1. Homework - 3

Exercise 1. Show that a perfect t-error-correcting linear code of length n over \mathbb{F}_{q} has exactly $\binom{n}{i}(q-1)^{i}$ cosets with coset leader of weight i, for $0 \leq i \leq t$ and no other cosets.

Exercise 2. Let C be a $[n, k, d]$-linear code over \mathbb{F}_{q} such that for every $1 \leq i \leq n$ there exists a codeword $c=\left(c_{1}, \cdots, c_{n}\right)$ with $c_{i} \neq 0$.
a) Show that $\sum_{c \in C} w(c)=n(q-1) q^{k-1}$;
b) Show that $d \leq \frac{n(q-1) q^{k-1}}{q^{k}-1}$;
c) Show that there cannot be a binary $[15,7, d]$-linear code for $d>7$.

Hint: Consider the table whose rows are the codewords and compute the sum of the weights in two ways.

Exercise 3 (Plotkin bound: general case). Suppose C is a (n, M, d) code over \mathbb{F}_{q}. Consider the table whose rows are the codewords and, for a given fixed column, denote by m_{j} the number of ocurrences of $j \in \mathbb{F}_{q}$ in that column.
Denote by S the sum of distances between distinct codewords: $S=\sum_{c \neq c^{\prime}} \operatorname{dist}\left(c, c^{\prime}\right)$.
a) Verify that the contribution of the fixed column to S is

$$
\sum_{j \in \mathbb{F}_{q}} m_{j}\left(M-m_{j}\right)=M^{2}-\sum_{j \in \mathbb{F}_{q}} m_{j}^{2} \leq \theta M^{2}
$$

where $\theta=\frac{q-1}{q}$.
Hint: Apply Cauchy-Schwarz inequality to $\sum_{j} m_{j}$.
b) By summing over all ordered pairs of codewords, conclude that

$$
M(M-1) d \leq n \theta M^{2} \Leftrightarrow d \leq n \theta \frac{M}{M-1} .
$$

Exercise 4. Consider the code $[6,3] C$ over \mathbb{F}_{3} with generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 2 & 1 \\
0 & 1 & 0 & 2 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

a) Verify directly that C and C^{\perp} have both minimal distance 3 and that

$$
A_{0}=A_{0}^{\perp}=1, \quad A_{3}=A_{3}^{\perp}=6 .
$$

b) Use the MacWilliams equalities to deduce the remaining weight coefficients.

Exercise 5. Show that, if $W_{C}(z)$ is the weight enumerator of a binary code C then
a) $W_{C_{e}}(z)=\frac{1}{2}\left(W_{C}(z)+W_{C}(-z)\right)$ where $C_{e}=\{c \in C: w(c) \equiv 0 \bmod 2\}$;
b) $W_{\hat{C}}=\frac{1}{2}\left((1+z) W_{C}(z)+(1-z) W_{C}(-z)\right)$ where \hat{C} is the parity extension of C.

Exercise 6. Find all possible weight enumerators of binary self-dual $[8,4]$ codes.

