
1. Reed-Solomon Codes

We consider now an important class of linear codes: let F = Fqm be a finite field.
We fix n | (qm − 1), k < n and x = (x0, · · · , xn−1) ∈ Fn, where the xi are nonzero
and distinct. Let

Pk = {f(x) ∈ F[x] : deg(f) < k}.
We take as source messages the vectors (a0, · · · , ak−1) ∈ Fk, which are identified

with polynomials:

(a0, · · · , ak−1)→ f(x) =

k−1∑
i=0

aix
i.

The message is then encoded as

f(x)→ (f(x0), · · · , f(xn−1)).

Definition 1. The [n, k, d]-linear code

C(x) = {(f(x0), · · · , f(xn−1)) : f(x) ∈ Pk} ⊂ Fn

is called a Reed-Solomon Code.

Remark 2. We will not include, in general, the reference to the vector x in the
notation for the code.

The generator matrix for C depends on the choice of basis for Pk. If the choice
is the canonical basis 1, x, · · · , xk−1, we get

G =

 1 · · · 1
x0 · · · xn−1
xk−10 · · · xk−1n−1


Remark 3. From now on, we will present matrices, most of the times, indicating
the form of the general term, together with the dimensions. We will also start the
indices of rows and columns at 0. The matrix G is then

G =
[
xij
]j<n

i<k
.

Example 4. Let F7, n = 6, x = (1, 2, 3, 4, 5, 6) and k = 4. The generator matrix
of this Reed-Solomon code, with respect to the canonical basis of P4, is

G =


1 1 1 1 1 1
1 2 3 4 5 6
1 4 2 2 4 1
1 1 6 1 6 6


and an example of encoding is

3 + 2x2 + x3  (3, 0, 2, 1)G = (6, 5, 6, 1, 3, 4)

Theorem 5. If C is a Reed-Solomon [n, k, d]-linear code, then d = n − k + 1, ie,
C is a MDS code.
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Proof. If f1, f2 ∈ Pk, f1(xi) = f2(xi) can happen for at most k − 1 coordinates,
and so, putting ci = (fi(x0), · · · , fi(xk−1)), we have dist(c1, c2) ≥ n− (k − 1).
The opposite inequality is valid for any block code over a finite field by Singleton’s
bound. �

Remark 6. Recall that the error-correcting capability of a code is

t = bd− 1

2
c =

{
d−1
2 d odd

d−2
2 d even

ie, the same value of t is attained with d = 2t+ 1 and with d = 2t+ 2.
This means, in the case of Reed-Solomon codes, that for a fixed n, and considering
only the resulting information rate and error correcting capability, it is better to
choose a code with odd minimum distance.

Recall that the dual of an MDS code is also MDS. It is thus natural to ask if
the dual of a Reed-Solomon code is also a Reed-Solomon code, defined by the same
or by another vector x. It turns out that we have such a property if we slightly
generalize the definition.

Definition 7. Let x be defined as above and a = (a0, · · · , an−1) ∈ Fn be a vector
with nonzero coordinates.
A generalized Reed-Solomon code C(a,x) is defined as

C(a,x) = {(a0f(x0), · · · , an−1f(xn−1)) : f(x) ∈ Pk} ⊂ Fn.

The generator matrix, with respect to the canonical basis of Pk, is G = [ajx
i
j ]
j<n
i<k .

Given two vectors a and b, the codes C(a,x) and C(b,x) are monomially equiv-
alent (HW).

Proposition 8. If C(a,x) is a [n, k, n− k + 1] code, its dual is also a generalized
Reed-Solomon code C(b,x).

Proof. The dual code is MDS, with parameters [n, n− k, k + 1]. First, notice that

(b0, · · · , bn−1) ∈ (C(a,x))
⊥

if and only if

∀f(x) ∈ Pk

∑
j

bjajf(xj) = 0⇔
∑
j

bjajx
i
j ∀0 ≤ i < k.

On the other hand, the dual of the [n, n − 1, 2] code C(a,x) is a [n, 1, n] code,
with basis constituted by a vector (b0, · · · , bn−1) with nonzero coordinates. This
dual code is clearly a generalized Reed-Solomon code C(b,x).
Suppose now that C(a,x) has dimension k < n − 1; then, for any h(x) ∈ Pn−k,

(b0h(x0), · · · , bn−1h(xn−1)) ∈ (C(a,x))
⊥

: if f(x) ∈ Pk, f(x)h(x) ∈ Pn−1; but by
construction

n−1∑
j=0

bjajφ(xj) = 0, ∀φ(x) ∈ Pn−1.

We just concluded that the [n, n−k, k+1] generalized Reed-Solomon code C(b,x) is

contained in (C(a,x))
⊥

and we have equality as they have the same dimension. �
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Corollary 9. A parity-check matrix for the code C(a,x) is

H = [bjx
i
j ]
j<n
i<n−k.

Remark 10. The proof indicates that the vector b may be chosen as a member of
the kernel of [ajx

i
j ]
j<n
i<k , with nonzero coordinates. This solution is in general not

unique, even up to multiplication by a scalar.

Exercise 11. Show that the dual C⊥ of the code in example 4 is not Reed-Solomon
and find a vector b such that C⊥ is the generalized Reed-Solomon code C(b,x).

The most simple choice for the construction of a Reed-Solomon code is to take
xi = λi where λ is a primitive n-th root of unity in F, and in fact any Reed-Solomon
code is equivalent to one defined in this way (HW).
We obtain straightforward formulas for both generator and parity-check matrices:

Lemma 12. The [n, k] Reed Solomon code {(f(1), f(λ), · · · , f(λk−1)) : f(x) ∈ Pk}
has generator and parity-check matrices

G =
[
λij
]j<n

i<k
H =

[
λ(i+1)j

]j<n

i<n−k
.

Proof. (HW). Hint: multiply H on the right by

L =
[
λ(j+1)(n−i)

]j<n−k

i<n
.

�

1.1. Reed-Solomon Codes as Cyclic Codes. It is clear from the definition that
Reed-Solomon codes defined with xi = λi are cyclic: if

(
f(λi)

)
0≤i<n

∈ C then(
f(λi+1)

)
0≤i<n

=
(
h(λi)

)
0≤i<n

where the exponents are taken modulo n and h(x) = f(λx).

We will now identify the generating polynomial g(x) =
∑n−k

i=0 gix
i. We recall that

codewords (c0, · · · , cn−1) of cyclic codes have been interpreted as coefficients of
polynomials:

(c0, · · · , cn−1)→ c(x) =

n−1∑
i=0

cix
i = f(x)g(x) mod (xn − 1)

where f(x) ∈ Pk. On the other hand, a codeword of the Reed-Solomon code has
been defined as (f(1), f(λ), · · · , f(λn−1)).

To reconcile these two presentations, if f(x) =
∑k−1

i=0 aix
i,

(f(1), f(λ), · · · , f(λn−1)) = (c0, · · · , cn−1)

implies that

c(x) =

n−1∑
i=0

f(λi)xi =

n−1∑
i=0

k−1∑
s=0

asλ
isxi =

k−1∑
s=0

as

n−1∑
i=0

λisxi,
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and so, for any 1 ≤ j ≤ n− k,

c(λj) =

k−1∑
s=0

as

n−1∑
i=0

λ(s+j)i =

as 1 ≤ s+ j ≤ n− 1, and so λs+j 6= 1,

=

n−1∑
i=0

λ(s+j)n − 1

λs+j − 1
= 0.

This implies in particular that that g(λi) = 0 for 1 ≤ i ≤ n− k and so, as g(x)
is a monic polynomial with degree n− k,

g(x) =

n−k∏
i=1

(x− λi).

This could also be confirmed noting that

G =
[
λij
]j<n

i<k
H =

[
λ(i+1)j

]j<n

i<n−k

are respectively generator and check-parity matrices for C, and that, as the
matrix Gg whose i-th row are the coefficients of xig(x) is also a generator, GgH

T =
0.

This was in fact the motivation for the definition of this class of codes, ie, to define
cyclic codes with a defining set containing a long array of consecutive elements, in
order to take advantage of the BCH bound for the distance.

Example 13. Taking λ = 3, we obtain a code equivalent to the one in example 4,
with generator and parity-check matrices

G =


1 1 1 1 1 1
1 3 2 6 4 5
1 2 4 1 2 4
1 6 1 6 1 6

 H =

[
1 3 2 6 4 5
1 2 4 1 2 4

]

The generator polynomial is g(x) = (x − 3)(x − 2) = x2 + 2x + 6. An example of
encoding is

3 + 2x2 + x3  (3, 0, 2, 1)G = (6, 6, 5, 4, 1, 3)

which corresponds to the polynomial

c(x) = 6 + 6x+ 5x2 + 4x3 + x4 + 3x5 = g(x)(3x3 + 2x2 + 3x+ 1).
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1.2. Decoding: Peterson’s Algorithm. The structure of these codes allows for
particular decoding algorithms, of which we present one, the so called Peterson’s
algorithm.
We assume that d = n − k + 1 is odd, and so that t = d−1

2 . The definition of the
decoding procedure is presented for the general case but the concrete computations
are developed only for the case xi = λi.
The strategy for decoding is to compute, from a received message r = (ri)0≤i<n,
polynomials Q0(x), Q1(x) ∈ F[x] satisfying

1) deg(Q0(x)) ≤ s = n− 1− t;
2) deg(Q1(x)) ≤ t;
3) Q0(xi) + riQ1(xi) = 0 ∀i < n.

Before we start the computation of these polynomials, we notice that such poly-
nomials do exist: putting

Q0(x) =

s∑
i=0

Q0,ix
i, Q1(x) =

t∑
i=0

Q1,ix
i

condition 3) gives a set of n equations on the Q0,i and Q1,i:[
xji |rix

j
i

]( Q0,i

Q1,i

)
where in the first block of the matrix 0 ≤ j ≤ s while in the second, 0 ≤ j ≤ t.
Because s+ 1 + t+ 1 = n+ 1 and the system has n equation, there always exists a
non-zero solution.

Suppose r = c + e, where c ∈ C is the encoding of a polynomial c(x) (ie,
c = (c(x0, · · · , c(xn−1)), e is the error pattern, and w(e) ≤ t. By construction

Q0(xi) + (c(xi) + ei)Q1(xi) = 0 ∀i

but ei = 0 for at least n− t coordinates; so

Q(x) = Q0(x) + c(x)Q1(x)

has at least n− t roots. However,

deg(Q(x)) ≤ max{deg(Q0(x)),deg(c(x) +Q1(x))} ≤ n− t− 1,

and so (always under the assumption that w(e) ≤ t) Q(x) is the zero polynomial,
implying that the original message is recovered as

c(x) = −Q0(x)

Q1(x)
.

Remark 14. We notice also that ei 6= 0 =⇒ Q1(xi) = 0. So the knowledge of the
polynomial Q1(x) allows us to locate the position of the possible errors: these may
only occur at the coordinates corresponding to roots of Q1(x)
For this reason the polynomial Q1(x) is also called the locator polynomial.

We now describe the computation of the coefficients, in the case xi = λi: the
system of equations becomes[

λij
]

(Q0,j) +
[
riλ

ij
]

(Q1,j) = 0,
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where the first matrix R0 =
[
λij
]

has dimensions n × (s + 1) while the second

R1 =
[
riλ

ij
]

has dimensions n× (t+ 1);

multiplying on the left by B =
[
λ(i+1)j

]j<n

i<t
we get (HW)

BR1(Q1,j) = 0.

On the other hand, the entries of the matrix D(r) = BR1 may be computed
directly as coordinates of the syndrome of r

HrT = (S0, · · · , Sn−k−1)T .

Identifying r = (r0, · · · , rn−1) with the polynomial r(x) =
∑n−1

i=0 rix
i, the syndrome

of r is

(r(λ), · · · , r(λn−k)).

A direct computation (HW) shows that

D(r) = [Si+j ]
j<t+1
i<t .

Remark 15. The number n−k of syndrome coordinates coincides with the number
2t = d − 1 of entries in D(r) because of the choice of d being odd. If we were to
choose a even d and t = bd−12 c and follow the same decoding procedure, using the
values s = n− 1− t and l = s− k+ 1 = d− 1− t as upper bounds for the degrees of
the polynomials Q0(x) and Q1(x), we still get the same properties, but the entries of
the matrix D(r) coincide with the syndrome coordinates only up to i+ j+ 1 = d−1
and so the last entry of the matrix can not be read directly from the syndrome.

From the last equation we compute the coefficients of Q1(x) , which we may
choose with the lowest possible degree. Going back to the original equation

R0(Q0,j) +R1(Q1,j) = 0,

we know that the second summand (with Q1(x) already computed) lies in the kernel
of B. We saw above that the columns of R0 lie also in this space, so to prove the
existence of a solution Q0,j to the equation it is enough to prove that those s + 1
columns of R0 span the kernel of B.
We derive this fact from a useful general result:

Proposition 16. For any m > 0 and x0, · · · , xm−1 the Vandermonde matrix

V (x0, · · · , xm−1) =
[
xij
]j<m

i<m

has determinant
∏

0≤u<v<m(xv − xu).

Proof. (HW) By induction on m. The case m = 1 is obvious. Assuming the
statement to be true for m− 1,

L(z) = det(V (x0, · · · , xm−2, z))

is a polynomial on z with degree (m− 2). We know its zeros and main coefficient
and so we have a factorization; using the induction hypothesis and putting z = xm
the induction step is completed. �
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In particular, V (1, λ, λ2, · · · , λn−1) has nonzero determinant, because λ is a
primitive n-th root of unity in F. Multiplying on the right by the diagonal ma-
trix diag(1, λ, · · · , λn−1), we obtain an invertible matrix whose first t rows are the
matrix B defined above.
This implies that B is surjective, its rank is t and its kernel has dimension n− t =
s+ 1.
By the same reasoning, the matrix R0 may be extended, by adding n − s − 1 = t
columns, to the same Vandermonde matrix V (1, λ, · · · , λn−1). This implies that
the matrix R0 is injective, ie, the columns are linearly independent and so they
span the kernel of B.
So there exists a vector Q0,j satisfying the equation, for each Q1,j in the kernel of
D(r).

In fact, for this choice of xi this deduction is not strictly necessary because the
computations are made easier by the following observation, whose proof is left as
an exercise:

Lemma 17.
n−1∑
i=0

(
λ−j

)i
λki =

{
n if k = j
0 otherwise

This implies that the equation for the Q0,i may be solved as

(Q0,i) = −n−1CR1(Q1,j)

where C =
[
λ−ij

]j<n

i<s+1
.

We illustrate the construction of Reed-Solomon codes and the application of
Peterson’s algorithm with a couple of examples:

Example 18. Let q = 11, λ = 3, n = 5 and k = 3. So d = 3, t = 1 and s = 3.
The generator matrix is in this case

G =

 1 1 1 1 1
1 3 9 5 4
1 9 4 3 5


while the corresponding parity-check matrix is

H =

[
1 3 9 5 4
1 9 4 3 5

]
.

If r = ( 5 9 1 2 0 ) we compute the syndrome HrT = (7, 8)T and we

obtain the matrix D(r) = [ 7 8 ].
A possible choice for the locator polynomial is Q1(x) = x+ 2. The computation of
Q0(x) follows from the solution of the linear equation

1 1 1 1
1 3 9 5
1 9 4 3
1 5 3 4
1 4 5 9




Q0,0

Q0,1

Q0,2

Q0,3

 = −diag( 5 9 1 2 0 )


1 1
1 3
1 9
1 5
1 4


(

2
1

)
= −


4
1
0
3
0


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Applying Gauss-Jordan reduction or directly by the formula obtained above, we
obtain Q0(x) = −(2x2 + 7x + 6) and so the polynomial that generated the sent
message is

f(x) =
2x2 + 7x+ 6

x+ 2
= 2x+ 3

and the message is

( f(1) f(3) f(9) f(5) f(4) ) = ( 5 9 10 2 0 ).

This information could also be obtained from the fact that Q1(x) is the locator
polynomial: if ei 6= 0 then Q1(xi) = 0; in our case the only possible solution is
xi = 9 = 32. We could then compute the error pattern e = ( 0 0 e2 0 0 ) by
solving

HeT = HrT = S

which reduces to

9e2 = 7⇔ e2 = 2.

So the sent message is

r − e = ( 5 9 1 2 0 )− ( 0 0 2 0 0 ) = ( 5 9 10 2 0 ).

Example 19. A [8, 4, 5] Reed-Solomon code over F25:
We may start the construction of the desired field from any degree 2 polynomial,
irreducible over F5: one possible choice would be p(x) = x2 + 4x + 2; the field
F5[x]/(p(x)) = F5[α] (with α2 + 4α+ 2 = 0) has α as one of its primitive elements.
However, to construct the code we need an 8-th primitive root of unity; the obvious
choice is β = α3 = 4α + 3 which satisfies β2 = 2. From this point on we will
represent the field elements with respect to β; because β is not a primitive element,
we are not able to represent all nonzero field elements as powers.

Remark 20. We could of course start directly with the, also irreducible, polynomial
p(x) = x2 + 3.

The generator matrix is then

G =


1 1 1 1 1 1 1 1
1 β β2 β3 β4 β5 β6 β7

1 β2 β4 β6 1 β2 β4 β6

1 β3 β6 β β4 β7 β2 β5

 =


1 1 1 1 1 1 1 1
1 β 2 2β 4 4β 3 3β
1 2 4 3 1 2 4 3
1 2β 3 β 4 3β 2 4β


while the corresponding parity-check matrix is

H =


1 β β2 β3 β4 β5 β6 β7

1 β2 β4 β6 1 β2 β4 β6

1 β3 β6 β β4 β7 β2 β5

1 β4 1 β4 1 β4 1 β4

 =


1 β 2 2β 4 4β 3 3β
1 2 4 3 1 2 4 3
1 2β 3 β 4 3β 2 4β
1 4 1 4 1 4 1 4


The parameters of the code imply that t = 2 and s = 5.

Suppose the received message is

r = (0, β + 4, β, 3β + 1, 4, 4β + 1, 4, 2β + 1);
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the corresponding syndrome is s = (1, 4β + 1, 4β + 4, β + 1)T and so we obtain
the matrix

D(r) =

[
1 4β + 1 4β + 4

4β + 1 4β + 4 β + 1

]
,

and compute the coefficients of Q1: this is simpler if we first perform a Gauss-
Jordan reduction to obtain [

1 0 2β
0 1 4β + 2

]
from which we read directly the solution (3β, β + 3, 1)T , ie

Q1(x) = x2 + (β + 3)x+ 3β = (x− 2)(x− 4β);

this means that the nonzero entries of the associated error pattern are at positions
3 (corresponding to β2 = 2) and 6 (corresponding to β5 = 4β), ie,

e = (0, 0, aβ + b, 0, 0, cβ + d, 0, 0)T .

The coefficients are determined by the equation He = s, which is reduced to
2
4
3
1

 (aβ + b) +


4β
2

3β
4

 (cβ + d) =


1

4β + 1
4β + 4
β + 1

⇔

⇔


2β 2 3 4β
4β 4 2β 2
3β 3 1 3β
β 1 4β 4




a
b
c
d

 =


1

4β + 1
4β + 4
β + 1

 .

Remark 21. Although this is a linear equation over F25 we may instead equate
separately coefficients of β and ”independent” terms (as with the real and imaginary
parts in equations over C); in this case we get

2 0 0 4
4 0 2 0
3 0 0 3
1 0 4 0




a
b
c
d

 =


0
4
4
1


and 

0 2 3 0
0 4 0 2
0 3 1 0
0 1 0 4




a
b
c
d

 =


0
1
4
1

 .

The solution is that e = (0, 0, β + 3, 0, 0, 2, 0, 0) and r is decoded into c = (0, β +
4, 2, 3β + 1, 4, 4β + 4, 4, 2β + 1).

We may also determine Q0(x) = 2x5 + (2β+ 4)x4 + (4β+ 4)x3 + 4βx2 and from
that we find that the polynomial c(x) that originated the encoded message is

c(x) = −2x5 + (2β + 4)x4 + (4β + 4)x3 + 4βx2

x2 + (β + 3)x+ 3β
= 3x3 + 2x2.



10

Exercise 22. Compute the generator and parity-check matrices for the [10, 6, 5]
Reed-Solomon code over F11

C = {(f(1), f(λ), · · · , f(λ9)) : f(x) ∈ P6

with λ = 2.
Apply Peterson’s algorithm to the decoding of

r = (4, 0, 0, 3, 0, 2, 1, 2, 2, 3).

Exercise 23. Let C be the [15, 9, 7] cyclic code over F16 = F2[α] (α4 = α+ 1) with
defining set T = {1, 2, 3, 4, 5, 6}.

a) Determine the corresponding generator polynomial.
b) Decode r(x) = α7x11 +α4x7 +α4x6 +α5x5 +α2x4 +x3 +α10x2 +α7 using

Peterson’s algorithm.

Exercise 24. Let F72 = F7[x]/(x2 + 6x+ 6) = F7[β].

a) Verify that β is a primitive 16-root of unity and use it to define a [16, 8, 9]
code over F72 .

b) Determine the generator polynomial of the code.
c) Decode, both by error trapping and by Peterson’s algorithm, the received

message

(2, 5, 6β+2, β+5, 3β+2, 4β, 6β+3, 2β+3, 6, 4β+4, β+2, β+4, 4β+5, 6β+5, β+1, 3β+1)


