1. Homework - 5

1- a) Determine all the possible dimensions of cyclic codes of length 13 over \mathbb{F}_{3}.
b) Verify that $p(x)=x^{3}+2 x+1$ is irreducible over \mathbb{F}_{3} and use it to determine a primitive 13 -th root of unity.
c) Use the previous results to justify that $g(x)=x^{7}+2 x^{6}+x^{5}+2 x^{4}+x^{2}+2$ is the generator polynomial of a $[13,6, d]$ cyclic code with $d \geq 5$.
d) Encode by some form of systematic encoding the source message ($0,1,1,2,0,1$).
e) Decode by error trapping the received word

$$
r=(1,0,1,1,2,1,0,1,2,0,1,2,2)
$$

assuming the error has weight less or equal than 2.
f) Find if the code corrects all bursts with weight 3.

2- Let C be the binary $[15,9]$ cyclic code with generator polynomial

$$
g(x)=1+x^{3}+x^{4}+x^{5}+x^{6} .
$$

C is known to be a 3 -burst error correcting code.
Decode ($0,1,0,0,0,0,0,0,1,0,1,1,1,1,1$).
3 - Let C be the $[15,9,7]$ cyclic code over $\mathbb{F}_{16}=\mathbb{F}_{2}[\alpha]\left(\alpha^{4}=\alpha+1\right)$ with defining set $T=\{1,2,3,4,5,6\}$.
a) Determine the corresponding generator polynomial.
b) Decode $r(x)=\alpha^{7} x^{11}+\alpha^{4} x^{7}+\alpha^{4} x^{6}+\alpha^{5} x^{5}+\alpha^{2} x^{4}+x^{3}+\alpha^{10} x^{2}+\alpha^{7}$ using Peterson's algorithm.
4- Let A be the Reed-Solomon code over $\mathbb{F}_{3^{2}}$ defined by

$$
C=\left\{\left(f(1), f(\lambda), \cdots, f\left(\lambda^{7}\right)\right): f(x) \in P_{4} \subset \mathbb{F}_{3^{2}}[x]\right\}
$$

where λ is a primitive 8 -root of unity satisfying $\lambda^{2}=\lambda+1$, and P_{4} denotes as usual the vector space of polynomials with degree less than 4 .
a) Determine the dimension and minimal distance of the trace code $\operatorname{Tr}(A) \subset$ \mathbb{F}_{3}^{8}.
b) Let B be the $[4,2,3]$ code over F_{3} with generator matrix

$$
G=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & 1
\end{array}\right]
$$

Decode the following output from the concatenated code $A[B]$, using syndrome decoding for B and Peterson's algorithm or the GCD algorithm for A :
$\left(\begin{array}{llllllll}2001 & 2201 & 2110 & 1002 & 1001 & 1011 & 0010 & 1011\end{array}\right)$.
c) Prove that the concatenated decoding algorithm used in b) corrects all errors with weight $w<6$, but that there are errors with weight 6 that are not corrected. Prove also that the algorithm succefully decodes any burst with length $l<8$.
5 - Let C be the alternant binary code with parity check matrix

$$
H=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6}
\end{array}\right]
$$

where $\alpha \in \mathbb{F}_{8}$ satisfies $\alpha^{3}+\alpha+1=0$.
a) Determine the dimension and minimal distance of C.
b) Apply the Euclidean algorithm to decode 1, $0,1,1,0,1,1$.

