probability for any distribution. Unfortunately,
no general method to choose decision schemes that minimize pmax

e is known.
Another way to avoid that dependence is suggested by the observation that, if we
fix the uniform probability distribution p(c) = 1

M for every c ∈ C, then

pe =
1

M

∑
c∈C

p(error|c);

This last expression is sometimes called the uniform probability of error and
denoted by pue . But for the uniform probability distribution

p(c|u) = p(u|c)p(c)
p(u)

=
1

Mp(u)
p(u|c),

and so

max
c∈C

p(c|u) = max
c∈C

1

Mp(u)
p(u|c) =

= max
c∈C

(
1∑

c∈C p(u|c)
p(u|c)

)
=

1∑
c∈C p(u|c)

max
c∈C

p(u|c).

We define, regardless of the input probability distribution,

Definition 35. f is a Maximum Likelihood Decision scheme, or a MLD
scheme, if it satisfies

∀u p(u|f(u)) = max
c∈C

p(u|c).

So in a Maximum Likelihood Decision scheme, for each u, f(u) is the codeword
c such that u is most likely of being received given that c is sent.

Remark 36. If p(c) = 1
M for every c ∈ C, a MLD scheme is the same thing as an

ideal observer.
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We relate now this decision schemes with the decoding by minimal distance.
Recall that the Hamming distance dist(x, y) between two vectors x, y ∈ Fn

q is equal
to the number of coordinates where the two vectors are different.

Definition 37. A discrete memoryless channel is strongly symmetric if the
forward probabilities satisfy

p(yj |xi) =


1− ρ if yj = xi

ρ
q−1 if yj ̸= xi

for some 0 ≤ ρ < 1/2.

Suppose that we have a strongly symmetric channel . Then

p(u|c) =
n∏

i=1

p(ui|ci) =
(

ρ

q − 1

)dist(u,c)

(1−ρ)n−dist(u,c) = (1−ρ)n
(

ρ

(1− ρ)(q − 1)

)dist(u,c)

is maximized by minimizing dist(u, c).
So, under these conditions, a MLD scheme is equivalent to minimal distance de-
coding.

However, this equivalence does not hold for other channels, even symmetric. The
computational details of the following example are left as an exercise; we use the
concepts of Linear Codes, presented in another set of notes.

Example 38. Consider the linear code over F3 with generator

G =

 1 0 0 1 0 2
0 1 0 2 1 0
0 0 1 0 2 1

 .

Let u = (0, 0, 0, 1, 1, 1) be a received word. It has syndrome (1, 1, 1). The error
patterns in the corresponding coset with minimal weight are

e1 = (1, 2, 0, 0, 0, 0), e2 = (2, 0, 1, 0, 0, 0), e3 = (0, 1, 2, 0, 0, 0),

corresponding, respectively, to decoding into the codewords

c1 = (2, 1, 0, 1, 1, 1), c2 = (1, 0, 2, 1, 1, 1), c3 = (0, 2, 1, 1, 1, 1).

Suppose the channel has matrix of forward probabilities 3/5 3/10 1/10
1/10 3/5 3/10
3/10 1/10 3/5

 ;

Then

p(u|ci) =
1

6

3

10

(
3

5

)4

but

p(u, 0) =

(
3

10

)3(
3

5

)3

which is larger.
So, in this case, the MLD scheme does not correspond to minimal distance decoding.
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2.0.1. Probability of error and Code parameters. We discuss now the relation be-
tween code parameters and estimates on the probability of decoding error:
A (n,M, d) code over Fq (ie, a code with length n, size M and minimal distance at
least d) is said to be optimal if it is not contained in a (n,M + 1, d) code.

Suppose that the following hypothesis are satisfied:

i) The input probability distribution is uniform;
ii) The channel is strongly symmetric, with p(a|a) = 1 − ρ for every a ∈ Fq,

ρ < 0.5.

As it was seen above, under these conditions, Maximum Likelihood Decision
coincides with Minimal Distance Decoding.
We then have

Proposition 39. If C is an optimal (n,M, d) code over Fq, the probability of
decision error, under MLD, satisfies

n∑
j=d

(
n

j

)
ρj(1− ρ)n−j ≤ pe ≤ 1−

t∑
j=0

(
n

j

)
ρj(1− ρ)n−j

where t = ⌊d−1
2 ⌋.

Proof. The first inequality follows from the observation that, if c is sent and u
received and dist(u, c) ≥ d, then there exists some c′ ̸= c such that dist(u, c′) <
dist(u, c) and so u is incorrectly decoded; the second inequality is a consequence of
C being t-error correcting. The details are left as an exercise (HW). □

The following theorem follows from the first inequality, under the same hypoth-
esis on the input and channel probabilities. We omit the proof, which depends on
estimates on binomial coefficients that follow essentially from Stirling’s formula.

Theorem 40. Let Cn be a family of (n,Mn, dn) codes. If, for some s < ρ, and all
sufficiently large n

dn − 1

n
< s

then the probability of decoding error of Cn approaches 1 as n → +∞.

2.1. Shannon’s Noisy Channel Theorem. Shannon’s second theorem, also called
the Noisy Channel Theorem, tells us that, as long as the information rate is kept
below the channel’s capacity, the probability of error may be made arbitrarily small:

Theorem 41 (Shannon). Consider a discrete memoryless channel with capacity
Cap. For any R < Cap there exists a sequence Cn of q-ary codes with decision
schemes fn such that

i) Cn is a (n,M) code with M ≥ ⌈qnR⌉);
ii) pmax

e (n), the maximum probability of error of Cn approaches 0 as n → +∞.

Proof. We present only a sketch of a proof: we fix a large n (to be specified later),
and define

Ω = {(x, y) ∈ Fn
q × Fn

q }
to be the pairs of possible inputs and outputs of the channel. This becomes a prob-
ability space defining p(x) to be the product of the probabilities of the coordinates,
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for a fixed probability distribution on Fq; p(y|x) is defined in a similar way and
p(y) =

∑
x∈Fn

q
p(y|x)p(x).

Let R′ satisfy R < R′ < Cap, and consider the subset

T = {(x, y) ∈ Ω : log2

(
p(y|x)
p(y)

)
≥ nR′}.

Suppose now that C ⊂ Fn
q is a code with size M , also to be chosen later; we choose

as decoding scheme the following: for each output y, if

S(y) = {x : (x, y) ∈ T};

contains exactly one codeword c we put f(y) = c; otherwise, we put f(y) = ∗.
If we denote, for c ∈ C, Pe(c) to be the probability that a decoding error occurs
when c is transmitted, we may give the following rough estimate: denoting

Λ(x, y) =

{
1 if (x, y) ∈ T
0 if (x, y) /∈ T

Pe(c) ≤
∑
y

(1− Λ(c, y))p(y|c) +
∑

x∈C\c

∑
y

Λ(x, y)p(y|x) = Qc.

Notice that Qc is in fact a function on C, which is virtually impossible to compute
or even estimate for large or complicated codes. The approach is then to estimate
its average over all possible (n,M) codes. For this, we turn the space of these
codes into a probability space, putting p(C) =

∏
c∈C p(c). This corresponds to the

informal idea of randomly choosing the codewords.
The estimates on the expected values of the summands of Qc (seen as random
variables on the space of all codes) is the most technical point in the proof and
we omit all the details. It turns out that the expected value of the first summand
above is

p((x, y) /∈ T ) = p(log2

(
p(y|x)
p(y)

)
< nR′),

and that it follows from the weak law of large numbers that this approaches zero
as n → +∞.
On the other hand, for each x ∈ C, the corresponding term in the second summand
has expected value bounded above by 2−nR′

. So the expected value for the sum-
mand is bounded above by M2−nR′

.
This is the point where we choose M = 21+⌈nR⌉ implying that M2−nR′

can be
made arbitrarly small, by choosing n sufficiently large. Putting all together, we
may claim that, given ε, we have that the expected value of Qc is, for sufficiently
large n, bounded above by ε/2.
The last step is to define a global error function

Pe(C) =
1

M

∑
ci

Pe(ci),

where each summand is already a function of all the codewords in C. The estimates
above imply that the expected value of the random variable Pe is (always for large
n) bounded by ε/2, and so there must exist a code C with size M such that
Pe(C) < ε/2. This code may not satisfy the conditions of the theorem, because it
my contain codewords c for which pe(c) > ε. But this may occur at most for half
of the codewords. Discarding these we obtain the desired code. □
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This proof is difficult at some points (the ones omitted above) but its version for
the Binary Symmetric Channel, and uniform probability distribution on F2, may
be a good exercise to grasp its fundamental ideas.
However, the crucial observation is that the proof relies on a nonconstructive exis-
tence argument. To this day, no family of codes with the above properties is known.
And it should also be noticed that, from a practical point of view, the codes in a
family fulfilling those conditions (for some R arbitrarily close to the capacity of the
channel) may be too long or have too complicated decision schemes to make them
useful for encoding.

Shannon’s Theorem has also converse statements, which we summarise in the
next theorem:

Theorem 42. Consider a discrete memoryless channel with capacity C. Let Cn

be a sequence of q-ary (n, ⌈qnR⌉) codes and corresponding decision schemes fn with
uniform probability of decision error pue (n).
If R > C then

i) there exists δ > 0 such that pue (n) > δ for all n;
ii) limn p

u
e (n) = 1.

Since it is very difficult to obtain explicit codes satisfying the conditions of
Shannon’s Theorem, the next best thing to ask for is a family of codes such that
neither the size nor the distance become too small, compared to the length:

Definition 43. A family Cn of codes is asymptotically good if it contains a
subset Cni

with parameters [ni, ki, di] satisfying:

i) limi→+∞ ni = +∞;
ii) lim infi→+∞

ki

ni
> 0;

iii) lim infi→+∞
di

ni
> 0.

A family is asymptotically bad if it does not contain such a subfamily.

2.2. Supplementary Results and Problems.

Problem 44. Consider the channel with channel matrix 1/6 1/3 1/2
1/3 1/2 1/6
1/2 1/6 1/3

 .

Given the input distribution

p(x = 0) = 0.5, p(x = 1) = p(x = 2) = 0.25,

find the best decision scheme (for transmission with no coding) and the associated
average and maximum probabilities of error.

Problem 45. Consider the channel over F5 defined by the forward condiotional
probabilities

p(i|i) = p(i|i− 1) = 0.5, ∀i ∈ F5; p(i|j) = 0, otherwise .

a) Determine the capacity of the channel;
b) Find a code of length 2 with zero probability of decoding error.
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Problem 46. Let C be the binary code

C = {0000, 0011, 1100, 1111}.
Knowing that these codewords are used with probabilities, respectively, 1/2, 1/8, 1/8
and 1/4,and transmitted through a Binary Symmetric Channel[

1− p p
p 1− p

]
,

determine the optimal decoding rule for each value of 0 < p < 0.5.

The following two subsections include, in the form of a sequence of exercises, two
results related to the material in these notes that were not included in the main
text.

2.3. Maximal and uniform probability of error. Shannon’s Theorem and its
converses give results either on the maximal probability of error pmax

e or on the
uniform probability of error pue . The following proposition shows that we may use
either of them in the statement:

Proposition 47. Consider a discrete memoryless channel with capacity C. The
following are equivalent:

1- For any R < C, there exists a sequence Cn of q-ary (n, ⌈qnR⌉) codes, with
decision schemes fn, such that

lim
n→+∞

pmax
e (Cn) = 0.

2- For any R′ < C, there exists a sequence Dn of q-ary (n, ⌈qnR′⌉) codes, with
decision schemes gn, such that

lim
n→+∞

pue (Dn) = 0.

Exercise 48. It is only necessary to prove 2 =⇒ 1.

In order to prove 2 =⇒ 1, we need the following

Lemma 49. Suppose 0 < R < C. There exists R′ satisfying, for sufficiently large
n,

R+
logq(2)

n
+

1

n
≤ R′ < C, and

1

2
⌈qnR

′
⌉ ≥ ⌈qnR⌉.

Exercise 50. Prove the lemma.

Exercise 51. Complete the proof of the proposition as follows: assume 2 and let
R < C. For a fixed ε > 0, justify the existence of a sequence Dn of (n, ⌈qnR′⌉)
q-ary codes such that pue (Dn) <

ε
2 .

Show that, as a consequence, at least half of the codewords d ∈ Dn satisfy p(error|d) <
ε.
Conclude the proof of 1.
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2.4. Fano’s Inequality. We state again Fano’s inequality:

Theorem 52 (Fano’s Inequality). For any code C with size M , and any decision
scheme f , and for any probability distribution on the codewords, if pe denotes the
probability of decision error, then

H(X|Y ) ≤ H(pe) + log(M − 1)pe.

Remark 53. In the inequality, all logarithms have the same base. If we use log2
on the righthand side and the normalized entropy on the left, the formula is

HM (X|Y ) ≤ H2(pe) + log2(M − 1)pe
log2(M)

.

Fano’s inequality plays an important role in the deduction of the converse of
Shannon’s Theorem.

Proof. Fix u ∈ Fn
q and assume, without loos of generality, that f(u) = c1. Denote

ρi = p(ci|u). The following exercise contains a general fact about entropy functions.
Recall that H(s) denotes the entropy function H(s, 1 − s) = −(s log(s) + (1 −
s) log(1− s)).

Exercise 54. H(ρ1, · · · , ρM ) = H(1− ρ1) + (1− ρ1)H
(

ρ2

1−ρ1
, · · · , ρM

1−ρ1

)
.

Exercise 55. Apply the result in the exercise to get

H(X|Y = u) ≤ H(p(error|u)) + p(error|u) log(M − 1).

Exercise 56. Prove that for any s1, · · · , sm with 0 ≤ si ≤ 1 and non-negative
t1, · · · , tm such that

∑
i ti = 1,∑

i

tiH(si) ≤ H

(∑
i

tisi

)
.

Exercise 57. Finish the proof of the theorem.

□


