
1. Introduction

The main subject of this course is the mathematical study of error-correcting
codes, i.e., maps that ”translate” a message in a form suitable for transmission
through a communication channel, in such a way that in the decoding process it is
possible to identify and correct a (small) number of errors randomly created in the
transmission.
In this very abstract model, a communication channel is a ”black box” which re-
ceives and delivers strings of symbols with entries in some finite alphabet. For in-
stance, in a satellite communication the channel is composed by the space through
which travel the electro-magnetic waves, but also by the technical devices sending
and receiving them.
When we hear music from a compact disc, there are several communication channels
involved (including our hearing system receiving sound waves through the atmo-
sphere and turning them into signals transmitted to our brain) but the one that may
be realistically modeled by the theory to be discussed here consists of the disc itself,
together with the technical processes of imprinting and reading the depressions and
flats in the disc.

As we will see, the capability of codes to detect and correct random errors is
attained through the introduction of some controlled redundancy in the messages.
This process is usually called channel encoding.
However, the original messages, which we assume to be already in some digital
form, have already redundancies determined by their nature. In order to attain
efficiency in the transmission, these redundancies must be eliminated as much as
possible, by a previous encoding, called source encoding.
The whole process may be summarized as

- original message
source encoding−−−−−−−−−−→ source message;

- source message
channel encoding−−−−−−−−−−−→ input;

- input
transmission−−−−−−−−→ output;

- output
channel decoding−−−−−−−−−−−→ recovered source message;

- recovered source message
source decoding−−−−−−−−−−→ recovered original message.

2. Source Encoding

We separate, for simplicity, the problems related to source encoding from those
related to channel encoding.
The problem of source encoding is to translate a message into a suitable alphabet
with no ambiguity and with efficiency.

We suppose that the initial messages are sequences of symbols from a set X,
with |X| = n say, and that the coding alphabet is A, with |A| = q. We denote as
A∗ the set of finite, non-empty, words over A; the length of a word w is denoted
as |w| or l(w). A code is then a function c : X → A∗. The image of c is the set of
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codewords. The code is naturally extended to X∗ by concatenation:

c(x1x2 · · ·xr) = c(x1)c(x2) · · · c(xr).

A code is unambiguous if it is uniquely decipherable, ie, the extension of c to
X∗ is injective (different sequences of symbols are encoded to different words).

Example 1. Let X = {N,S,E,W}. The code into {0, 1} defined by

c(N) = 0, c(S) = 01, c(E) = 11, c(W ) = 10

is clearly ambiguous.
On the other hand

c(N) = 0, c(S) = 01, c(E) = 011, c(W ) = 0111

is uniquely decipherable (HW). However, it is not instantaneously decipherable,
ie, the ocurrence of a codeword can not give rise to its decoding: for instance, the
occurence of the word 01 can not be immediately decoded as S.

Proposition 2. A code is instantaneously decipherable if and only if no codeword
is a prefix of another codeword.

A code satisfying this property is called a prefix code.

Example 3. For the same X as above, the code defined by

c(N) = 00, c(S) = 01, c(E) = 11, c(W ) = 10

is a prefix code. This is obviously the case for any code such that all codewords have
the same length.

Remark 4. We consider only prefix codes that are primitive, ie, such that erasing
symbols from the codewords does not create a new prefix code. For example

c(N) = 000, c(S) = 010, c(E) = 11, c(W ) = 10

is a non-primitive prefix code.
In a primitive prefix code, if x0 · · ·xm is not a codeword and does not contain a
codeword as a prefix, then either there is no codeword with that prefix, or, if there
is, for any symbol y the sequence x0 · · ·xmy is a codeword or the prefix of a codeword.

2.1. Prefix Codes and Rooted Trees. Recall that a rooted tree is a tree (a
connected simple graph with no cycles) with a vertex identified as the root. Let
l(v) denote the distance from the vertex v to the root, also called the length of the
vertex; if v′ is adjacent to v and l(v′) = l(v)+1, v′ is called a (direct) descendant of
v. Vertices with no descendants, which are (with the possible exception of the root)
the vertices with degree 1, are called leaves. The remaining vertices (including the
root) are called internal vertices.
We say that T is a q-tree if each internal vertex has at most q descendants, and
denote by T (n, q) the set of rooted q-trees with n leaves, with the leaves labelled
from 1 to n and edges labelled by A such that the edges linking an internal vertex
to its descendants have distinct labels.

Proposition 5. There is a bijection between T (n, q) and the set of prefix codes
c : X → A∗.
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Proof. (HW) □

Remark 6. Rooted trees may also be identified as decision trees. For example, the
problem of determining an integer x from {1, · · · ,m} by a sequence of tests of the
form - is x < t? - may be represented by a tree T ∈ T (m, 2).
Examples of decision processes and their relation with information theory are given
in the exercises.

In applications of rooted trees, two parameters are of interest: L(T ) = max{l(v) :
v a leaf of T}; and L̄(T ) = 1

n

∑
l(v) where the sum is over the set of leaves.

Proposition 7. L(T ) ≥ ⌈logq(n)⌉.

Exercise 8. Prove the proposition by induction on L = L(T ).

We consider now the problem of estimating L̄(T ).

Definition 9. A q-tree is called complete if each internal vertex has exactly q
descendants.

We mention, for future use, a property of complete trees:

Lemma 10. If T ∈ T (n, q) is complete, then (q − 1) | (n− 1).

Exercise 11. Prove the lemma: start with the case where all leaves have the same
length t; in the general case, suppose that T has ni leaves with length 0 ≤ i ≤ t and
append at each leaf a q tree in order to obtain a complete q tree such that all leaves
have the same length t.

We now establish a condition for the existence of q-trees in terms of the lengths
of the leaves:

Theorem 12 (Kraft’s inequality). a) Suppose that the leaves of T ∈ T (n, q)
have lengths li, 1 ≤ i ≤ n. Then

∑
i q

−li ≤ 1, with equality if and only if
T is complete.

b) Given nonnegative integers li, 1 ≤ i ≤ n such that
∑

i q
−li ≤ 1, there exists

T ∈ T (n, q) whose leaves have lengths li.

Exercise 13. Prove the theorem:

1- For a), it suffices to prove the equality for complete trees;
2- prove that by (strong) induction on n: for the induction step, given T ∈

T (n, q) erase all the leaves with a common ancester.
3- To prove b), let L = max{li : 1 ≤ i ≤ n} and denote by nk the number

of indices i such that li = k; start with the complete q-tree with qL leaves,
all of length L, and choose, inductively, the vertices of T : show that, if
the leaves with length less or equal to j are already chosen, there are still
enough vertices to be the internal vertices of length j.

Remark 14. The construction sketched above may be performed in different ways,
depending on the choices of ascendants for the leaves at each step. This means that,
in general, there are many non-isomorphic trees T ∈ T (n, q) with leaves of legths
li.
A possible choice is to start ”from below”, choosing first the length L leaves with a
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greedy strategy, ie, saturating the largest possible number of immediate ancestors,
and pruning the tree upwards.

Kraft’s Theorem gives a sufficient condition for the existence of a prefix code
c : X → A∗ with codewords of lengths li, 1 ≤ i ≤ n. Because of the bijection
between prefix codes and rooted q trees, this condition is also necessary, for prefix
codes. We could speculate if there are other uniquely decipherable codes that
don’t satisfy Kraft’s inequality; this would mean that, by giving away the prefix
property, ie, instantaneous decoding, we would get a more efficient coding in terms
of transmission.
But this is not the case, as the following theorem shows.

Theorem 15 (McMillan). If c : X → A∗ is a uniquely decipherable code then the
li = |c(xi)| satisfy Kraft’s inequality.

Proof. Recall that nk denotes the number of codewords of length 1 ≤ k ≤ L. For
an arbitrary positive integer m(

L∑
k=1

nkq
−k

)m

=
∑

(nk1
· · ·nkm

)q−(k1+···+km)

where the last sum runs through m-tuples k1, · · · , km with 1 ≤ ki ≤ L for all
1 ≤ i ≤ m. The sum s = k1 + · · · + km takes values m ≤ s ≤ mL; we may write
the previous sum as

mL∑
s=m

( ∑
k1+···+km=s

nk1 · · ·nkm

)
q−s =

mL∑
s=m

Nsq
−s.

But Ns is the number of sequences of total length s formed by the concatenation
of m codewords; because the code is uniquely decipherable, these sequences must
be all distinct; this in turn implies that Ns ≤ qs. So(

L∑
k=1

nkq
−k

)m

=

mL∑
s=m

Nsq
−s ≤ mL−m+ 1 < mL

and
L∑

k=1

nkq
−k ≤ (mL)1/m → 1 as m → +∞

implying Kraft’s inequality. □

2.2. Shannon’s First Theorem. The efficiency of the code is determined by the
average length of the codewords used in the message. The prefix code defined by

c(N) = 00, c(S) = 01, c(E) = 11, c(W ) = 10

uses 2 bits (binary digits, the length unit) by symbol. If all four elements of X
occur with the same probability, this is clearly best possible. But a more realistic
assumption is that symbols from the original message occur with different proba-
bilities, as it happens for instance in any human language with the symbols of the
corresponding alphabet.
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Example 16. Suppose X has the probability distribution

p(N) = 0.6, p(S) = 0.1, p(E) = 0.2, p(W ) = 0.1;

in that case the last code still uses an average of 2 bits by symbol. It is possible
however to define a more efficient prefix code: the code

c(N) = 0, c(S) = 110, c(E) = 10, c(W ) = 111

uses an average of

1× 0.6 + 3× 0.1 + 2× 0.2 + 3× 0.1 = 1.6

bits per symbol.

We may now formulate the following general problem for source encoding:
Given a finite set X = {xi : 1 ≤ i ≤ n} with probability distribution P = {pi =
p(xi) : 1 ≤ i ≤ n}, and a coding alphabet A, minimize

∑n
i=1 pi|c(xi)|, for prefix

codes c : X → A∗.
Using the identification of prefix codes with q-rooted trees, we define L̄(T ) =∑n

i=1 pili, where, as before, li denote the lengths of the leaves, and

L̄(P ) = min{L̄(T ) : T ∈ T (n, q)}.
We state and prove a fundamental estimate on the average length of codewords of
a prefix code.

Theorem 17 (Shannon’s First Theorem). Let n ≥ 1, q ≥ 2, P = (p1, · · · , pn) a
probability distribution on X. Then

Hq(P ) ≤ L̄(P ) < Hq(P ) + 1

where

Hq(P ) = −
n∑

i=1

pi logq(pi).

Remark 18. We use the convention 0 logq(0) = 0.

The proof is a simple consequence of the following lemma:

Lemma 19 (Gibbs). If ai and bi (1 ≤ i ≤ n), are positive real numbers satisfying∑
i ai ≤

∑
i bi, then ∑

i

bi logq

(
bi
ai

)
≥ 0,

with equality iff ai = bi for all i.

Exercise 20. Prove Gibbs lemma: notice that the base of the logarithm is irrel-
evant, and use the fact that the natural logarithm ln satisfies ln(x) ≤ 1 − x, with
equality iff x = 1.

Exercise 21. Prove Shannon’s Theorem:

1- To prove H(p) ≤ L̄ we must show that H(p) ≤ L̄(T ) for all trees T ∈
T (n, q); Apply Gibbs Lemma with ai = q−li and bi = pi, and use Kraft’s
inequality.

2- To prove the second inequality, we must show that L̄(T ) < H(p)+1 for some
tree T ∈ T (n, q). Define natural numbers li by the condition − logq(pi) ≤
li < − logq(pi) + 1 and use the second part of Kraft’s Theorem.
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Remark 22. The first inequality in Shannon’s Theorem gives us lower bound on
the average length of trees in T (n, q) both for applications in coding and decision
problems, as the ones described above. The upper bound can be used if all trees in
T (n, q) are possible solutions for the problem at hand. This is usually the case for
coding but not necessarily so for other problems.

2.2.1. A first glance at Information Theory. Hq(P ) defined in the theorem is called
Shannon’s entropy of the distribution. The idea behind its definition is to give a
measure of the information contained in symbol x (in other words, the information
obtained by reading x). This idea goes back to Hartley who proposed the definition
of the information contained in an element of a n-set (a set with n elements) as
log2(n); this is clearly motivated by the number of 0 and 1 needed to represent an
element of a n-set, and establishes the bit (binary digit) as the unit of information.
This definition is substantiated by the following fact: if we denote by I(n) the
information needed to determine an element of an n-set, it is natural to ask that
these three properties are satisfied

1 I(nm) = I(n) + I(m);
2 I(n) ≤ I(n+ 1);
3 I(2) = 1.

And it is possible to prove that log2(t) is the unique continuous function, defined
for t > 0, satisfying all these postulates. A similar uniqueness result applies to the
entropy function and is dealt with in the exercises.

Hartley’s definition assumes that the elements of the n-set X = {x1, · · · , xn}
occur with the same probability. In case the set is endowed with a non-uniform
probability distribution, the information of xi should be weighted by the probability
pi = (xi). Of course − log2(pi) = log2(n) in the uniform case pi =

1
n .

A different choice of base for the logarithm corresponds to a rescaling through
multiplication by a constant; the choice of base q instead of 2 was motivated by
the deduction of Shannon’s Theorem and is equivalent to scaling the entropy of the
uniform distribution pi =

1
n to be logq(n).

Shannon’s idea is to postulate − log2(p(xi)) as the information content of the
value xi: we receive more information from an unexpected result than from an
expected one. So information content is also identified with unexpectedness.
The entropy function is then the expected value of the information of x, considered
as a random variable over X, and it may be also interpreted as a measure of
uncertainty: if an experiment has n possible results with probability distribution
p = (p1, · · · , pn), H(p) is the expected value of the uncertainty in the outcome of
the experiment. Naturally, the uncertainty is maximal for a uniform distribution,
as can be deduced from Gibbs’s lemma.

The upper bound established in Shannon’s Theorem may be improved in the
following way: replace the set X = {x1, · · · , xn} with probability distribution
P = (p1, · · · , pn) by the set of m-sequences Xm = {(xi1 · · ·xim) : xij ∈ X} with

probability distribution P (m) defined by

p(m)((xi1 · · ·xim)) =

m∏
j=1

pij .
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We consider P (m) as a probability distribution on the leaves of trees T ∈
T (nm, q). With respect to that probability distribution, Shannon’s Theorem gives

H(P (m)) ≤ L̄(P (m)) < H(P (m)) + 1.

But we have

Lemma 23. H(P (m)) = mH(P ).

Proof. HW □

So we obtain

H(P ) ≤ L̄(P (m))

m
< H(P ) +

1

m
,

showing that, by encoding a sufficiently long extension Xm of our original source
X, the average length per symbol may approach arbitrarily well the lower bound,
confirming the interpretation of the entropy function discussed above.

Example 24. Let X = {a, b} and P = {p(a) = 0.25, p(b) = 0.75}. Notice that
H(P ) is approximately 0.811278. If A = {0, 1}, an optimal encoding (such as
c(a) = 0, c(b) = 1) has average length 1. For the 2-extension of X, we have

P (2) = {p(aa) = 1

16
, p(ab) = p(ba) =

3

16
, p(bb) =

9

16
,

and the coding

c(aa) = 000, c(ab) = 001, c(ba) = 01, c(bb) = 1

has average length 27
16 and so the average length per symbol used is 27

32 = 0.84375.

2.3. Huffman’s Algorithm. We now know that, given a probability distribution
p, L̄ = min{L̄(T ) : T ∈ T (n, q)} is approximately H(p). In fact, the importance of
entropy in relation with coding problems does not end here, as we will see later.
It is possible to compute the exact value of L̄(P ), constructing an optimal rooted q-
tree, by means of Huffman’s algorithm. This algorithm is the result of a detailed
analysis of the properties of an optimal tree:

Suppose T is an optimal tree, that is,
∑n

i=1 pili = L̄. We may assume, by
including additional leaves with probability 0 that (q−1) | (n−1). We assume also
that the leaves are ordered in non-ascending order of probability: p1 ≥ · · · ≥ pn.

Claim 25. l1 ≤ · · · ≤ ln. If not, we could create T ′ ∈ T (n, q), isomorphic as a
rooted tree to T , but with a different labeling and satisfying

L̄(T ′) < L̄(T ),

(HW).

Claim 26. T is necessarily complete: let L = L(T ) = max{li : 1 ≤ i ≤ n}. Notice
that if li = L then lj = L for all j > i.

1- Show that if some internal vertex v with length l(v) ≤ L−2 had fewer than
q descendants we could change the tree to obtain a new tree with smaller L̄.

2- Let
t be the number of internal vertices with length less or equal to L− 2,
I1 = {v1, · · · , vs} be the internal vertices with length L− 1
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and mi be the number of descendants of vi.
Construct a table with rows indexed by the t+s internal vertices and columns
indexed by all the vertices, where a entry is 1 exactly when the column vertex
is a direct descendant of the row vertex. Counting the 1 in the table in two
ways find that n−1 = t(q−1)+

∑s
i=1 mi− s, and conclude that q−1 must

divide
∑s

i=1(mi − 1).
If mi < q for some i, we may change T as follows: displace ”horizontally”
leaves of length L in order to saturate as many vi ∈ I1 as possible; if there
remain r > 0 vertices vi of length L − 1 with m′

i < q leaves it is because∑r
i=1 m

′
i < q; show that this implies m′

i = 1 for each i ≤ r. Verify that this
contradicts the minimality of T .

In summary: suppose that T ∈ T (n, q) is an optimal tree for the probability
distribution p = (p1, · · · , pn), with leaves ordered in non-ascending order of their
probabilities; we assume also that (q − 1) | (n − 1) by adding, if necessary, some
leaves with zero probability.
We have seen that T is necessarily complete and that the leaves are ordered in
non-descending order of lengths. we may assume that the last q leaves, having
the smallest probabilities and all of length L, have a common direct ancestor. Let
T ′ ∈ T (n− q+1, q) be the tree obtained from T by replacing those last q leaves by
its ancestor, concentrating in it the sum p′ of their probabilities. So

L̄(p1, · · · , pn−q, p
′) ≤ L̄(T ′) = L̄(T )− p′L+ p′(L− 1) = L̄(p1, · · · , pn)− p′.

Conversely, if S′ ∈ T (n− q + 1, q) is a optimal tree with respect to the probability
distribution (p1, · · · , pn−q, p

′) with p′ = pn−q+1 + · · · + pn, and v is a leaf with
probability p′ and length L′, we may create a tree S ∈ T (n, q), appending at v q
leaves with probabilities pn−q+1, · · · , pn. Then

L̄(p1, · · · , pn) ≤ L̄(S) = L̄(S′)− p′L′ + p′(L′ + 1) = L̄(p1, · · · , pn−q, p
′) + p′.

We arrived at the following

Conclusion 27.

L̄(p1, · · · , pn) = L̄(p1, · · · , pn−q, p
′) + p′

where p′ = pn−q+1 + · · ·+ pn.
Moreover, T is optimal for the distribution (p1, · · · , pn) if and only if the contraction
T ′ described above is optimal for (p1, · · · , pn−q, p

′).

This is the base of the algorithm:

Input: a probability distribution (p1, · · · , pn).
Output: a corresponding optimal T (n, q) tree.
Steps: Put the pi in non-ascending order, added with some null probabilities,

if necessary, in order to have (q − 1) | (n− 1).
Contract the list, adding the last q entries, and reordering, until we
have a trivial list (one single entry 1).
Expand from the trivial tree, in the reverse order: if, in the contrac-
tion process, we obtain, at some step, p′ = pt + pt+1 + · · · + pt+q−1,
then, in the expanding process, we have a leaf with probability p′

which becomes an internal vertex with q leaves with probabilities
= pt, pt+1, · · · , pt+q−1 as descendants.
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Erase all the extra leaves corresponding to the null probabilities added
in the first step.

Remark 28. For sufficiently small values of n, the construction described above
may be represented in a tree diagram build up from the leaves, avoiding the separa-
tion of the contraction and expansion steps.
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2.4. Supplementary Results and Problems.

2.4.1. Construction of prefix codes.

Problem 29. In each of the following cases, decide if there exists a q-ary prefix
code with the prescribed word lengths and, in the affirmative case, construct one:

a) q = 2, lengths: {1, 3, 3, 3, 4, 4};
b) q = 2, lengths: {2, 2, 3, 3, 4, 4, 5, 5};
c) q = 3, lengths: {1, 1, 2, 2, 3, 3, 3};
d) q = 5, lengths: {1, 1, 1, 1, 2, 2, 2, 3, 3, 4}.

Problem 30. If we want to have in a prefix binary code C the words 0, 10 and
110, how many words of length 5 may we add to C?

Problem 31. Consider the binary code C = {0, 10, 11}. Let nk denote the number
of length k sequences that may be created from the words of C (n1 = 1, n2 = 3,
n3 = 5, etc.). Determine the linear recurrence satisfied by the sequence nk and find
the explicit solution.

Problem 32. Optimal trees for a certain probability distribution constructed using
Huffman’s algorithm are not unique: obtain two non-isomorphic optimal T (4, 2)
trees for the probability distribution {0.4, 0.2, 0.2, 0.2}.

Problem 33. Apply Huffman’s algorithm to construct q-ary codes with the pre-
scribed probability distributions:

a) q = 3, P = {0.9, 0.02, 0.02, 0.02, 0.02, 0.02};
b) q = 4, P = {0.9, 0.02, 0.02, 0.02, 0.02, 0.02};
c) q = 4, P = {0.3, 0.1, 0.1, 0.1, 0.1, 0.06, 0.05, 0.05, 0.05, 0.04, 0.03, 0.02};
d) q = 5, P = {0.3, 0.1, 0.1, 0.1, 0.1, 0.06, 0.05, 0.05, 0.05, 0.04, 0.03, 0.02};

Problem 34. Suppose the digits 1, 2, · · · , 9 occur with probabilities

p(1) = 0.3; p(2) = 0.17; p(3) = 0.13; p(4) = 0.1; p(5) = 0.08; p(6) = p(7) = 0.06; p(8) = p(9) = 0.05.

Find an optimal encoding using the alphabet a, b, c.

Problem 35. Which probability distributions P = {p1, p2, p3, p4} have the code
{00, 01, 10, 11} as a result from the Huffman’s algorithm construction?
Same question for {0, 10, 110, 111}.

Problem 36. Suppose that c1, · · · , cn is an optimal binary prefix code for the prob-
ability distribution p1, · · · , pn satisfying pi > pi+1 for all 0 ≤ i < n. Find constants
0 < b < a < 1 such that

i) if p1 > a then the length of c1 is 1;
ii) if p1 < b then the length of c1 is at least 2.

Are the constants optimal with respect to those conditions?



11

Problem 37. This is more a open question than an exercise: How could we mod-
ify the estimates in Shannon’s Theorem and Huffman’s algorithm if we search for
optimal trees T ∈ T (q, n) that satisfy also a condition L(T ) < k, for some constant
k?

2.4.2. Decision trees. It was already mentioned briefly that rooted q-trees may be
also used to represent decision processes. Although this application parts from the
main subject of the course, it gives on the other hand a very nice interpretation for
the concepts of information theory. We illustrate this application with two puzzles:
number guessing and coin weighting.

In the first puzzle we need to guess a number x ∈ {1, 2, · · · ,m} with a minimal
number of questions of the form: is x < a? In this basic version all numbers in the
set are equally likely to be the chosen number, ie, we have a uniform probability
distribution on {1, · · · ,m}. Intuition (?) tells us that the best strategy is, at each
step, to ask questions that, as much as possible, halve the set of candidates.

Example 38. Suppose m = 12. A first question may be ”is x < 7?”; a yes answer
leads to a second question ”is x < 4”?, while a no answer should be followed by ”is
x < 10?”
With this strategy we arrive at a T (12, 2) tree with L̄ = 11/3 ≈ 3.66, while the
entropy of the uniform probability distribution is equal to log2(12) ≈ 3.58 (HW).

The strategy is confirmed by Shannon’s theory: at each step we have a uniform
probability distribution on a certain subset and choose the question that gives us
more information.

Problem 39. Suppose we want to guess a number 1 ≤ x ≤ 10 by making questions
of the form ”is x < a?”, knowing that the probability distribution is

p(x = a) =

{
0.15 if a < 6
0.05 if a > 5

Compute the entropy of the distribution. Find an optimal strategy in two different
ways:

a) Choosing sequences of questions with maximal information content at each
step;

b) Applying Huffman’s algorithm.

In the second puzzle we have a set of, apparently equal, n coins and have to find,
with a minimum number of weightings in a balance, a false coin, which is lighter
or heavier.

Problem 40. Let’s fix n = 12 and suppose that the false coin is lighter. In each
weighting we have 3 possible outcomes L, C or R, depending if the left pan is
lighter, the two are balanced or the right one is lighter. So the decision process may
be represented by a ternary rooted tree and at each step we determine which is the
weighting that, given what we already know, gives us more information.
We number the coins and represent a weighting by a pair (U, V ) where U and V
are subsets of {1, · · · , 12}.
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a) Verify, by comparing the values of the entropy in each case, that the weight-
ing ({1, 2, 3, 4}, {5, 6, 7, 8}) gives more information than ({1, 2, 3, 4, 5}, {6, 7, 8, 9, 10})
or ({1, 2, 3}, {4, 5, 6}).

b) Complete, following the strategy described above, the decision tree T ; com-
pute L̄(T ) and compare it with the entropy of the probability distribution.

c) Determine an optimal tree by Huffman’s algorithm. Compare and discuss
both results.


