Introduction to Coding Theory 2023-2024 - Homework 1

- 1. Apply Huffman's algorithm to construct q-ary codes with the prescribed probability distributions: a) $q = 3, P = \{0.3, 0.1, 0.1, 0.1, 0.06, 0.05, 0.05, 0.05, 0.04, 0.03, 0.02\};$ b) $q = 4, P = \{0.3, 0.1, 0.1, 0.1, 0.1, 0.06, 0.05, 0.05, 0.05, 0.04, 0.03, 0.02\};$
- Suppose that {c₁, ..., c_n} is an optimal binary prefix code for the probability distribution {p₁, ..., p_n} satisfying p_i > p_{i+1} for all 1 ≤ i < n. Find constants 0 < b < a < 1 such that

 if p₁ > a then the length of c₁ is 1;
 if p₁ < b then the length of c₁ is at least 2.

Are your constants optimal with respect to those conditions?

3. Let C be the linear [10, 5] code over \mathbb{F}_3 with generator matrix

	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \end{array}$	0 0	0 0	0 0	$\begin{array}{c} 0 \\ 2 \end{array}$	$2 \\ 0$	21	$\frac{1}{2}$	1 1	
G =	0	0	1	0	0	2	1	0	1	2	.
	0	0	0	1	0	2	1	2	0	1	
	0	0	0	0	1	2	2	1	1	0	

- a) Encode the message (1, 2, 0, 2, 0);
- b) Compute the minimal distance of C;
- c) Decode, by syndrome decoding, the output (1, 0, 2, 2, 0, 1, 2, 1, 0, 0)
- 4. Let C be the code over \mathbb{F}_3 with parity-check matrix

$$H = \begin{bmatrix} 2 & 1 & 2 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 2 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 2 & 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix}$$

and let

 $u = (1 \ 0 \ 0 \ ? \ 0 \ 0 \ 2 \ 0), \quad v = (1 \ 0 \ 1 \ 2 \ ? \ ? \ 0 \ 1)$

be outputs. Discuss the possible decoding of u and v.

- 5. Suppose that C is a binary [31, 22, 5]-linear code.
 - a) Determine the number of cosets of C and the number of coset leaders with weight 0, 1 and 2;
 - b) Determine, for each coset, an upper bound for the number of words of weight 3 contained in it;
 - d) Show that the previous computations lead to a contradiction.
- 6. Let C be the code over \mathbb{F}_3 with parity-check matrix

H =	1	2	0	2	1	0	0	0
	0	1	2	0	2	1	0	0
	0	0	1	2	0	2	1	0
	0	0	0	1	2	0	2	1

a) Determine the minimal distance of C and show it corrects any error pattern with weight 1 and also the error patterns

aa000000, 0aa00000, 00aa0000, 000aa000,

0000aa00, 00000aa0, 000000aa, a000000a,

for $a \in \{1, 2\}$.

- b) Decode the outputs 11111112 and 11211200.
- 7. A q-ary Hamming code, ie a Hamming code over \mathbb{F}_q (a field with q elements) is defined by a parity-check matrix H whose columns are representatives of the different 1-dimensional subspaces of \mathbb{F}_q^m , for some m > 0; we denote this code as $\mathcal{H}_m(q)$.

 - a) Show that $\mathcal{H}_m(q)$ is a $[\frac{q^m-1}{q-1}, \frac{q^m-1}{q-1} m, 3]$ -code. b) Compute the dimension and minimal distance of the dual of $\mathcal{H}_m(q)$.

Hint: Use the form of the generator matrix *H* to compute the number of zero entries in a given codeword uH.

 $\mathbf{2}$