Introduction to Coding Theory 2023-2024 - Homework 1

1. Apply Huffman's algorithm to construct q-ary codes with the prescribed probability distributions:
a) $q=3, P=\{0.3,0.1,0.1,0.1,0.1,0.06,0.05,0.05,0.05,0.04,0.03,0.02\}$;
b) $q=4, P=\{0.3,0.1,0.1,0.1,0.1,0.06,0.05,0.05,0.05,0.04,0.03,0.02\}$;
2. Suppose that $\left\{c_{1}, \cdots, c_{n}\right\}$ is an optimal binary prefix code for the probability distribution $\left\{p_{1}, \cdots, p_{n}\right\}$ satisfying $p_{i}>p_{i+1}$ for all $1 \leq i<n$. Find constants $0<b<a<1$ such that
i) if $p_{1}>a$ then the length of c_{1} is 1 ;
ii) if $p_{1}<b$ then the length of c_{1} is at least 2 .

Are your constants optimal with respect to those conditions?
3. Let C be the linear $[10,5]$ code over \mathbb{F}_{3} with generator matrix

$$
G=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 2 & 0 & 1 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 2 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 0 & 2 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 1 & 0
\end{array}\right] .
$$

a) Encode the message ($1,2,0,2,0$);
b) Compute the minimal distance of C;
c) Decode, by syndrome decoding, the output ($1,0,2,2,0,1,2,1,0,0$)
4. Let C be the code over \mathbb{F}_{3} with parity-check matrix

$$
H=\left[\begin{array}{llllllll}
2 & 1 & 2 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 2 & 0 & 1 & 0 & 0 \\
2 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 2 & 1 & 2 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and let

$$
u=\left(\begin{array}{llllllll}
1 & 0 & 0 & ? & 0 & 0 & 2 & 0
\end{array}\right), \quad v=\left(\begin{array}{llllllll}
1 & 0 & 1 & 2 & ? & ? & 0 & 1
\end{array}\right)
$$

be outputs. Discuss the possible decoding of u and v.
5. Suppose that C is a binary $[31,22,5]$-linear code.
a) Determine the number of cosets of C and the number of coset leaders with weight 0,1 and 2 ;
b) Determine, for each coset, an upper bound for the number of words of weight 3 contained in it;
d) Show that the previous computations lead to a contradiction.
6. Let C be the code over \mathbb{F}_{3} with parity-check matrix

$$
H=\left[\begin{array}{llllllll}
1 & 2 & 0 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 & 2 & 1
\end{array}\right]
$$

a) Determine the minimal distance of C and show it corrects any error pattern with weight 1 and also the error patterns
aa000000, 0aa00000, 00aa0000, 000aa000,
0000aa00, 00000aa0, 000000aa, a000000a, for $a \in\{1,2\}$.
b) Decode the outputs 11111112 and 11211200 .
7. A q-ary Hamming code, ie a Hamming code over \mathbb{F}_{q} (a field with q elements) is defined by a parity-check matrix H whose columns are representatives of the different 1-dimensional subspaces of \mathbb{F}_{q}^{m}, for some $m>0$; we denote this code as $\mathcal{H}_{m}(q)$.
a) Show that $\mathcal{H}_{m}(q)$ is a $\left[\frac{q^{m}-1}{q-1}, \frac{q^{m}-1}{q-1}-m, 3\right]$-code.
b) Compute the dimension and minimal distance of the dual of $\mathcal{H}_{m}(q)$.
Hint: Use the form of the generator matrix H to compute the number of zero entries in a given codeword $u H$.

