
1. Information and Entropy

We recall

Theorem 1 (Shannon’s First Theorem). Let X be a set with n elements and n ≥ 1,
q ≥ 2, P = (p1, · · · , pn) a probability distribution on X. Then

Hq(P ) ≤ L̄(P ) < Hq(P ) + 1

where L̄(P ) denotes the minimal average length of codewords used to encode the
elements of X with an alphabet of q symbols, and

Hq(P ) = −
n∑

i=1

pi logq(pi).

As noted before, Shannon’s idea is to postulate − log2(p(xi)) as the informa-
tion content of the value xi: we receive more information from an unexpected
result than from an expected one. So information content is also identified with
unexpectedness.
The entropy function is then the expected value of the information of x, consid-
ered as a random variable over X, and it may be also interpreted as a measure of
uncertainty: if an experiment has n possible results with probability distribution
p = (p1, · · · , pn), H(p) is the expected value of the uncertainty in the outcome of
the experiment.

In order to enhance the significance of Shannon’s theorem, we sketch a more
probabilistic deduction:
Let x be a random variable taking values {x1, · · · , xn} with probability distribution
p(x = xi) = pi, or, more precisely, an infinite sequence x(t) of independent and
equally distributed random variables. The probability of a sequence sequence of
values of x(t), for 1 ≤ t ≤ M , containing mi occurences of xi (ie, we make M
independent ”observations” of x, obtaining a sample of m1 x1, etc.) is

∏n
i=1 p

mi
i .

The Law of large numbers asserts that, given arbitrarily small constants ε > 0 and
δ > 0, for M sufficiently large we have, with probability larger than 1− δ∣∣∣mi

M
− pi

∣∣∣ < ε, ∀1 ≤ i ≤ n;

therefore, outside of a set of small measure, each sequence of M observations has

probability approximately K =
∏n

i=1 p
Mpi

i , and the information content of one such
sequence is, again approximately,

log2

(
1

K

)
= MH(P ),

ie, the average number of symbols needed to code each observation is H(P ).

Exercise 2. Let {p1, · · · , pm} be a probability distribution and p∗ = maxi{pi : 1 ≤
i ≤ m}. Prove that
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a) H2(p1, · · · , pm) ≥ H2(p
∗);

b) H2(p1, · · · , pm) ≥ − log2(p
∗);

c) H2(p1, · · · , pm) ≥ 2(1− p∗).

1.1. Conditional Entropy. Let X and Y denote random variables taking val-
ues, respectively, xk : 1 ≤ k ≤ n and yj : 1 ≤ j ≤ m, with probability distributions
p(X = xk) and p(Y = yj); when there is no serious risk of confusion we’ll use the
simpler notation p(xk), etc.
Let p(xk|yj) (or, in the more complete notation, p(X = xk|Y = yj)) denote the
conditional probability that X takes the value xk given that Y takes the value
yj . We have

p(xk|yj) =
p(xk, yj)

p(yj
,

where p(xk, yj) is the joint probability that X takes the value xk and Y takes
the value yj .

If the value yj is given, the conditional entropy of X is

H(X|yj) = −
∑
k

p(xk|yj) log(p(xk|yj))

and the conditional entropy H(X|Y ) is its expected value

H(X|Y ) =
∑
j

H(X, yj)p(yj .

Following the interpretation of Entropy, H(X|Y ) is the uncertainty about X
that remains after the knowledge of Y and

I(X;Y ) = H(X)−H(X|Y )

called the Mutual Information of the two random variables, is the information
about one of the variables given by the other.

Reversing the roles of the random variables, we have definitions of p(yj |xk),
H(Y |X), etc.

Exercise 3. Show that I(X;Y ) = I(Y ;X).

Example 4. B1 and B2 are identical boxes; the first contains s white balls and t
red balls, while the second contains t white balls and s red balls. We take a ball from
one of the boxes; the random variable X takes the value i if the box Bi is chosen;
the random variable Y takes the value w if a white ball is chosen and the value r
otherwise.
It is easy to see that the probability distribution of both variables is uniform and so
H(X) = H(Y ) = 1. On the other hand we have conditional probabilities (HW)

p((1|w) = p(2|r) = s

2(s+ t)
, p((2|r) = p(1|w) = t

2(s+ t)
;

Exercise 5. Compute the general expression of H(X|Y ) and I(X;Y ) and their
values for some concrete values of s and t.
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Although the notions of conditional entropy and information apply in general
to the relation between random variables, we will focus on their significance in the
context of transmission of information through a communication channel.
The precise definition of a mathematical model of communication channel will be
discussed later, but for now it’s enough to take X and Y to be, respectively, the
input and output of a transmission and that p(yj |xk) is a given probability that
the input value xk is received as yj .
The simplest example is the Binary Symmetric Channel, where X and Y both
take values 0 and 1 and the p(yj |xk) are

p(0|1) = p(1|0) = ρ, p(0|0) = p(1|1) = 1− ρ,

for some 0 < ρ < 0.5.

1.1.1. Further properties of Conditional Entropy. The entropy of the joint distri-
bution is H(X,Y ) = −

∑
k,j p(xk, yj) log(p(xk, yj)). An application of the defining

formulas gives

Proposition 6. H(X|Y ) = H(X,Y )−H(Y ).

Proof. (HW). □

We have also, as a simple consequence of Gibbs Lemma,

Lemma 7. For any random variables X and Y ,

H(X,Y ) ≤ H(X) +H(Y ),

with equality if and only if X and Y are independent.

Proof. (HW). □

Corollary 8. H(X|Y ) ≤ H(X), with equality if and only if X and Y are indepen-
dent.

Proof. (HW) □

Given the interpretation of conditional entropy for transmission of information,
it is natural to relate it to the probability of error in the transmission, ie the
probability that X ̸= Y . The next inequality does just this.

Proposition 9 (Fano’s inequality). If X and Y are random variables taking values
in the same set {x1, · · · , xm} and pe = p(X ̸= Y ), then

H(X|Y ) ≤ H(pe) + pe log(m− 1).

This will be an easy corollary of the next theorem. We start with the statement
of a particular case of Jensen’s inequality, which will be used frequently:

Lemma 10 (Jensen’s inequality (particular case)). Let X and Y be random vari-
ables taking values in finite sets {xi :≤ i ≤ m} and {yj : 1 ≤ j ≤ v}, respectively,
f(x, y) a joint probability distribution and g(x, y) a positive function. We have

∑
i,j

f(xi, yj) log(g(xi, yj)) ≤ log

∑
i,j

f(xi, yj)g(xi, yj)

 ,

with equality if and only if there exist x0, y0 such that f(x0, y0) = 1.
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Proof. This is a consequence of the convexity of − log (HW). □

Theorem 11. Let X,Y, Z denote discrete random variables, taking values in finite
sets, and a(z) =

∑
i,j p(yj)p(zk|xi, yj). Then

H(X|Y ) ≤ H(Z) +
∑
k

p(zk) log(a(zk)).

Proof. We have

H(X|Y ) =
∑
i,j

p(xi, yj) log

(
1

p(xi|yj)

)
=

∑
i,j,k

p(xi, yj , zk) log

(
1

p(xi|yj)

)
=

=
∑
k

p(zk)
∑
i,j

p(xi, yj , zk)

p(zk)
log

(
1

p(xi|yj)

)
.

For each zk,
p(xi,yj ,zk)

p(zk)
determines a probability distribution on (X,Y ); applying

Jensen’s inequality, we get

H(X|Y ) ≤
∑
k

p(zk) log

 1

p(zk)

∑
i,j

p(xi, yj , zk)

p(xi|yj)

 =

= H(Z) +
∑
k

p(zk) log

∑
i,j

p(xi, yj , zk)

p(xi|yj)

 .

We notice now that
p(xi, yj , zk)

p(xi|yj)
= p(yj)p(zk|xi, yj).

□

Exercise 12. Check the details of the proof.

The proof of Fano’s inequality follows taking z = 0 if X = Y and z = 1 if X ̸= Y
(HW).

We end with some properties of mutual information that will be relevant to its
interpretation and application in the context of communication channels. Their
proofs are almost direct applications of Jensen’s inequality. Notice that the same
base for logarithms is being used everywhere.

Theorem 13. If X,Y, Z are discrete random variables with values in finite sets,

I((X,Y );Z) ≥ I(Y ;Z),

with equality if and only if p(zk|xi, yj) = p(zk|yj) for all values with p(xi, yj , zk) > 0.

Proof. (HW): we have

I((X,Y );Z) =
∑

xi,yj ,zk

p(xi, yj , zk) log

(
p(zk|(xi, yj))

p(zk)

)
,

and

I(Y ;Z) =
∑
yj ,zk

p(yj , zk) log

(
p(zk|yj)
p(zk)

)
=

∑
xi,yj ,zk

p(xi, yj , zk) log

(
p(zk|yj)
p(zk)

)
.
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Apply Jensen’s inequality. □

Although the inequality is not surprising, given the interpretation of mutual
information, the condition for equality is more important: it means that the se-
quence (X,Y, Z) is a Markov chain; informally, Z depends on X only through
the dependence of Y on X. This implies (see the problem at the end)

that the reversed sequence (Z, Y,X) is also a Markov chain and, consequently,

Corollary 14. If (X,Y, Z) is a Markov chain, then

I(X;Z) ≤ I(X;Y ), I(X;Z) ≤ I(Y ;Z).

Proof. (HW).
□

We will come to this point later when we consider the coding and communication
process. In this context, (X,Y, Z) is a Markov chain because Y is the output of
the transmission, through a communication channel C1, of an input X, and Z is
the output of the transmission of Y through another communication channel C2.

1.2. Supplementary Results and Problems.

1.2.1. Characterization and properties of Entropy.

Remark 15. Recall that in all the formulas we use the convention 0 log(0) = 0.

Proposition 16 (Characterization of Entropy). Let

∆ = {(pi)i≥1 : 0 ≤ pi ≤ 1;∃N : pi = 0∀i > N ;
∑
i≥1

pi = 1}.

We have

∆ =
⋃
N∈N

{x = (x1, · · · , xN ) ∈ RN : 0 ≤ xi ≤ 1;
∑
i≥1

xi = 1}}

and ∆ is a metric space under the metric that extends, for each N , the usual metric
of RN (HW).
Let Φ : ∆ → R be a function; for each sequence (pi) ∈ ∆, we will write Φ(p1, · · · , pN )
to denote Φ((pi)i≥1).
Then Φ satisfies properties

1. Continuity;
2. Φ( 1n , · · · ,

1
n ) < Φ( 1

n+1 , · · · ,
1

n+1 ) ∀n ∈ N;
3. For any n, k ∈ N and b1, · · · , bk ∈ N such that

∑k
j=1 bj = n,

Φ(
1

n
, · · · , 1

n
) = Φ(

b1
n
, · · · , bk

n
) +

k∑
j=1

bj
n
Φ(

1

bj
, · · · , 1

bj
);

if and only if there exists q > 1 such that

Φ(p1, · · · , pN ) = Hq(p1, · · · , pN ) = −
N∑
i=1

pi logq(pi).
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Proof. The fact that the functions Hq satisfy properties 1., 2. and 3. is an easy
exercise (HW).
In the proof of the converse, we will use the simplified notation g(n) = Φ( 1n , · · · ,

1
n ).

The proof proceeds through a sequence of steps, whose details are left as exercises
(HW):

i) For any positive s and m, apply 3. with n = ms, bj = m and k = ms−1

to conclude that g(ms) = sg(m) and deduce from 2. that g(n) is a strictly
positive and strictly growing function;

ii) For fixed m and arbitrary positive integers r and t, choose s such that
ms ≤ rt < ms+1; this implies

s

t
≤ log2(r)

log2(m)
<

s+ 1

t
,

and on the other hand, using i), that

s

t
≤ g(r)

g(m)
<

s+ 1

t
;

we conclude that

−1

t
≤ g(r)

g(m)
− log2(r)

log2(m)
<

1

t
,

and so that
g(r)

g(m)
=

log2(r)

log2(m)

which implies (why?) that there exists a positive C such that g(r) =
C log2(r) for all r ∈ N or, equivalently, that there exists a q > 1 such that
g(r) = logq(r) for all r ∈ N;

iii) we may thus rewrite property 3. as

Φ(
b1
n
, · · · , bk

n
) = −

k∑
j=1

bj
n

logq(
bj
n
)

and, as any (pi)i≥21 ∈ ∆ with rational entries may written in the form

( b1n , · · · , bk
n ), we conclude that Φ(p1, · · · , pn) = Hq(p1, · · · , pn) if the pi are

rational;
iv) by continuity the equality holds for all (pi)i≥21 ∈ ∆.

□

Problem 17. Formulate a convincing (for yourself...) interpretation of property
3. in terms of uncertainty/information of an experiment.

Problem 18. Let Hq(p) = −p logq(p)− (1− p) logq(1− p).

a) Study the function with respect to convexity.

b) Let m = ⌊pn⌋; prove the inequality
∑⌊pn⌋

j=0

(
n
j

)
≤ qnHq(m/n) ≤ qnHq(p), for

any n ∈ N.
Hint: Apply Newton’s Binomial formula to 1 =

(
m
n + (1− m

n )
)n

.
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Problem 19. Show that if

0 ≤ pi ≤ 1,
∑
i

pi = 1 and 0 ≤ ti ≤ 1,
∑
i

ti ≤ 1

with 1 ≤ i ≤ n, then

−
∑
i

pi logq(pi) ≤ −
∑
i

pi logq(ti).

Problem 20. Show that H(P ) is concave in the set of all probability distributions:
if 0 ≤ t ≤ 1 and

P = (p1, · · · , pn), Q = (q1, · · · , qn),
then

H(tP + (1− t)Q) ≥ tH(P ) + (1− t)H(Q).

Problem 21. Fix n and q.

a) Suppose that (p1, · · · , pn) satisfies, for a certain ε > 0, p1 > p2+2ε and let
(r1, · · · , rn) be defined as

r1 = p1 − ε, r2 = p2 + ε, rj = pj ∀3 ≤ j ≤ n.

Show that Hq(p1, · · · , pn) ≤ Hq(r1, · · · , rn), ie, a variation on the proba-
bility distribution that tends to approach any equalization of probabilities
implies an increase of entropy.

b) Let A = [aij ] be a n×n doubly stochastic matrix: aij ≥ 0 for all 1 ≤ i, j ≤ n
and

n∑
i=1

aij = 1 ∀1 ≤ j ≤ n,

n∑
j=1

aij = 1 ∀1 ≤ i ≤ n.

Define (r1, · · · , rn) = (p1, · · · , pn)A. Show that Hq(p1, · · · , pn) ≤ Hq(r1, · · · , rn).
Verify that a) is a particular case.

Hint for b): Hq(r1, · · · , rn) = −
∑

i

∑
j piaij logq(rj); use the convexity of −log()

and apply Gibbs’s inequality.

1.2.2. Convexity properties of Mutual Information. The next two results state that
the mutual information between two random variables has convexity properties:

Proposition 22. Let the forward channel probabilities p(y|x) be fixed and p1(x) and
p2(x) be probability distributions on input random variables X1 and X2, respectively;
let Y1 and Y2 be the corresponding output random variables. For 0 ≤ t ≤ 1, let X be
the input random variable with probability distribution p(x) = tp1(x) + (1− t)p2(x)
and Y the corresponding output. Then

tI(X1;Y1) + (1− t)I(X2;Y2) ≤ I(X;Y ).

Proof. (HW). □
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Proposition 23. Let p(x) be a fixed probability distribution on the input variable
X, and p1(y|x) and p2(y|x) be two sets of forward channel probabilities; denote as
Y1 and Y2 the corresponding output variables. Then, for 0 ≤ t ≤ 1 the forward
channel probabilities

p(y|x) = tp1(y|x) + (1− t)p2(y|x)
with output Y satifies

I(X;Y ) ≤ tI(X;Y1) + (1− t)I(X;Y2).

Proof. (HW). □

1.2.3. Markov Chains.

Problem 24. Prove that (X,Y, Z) is a Markov chain if and only if (Z, Y,X) is.

Problem 25. Let, for i ≥ 0, Xi, be a sequence of random variables, all with values
{0, 1}, such that X0 has probability distribution P (X0 = 0) = a and P (X0 = 1) =
1− a, and

p(Xi+1 = 0|Xi = 0) = p(Xi+1 = 1|Xi = 1) = 1−ρ, p(Xi+1 = 1|Xi = 0) = p(Xi+1 = 0|Xi = 1) = ρ.

Determine the probability distribution of Xn and limn→+∞ I(Xn;X0).

Problem 26. Let, for i ≥ 0, Xi, be a sequence of random variables, all with values
{1, · · · ,m}, and that, for any i,

p(Xi+1 = k|Xi = j) = ajk;

suppose that X0 has probability distribution p = {p1, · · · , pm} satisfying

pk =

m∑
j=1

pjajk,

(p is stable with respect to A = [ajk]).

a) Show that the Xi have all probability distribution p.
b) Define the entropy of the Markov chain Xi as

H = lim
n→+∞

1

n
H((X0, X1, · · · , Xn−1)).

Show that
H = −

∑
j,k

pkajk log(ajk).


