
1. Cyclic Codes

Definition 1. A linear code C ⊂ Fn over a finite field F is called a cyclic code if
it is a cyclic subset, ie if it is invariant under the cyclic shift τ defined by

τ((u0, u1, · · · , un−1)) = (un−1, u0, · · · , un−2).

τ is obviously a linear map of Fn:

τ(u) = (u0, u1, · · · , un−1)T,

where T is the matrix with row i equal to τ i((1, 0, · · · , 0)).

Suppose that u ∈ Fn \ {0} and that k is defined as

max{j > 0 : u, τ(u), τ2(u), · · · , τ j−1(u) is linearly independent}.

Then {u, τ(u), τ2(u), · · · , τk−1(u)} is a basis for a [n, k] cyclic code with gener-
ator matrix 

u
τ(u)

...
τk−1(u)


If τk(u) =

∑k−1
i=0 ciτ

i(u), and c = vG for some v ∈ Fk then the cyclic property
is reflected in the equalities

τ(c) = cT = vGT = vMG

where M is the companion matrix of the polynomial f(z) =
∑k−1
i=0 ciz

i.

Example 2. Consider the binary code C with generator

G =

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


The rows of G are u, τ(u) and τ2(u); moreover, τ3(u) = u+ τ2(u). So C is cyclic
and

GT =

 0 1 0
0 0 1
1 0 1

 .
As we will see briefly, this construction is in fact completely general. But in

order to take advantage of the cyclic structure it is necessary to translate it in a
more algebraic form.
Before that, we end this introductory section with a general property that can be
proved directly from the definition:

Proposition 3. The dual of a cyclic code is also cyclic.

Proof. HW. �
1
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1.1. Polynomial Representation. The vector space Fn may be identified with
F[x]/(xn − 1) through the isomorphism

ρ : Fn → F[x]/(xn − 1), ρ((u0, u1, · · · , un−1)) =

n−1∑
i=0

uix
i;

this last space is not only a F-vector space but also a ring, with the usual sum and
multiplication of polynomials as operations, which of course are always modulo
xn−1. In other words, F[x]/(xn−1) is a F-commutative algebra. It is obviously
not a field (unless n = 1) because xn − 1 is not irreducible. The structure of
F[x]/(xn − 1) will be analysed in greater detail later.

As a consequence of this identification, we consider vectors as polynomials, ie,
we identify the vector u ∈ Fn with the polynomial ρ(u) or, to be more precise with
its equivalence class in the quotient ring.
With this isomorphism, we have the following important interpretation of the cyclic
shift, that will be essential from now on:

ρ(τ(u)) = xρ(u).

Remark 4. Because of this identification, when working with cyclic codes, we will
index the coordinates of vectors, as well as rows and columns of generator and parity
check matrices, starting at 0 and not at 1, as usual. In this way, the index of a
coordinate coincides with the power of x of the corresponding term in the polynomial
representation.

Remark 5. Although it is not strictly necessary for the definition, we will always
assume that n and q are coprime where N = |F| is a power of a prime. The case
where n and N ae not co-prime will be discussed later.

The representation of vectors from Fn as polynomials adds a richer algebraic
structure to that vector space and its subspaces, namely linear codes, as we will
now see.
We recall that a subset S of a commutative ring R is a ideal if

∀α, β ∈ S ∀γ ∈ R : α+ β ∈ S, γα ∈ S.
An ideal S ⊂ R is principal if it is generated by a single element: there exists
µ ∈ S such that every α ∈ S is equal to γµ for some γ ∈ R.
Finally, R is said to be a principal ideal domain if it does not contain zero
divisors and every ideal is principal. Basic examples of principal ideal domains are
Z and F[x] and in both cases the property is derived from the validity of a Division
Lemma and the existence of greatest common divisors.

Proposition 6. All ideals in F[x]/(xn − 1) are principal.

Proof. (HW). It is a consequence of the same property for F[x]: given a nonzero
ideal I from F[x]/(xn − 1) and the projection π : Fq[x] → F[x]/(xn − 1), consider

Ĩ = π−1(I). �

We now come to an important characterization of cyclic codes:

Theorem 7. A linear code C ⊂ F[x]/(xn− 1) is cyclic if and only if it is an ideal.
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Proof. Suppose C is cyclic. By linearity, given u(x), v(x) ∈ C, u(x) + v(x) ∈ C;
to prove the other property , it is enough (HW) to prove that for any u(x) ∈ C,
xu(x) ∈ C. This was already seen before:

xu(x) = x

n−1∑
i=0

uix
i =

n−1∑
i=0

uix
i+1 = un−1 + u0x+ · · ·+ un−2x

n−1

which belongs to C by cyclicity. In the last equality we use of course the fact that
xn ≡ 1.
The converse follows the same line of reasoning and is left as an exercise (HW). �

As a consequence of the two last results, we have

Proposition 8. If C ⊂ F [x]/(xn − 1) is a cyclic code, it contains a unique monic
polynomial g(x) of minimal degree, the generator polynomial of C. This is de-
noted a C =< g(x) >. Moreover, g(x) | (xn − 1) in F[x] and k = dim(C) =
n− deg(g(x)):

G =


g(x)
xg(x)

...
xk−1g(x)


is a generator matrix for the code.

Proof. (HW). �

Conversely,

Proposition 9. If g(x) | (xn − 1) then it is the generating polynomial of a length
n cyclic code (with dimension n− deg(g(x))).

Proof. (HW): the matrix G defined in the previous proposition is a generator of
a linear code C ⊂ F[x]/(xn − 1) and g(x) is the unique polynomial with minimal
degree. It remains only to verify that C is cyclic, ie, that xkg(x) ∈ C. �

Corollary 10. There is a bijection between cyclic codes of length n over F and

monic divisors of xn − 1. If xn − 1 =
∏
j p

tj
j is the decomposition in irreducible

factors, there are
∏
j(tj + 1) distinct cyclic codes C ⊂ Fn.

Proof. (HW). �

Example 11. g(x) = x4 + x3 + x2 + 1 is a divisor of x7 − 1 in F2[x] and so is the
generator polynomial for a [7, 3]-cyclic code over F2. The corresponding generator
matrix is

G =

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
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We may obviously obtain a different generator, for instance, by Gauss Jordan re-
duction:

G1 =

 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


From either one of them it is easy to confirm that the code has distance d = 3 and
is a 1 error-correcting code.

It was noticed before that not every linear code has a generator matrix in stan-
dard form. However, for cyclic codes, the existence of a generator in a modified
standard form is guaranteed:

Proposition 12. A [n, k] cyclic code has a generator matrix G = [AIk], where Ik
denotes the k-dimensional identity matrix.

Proof. For every 0 ≤ i < k, we may write xn−k+i = vi(x)g(x) + ri(x), where
deg(ri(x)) < n − k. The vectors corresponding to the codewords xn−k+i − ri(x)
constitute a basis of the code with the desired property. (Details are left as HW).

�

Exercise 13. Find a generator matrix G = [A | Ik] for the code in the previous
example.

Remark 14. Because the dual of a cyclic code is again cyclic, this implies that a
cyclic code has also a generator in standard form.

1.1.1. Parity-check matrices and dual codes. A parity-check matrix for a cyclic code
may be obtained from a corresponding generator matrix, as for any linear code. In

particular, by the last proposition, we may obtain a parity-check matrix in stan-
dard form H = [In−k |B].

But it is also possible to derive a parity-check matrix directly from the generator
polynomial.
We start by noticing that, if

xn − 1 = g(x)h(x), g(x) =

t∑
i=0

gix
i, h(x) =

n−t∑
j=0

hjx
j ,

then
k∑
i=0

gihk−i = 0, ∀0 < k < n, ;

in particular, for every t ≤ k < n,

t∑
i=0

gihk−i = 0

Definition 15. Given a polynomial f(x) ∈ F[x] with degree m, its reciprocal
polynomial is defined as

fR(x) = xmf(x−1),

ie, it is the polynomial with the same coefficients in reversed order.
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We show that, given the factorization above and C the code with polynomial
generator g(x), hR(x) ∈ C⊥: using the basis for C corresponding to

g(x), xg(x), · · · , xn−t−1g(x),

this is equivalent (HW) to

∀0 ≤ l < n− t,
l+t∑
i=l

gi−lhn−t−i = 0⇔ ∀0 ≤ l < n− t,
t∑
i=0

gihn−t−l−i = 0.

But these are exactly the equalities obtined above (k = n− t− l).
So we obtained

Proposition 16. If g(x) is the generator polynomial of a [n, k]-cyclic code C over
F and xn − 1 = g(x)h(x) then g⊥(x) = h(0)−1hR(x), ie, the monic multiple of
hR(x), is the generator for C⊥.

Proof. �

Exercise 17. Find the generator polynomial for C⊥, where C is the code from
example 11.

1.1.2. Encoding. Different basis for a cyclic code give rise to different encodings,
which may also be interpreted in polynomial form, identifying the source vectors

u = (u0, · · · , uk−1) ∈ Fk with polynomials u(x) =
∑k−1
i=0 uix

i.

With the generator matrix associated to the basis

g(x), xg(x), · · · , xk−1g(x),

u(x) is encoded to u(x)g(x); this encoding is clearly nonsystematic.

On the other hand, the generator matrix of the form [A | I], associated, as we
saw above, to the basis

xn−k − r0(x), · · · , xn−1 − rk−1(x),

(where the ri(x) are defined as the remainders of division, in F[x], of xn−k+i by
g(x)) gives rise to the systematic encoding

u(x)→ xn−ku(x)− r(x)

(where, similarly, r(x) is the remainder of the division of xn−ku(x) by g(x)).

A second systematic encoding is based not on G but on the corresponding parity-
check matrix H obtained from the generator polynomial for C⊥: if the source u(x),

with degree less than k, is systematically encoded into c(x) =
∑n−1
i= cix

i then
ci = ui for 0 ≤ i < k, ie, c(x) = u(x) + ckx

k + ck+1x
k+1 + · · · + cn−1x

n−1; the
equation HcT = 0 allow us to compute the remaining coefficients ci iteratively: as

the generator polynomial of C⊥, g⊥(x) =
∑k
i=0 tix

i has degree k (and is monic),
the first row of H gives

k−1∑
i=0

tiui + ck = 0,
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the second
k−1∑
i=1

ti−1ui + tk−1ck + ck+1 = 0,

and so on.

Example 18. Let C be the [15, 7] binary cyclic code with generator polynomial
g(x) = 1 + x4 + x6 + x7 + x8. The corresponding generator matrix is

G =



1 0 0 0 1 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1


If the source is u(x) = 1 + x2 + x5, the encoding using G is

( 1 0 1 0 0 1 0 )G = ( 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 )

giving c(x) = 1 + x2 + x4 + x5 + x7 + x10 + x11 + x12 + x13, which may be obtained
also by polynomial multiplication c(x) = u(x)g(x).

Polynomial division gives us

x8u(x) = g(x)(1 + x+ x4 + x5) + 1 + x6

and the first form of systematic encoding described above gives c(x) = 1 + x6 +
x8u(x) = 1 + x6 + x8 + x10 + x13.

The generator polynomial of C⊥ is g⊥(x) = 1 + x + x3 + x7 and so we get a
parity-check matrix

H =



1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 1


Applying the second from of systematic encoding

H( 1 0 1 0 0 1 0 c7 c8 c9 c10 c11 c12 c13 c14 ) = 0

gives the message c(x) = 1 + x2 + x5 + x7 + x8 + x14.
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1.2. Decoding for Cyclic Codes. We review some general facts about syndrome
decoding for linear codes: suppose C is a linear code and that we have fixed an
encoding formula, associated with the choice of a generator matrix. If u is a received
message, we compute the syndrome s(u) = uHT , where H is a parity-check matrix
and, provided that the corresponding coset has a unique coset leader e, we decode
u as u− e.
If Q is an invertible (n−k)×(n−k) matrix, QH is also a parity-check matrix for C;
this different choice of parity-check matrix gives rise to different syndromes and/or
to a different correspondence between syndromes and cosets, but these, as well as
the coset leaders, remain unchanged. Ie, we are free to choose the parity-check
matrix for syndrome decoding.
We apply this obserrvation to the decoding process for cyclic codes:

Theorem 19. If g(x) is the generator polynomial for C and the parity-check matrix
has the form H = [In−k | A], then for u(x) ∈ Fn syn(u(x)) is the remainder of the
division of u(x) by g(x); in particular

syn(u(x)) ≡ u(x) mod g(x).

Proof. Identifying the columns of H with polynomials, the first n−k columns corre-
spond to 1, x, · · · , xn−k−1, while the remaining ones correspond to a0(x), · · · , ak−1(x),
all of degree less or equal than n− k − 1.
The matrix

[
−AT | Ik

]
is then a generator for C and so xn−k+i − ai(x) ∈ C, for all

0 ≤ i < k. Let xn−k+i − ai(x) = vi(x)g(x); if u(x) =
∑n−1
i=0 uix

i, its syndrome is
given by

S(x) =

n−k−1∑
i=0

uix
i+

k−1∑
i=0

un−k+iai(x) =

n−k−1∑
i=0

uix
i+

k−1∑
i=0

un−k+i
(
xn−k+i − vig(x)

)
=

= u(x)−

(
k−1∑
i=0

un−k+ivi(x)

)
g(x).

As deg(S(x)) < n − k = deg(g(x)), we confirm that S(x) is in fact the remainder
of the division. �

As we have already noticed in the discussion of encoding, the identification of
vectors with polynomials allows the natural embedding of F k (the space of source
vectors which are identified with polynomials of degree less or equal to k − 1) into
Fn. Now, also the syndromes (which belong, for a general linear code, to Fn−k) are
identified with polynomials of degree less or equal to n−k−1 and so with elements
of Fn.
This observation, together with the previous theorem, has a useful consequence:
suppose that C is t-error correcting. This happens if and only if every vector v
with w(v) ≤ t is a coset leader. So, if w(syn(u)) ≤ t, and since syn(u) belongs to
the coset containing u, we conclude that syn(u) is the error pattern associated to
u:

Corollary 20. If C is t-error correcting and w(syn(u)) ≤ t, then u is decoded into
u− syn(u).
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If w(syn(u)) > t, to perform syndrome decoding we must find the corresponding
coset leader.

Lemma 21. If syn(u(x)) = S(x) =
∑n−k−1
i=0 six

i, then syn(xu(x)) = xS(x) −
sn−k−1g(x).

Proof. If u(x) = z(x)g(x) + S(x) then

xu(x) = xz(x)g(x) + xS(x) = (xz(x) + sn−k−1) g(x) + (xS(x)− sn−k−1g(x)) ,

and deg (xS(x)− sn−k−1g(x)) < n − k, so this is the remainder of the division of
xu(x) by g(x). �

With this observation it is possible to justify a procedure to determine, in certain
cases, the coset leader of u(x).
We say that a vector has a cyclic run of l zeros if it has l consecutive zeros in the
cyclic order.

Example 22. The vector (0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0) has a cyclic run of 6 zeros.

We then have the following decoding procedure, called error trapping decod-
ing:

Proposition 23. Let C be a [n, k, d] cyclic code over F, with generator polynomial
g(x).
Suppose that u(x) is a received word. If its error pattern e(x) = u(x) − c(x) has
weight less or equal than t = bd−12 c and a cyclic run of at least k zeros, then the
following algorithm identifies and corrects it:

(1) Compute the syndromes Si(x) of xiu(x) until for some m, w(Sm(x)) ≤ t;
(2) compute the remainder r(x) of the division of xn−mSm(x) by xn − 1;
(3) decode u(x) into u(x)− r(x).

Proof. The assumption about the cyclic run of zeros of the error pattern means that
there exists an integer 0 ≤ m < n such that xme(x) has all its nonzero coordinates
in the first n− k positions, ie, xme(x) has degree less or equal than n− k − 1; this
implies (HW) that xme(x) = Sm(x) = syn(xmu(x)); since it has, by hypothesis,
weight less or equal than t, we confirm that, under our assumptions, we will in fact
find a m such that w(Sm(x)) ≤ t.
Now, if w(Sm(x)) ≤ t, we know that Sm(x) is the coset leader of xmu(x). Let
xn−mSm(x) = v(x)(xn − 1) + r(x); as

u(x)− r(x) = xn−m(xmu(x)− Sm(x)) + v(x)(xn − 1) ≡ 0 mod g(x),

we see that r(x) is in the same coset as u(x), and since w(r(x)) ≤ t it must be the
coset leader, ie, r(x) = e(x). �

We illustrate the decoding procedure with an example. We leave the computa-
tional details as an exercise:

Example 24. We consider a [15, 7] code C over F2 generated by g(x) = x8 + x7 +
x6 + x4 + 1. As

x15 − 1 = g(x)(x7 + x6 + x4 + 1)
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we obtain as generator polynomial for the dual code the polynomial hR(x) = 1 +
x+ x3 + x7. The check parity matrix for C in reduced form is H = [I8 |A] where

A =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 1 0 1 1 1 0
0 1 1 0 1 1 1
1 1 1 0 0 1 1
1 0 1 0 0 0 1


We see that d = 5, and so C is a 2 error correcting code: 5 is an obvious upper

bound because the minimum weight of the columns of A is 4; it is then enough to
verify that

- no linear combination of two columns of A has weight less or equal than 2
and

- no linear combination of three columns of A has weight less or equal than
1.

We notice that any error pattern with weight less or equal than 2 will have a cyclic
run of at least 7 zeros, which guarantees the success of the algorithm for those error
patterns.
Suppose the received word is (1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0), corresponding to

u(x) = 1 + x+ x4 + x5 + x6 + x8 + x9 + x13;

the list of the first syndromes Si(x) is

S0(x) = 1 + x2 + x5 + x7

S1(x) = 1 + x+ x3 + x4 + x7

S2(x) = 1 + x+ x2 + x5 + x6 + x7

S3(x) = 1 + x+ x2 + x3 + x4

S4(x) = x+ x2 + x3 + x4 + x5

S5(x) = x2 + x3 + x4 + x5 + x6

S6(x) = x3 + x4 + x5 + x6 + x7

S7(x) = 1 + x5

We decode u(x) as

u(x)−x8(1+x5) = u(x)−x8−x13 = 1+x+x4+x5+x6+x9 → (1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0).

1.2.1. Burst error-correcting decoding. The decoding algorithm described above
makes use of a particular property of the error patterns (the existence of a cyclic
run of at least k zeros); in certain cases (eg, the previous example), the parameters
of the code directly imply that property.

Exercise 25. Determine a condition on the length n, dimension k and minimal
distance d of a linear code that guarantee that any error pattern with weight less
than t = bd−12 c has a cyclic run of at least k zeros.
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On the other hand, that property is satisfied by error patterns that are concen-
trated in a relatively short interval of the message. In many practical applications
this is a very natural condition to consider. Such a pattern is called a burst error:

Definition 26. A burst of length l > 1 (or a l-burst) is a vector such that the
shorter (cyclic) interval containing its nonzero coordinates has length l.
A code is called l-burst-error-correcting if it can correct all bursts of length l or less
and l-burst-error-detecting if it can detect all bursts of length l.

Example 27. 000101010000 and 010000000101 are both bursts of length 5.

Remark 28. A vector may be seen as a burst in different ways; for example,
1001100 has two presentations as a 5-burst, starting at different coordinates. How-
ever, if 2l < n+ 2, then a vector has at most a presentation as a l-burst (HW).

For cyclic codes, a polynomial interpretation is that a l-burst is represented by
a polynomial e(x) of the form

e(x) = xib(x) mod xn − 1,

where b(x) has degree l − 1 and i indicates the first coordinate of the burst. As
noticed in the previous remark, if 2l < n+ 2 this representation is unique.

Proposition 29. A linear [n, k, d]-code C is l-burst-error-detecting if l < d.

Proof. Obvious... (HW). �

Notice that the condition is, in general, only sufficient but not necessary. A
sharper bound holds for cyclic codes:

Theorem 30. A [n, k]-cyclic code C detects all l-bursts if and only if l ≤ n− k.

Proof. C certainly detects 1-bursts, so we may take 1 < l ≤ n− k. Let g(x) be the
generator polynomial for C. Assume that the inequality holds; if v(x) is a l-burst,
then v(x) = xib(x) where 0 < deg(b(x)) = l− 1 < n− k. If v(x) ∈ C then, because
g(x) and xi are coprime (why?), we must have g(x) | b(x) a contradiction.
The bound is sharp because C contains g(x), which is a n− k + 1 burst. �

Theorem 31. A linear code C is l-burst-error-correcting if and only if each coset
contains at most one burst of length l or less.

Proof. HW �

Corollary 32. Let C be a [n, k] linear l-burst-error-correcting code. Then no
nonzero burst of length 2l or less is a codeword.

Proof. (HW). Hint: consider a possible counterexample c and show that there
exists a u such that both u and c− u are bursts of length ≤ l. �
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Theorem 33 (Reiger bound). If C is a [n, k] linear code that corrects, using min-
imal distance decoding, all bursts with length less or equal than l, then 2l ≤ n− k.

Proof. Suppose e is a burst of length 2l or less; e is the difference of two bursts of
length l or less, which must be in different cosets, implying that e /∈ C.
The proof is completed by the following observation, whose proof is left as an
exercise: if a [n, k] code does not contain a burst of length b or less, then b ≤
n− k. �

Exercise 34. Prove that if a [n, k] code does not contain a burst of length b or less,
then b ≤ n− k.
Hint: Consider the set S of vectors whose last n− b coordinates are zero. Justify
that they must belong to distinct cosets.

After these general observations, we return to cyclic codes, which we will verify
to be particularly suited to correct burst errors. As a burst of length l < n− k has
a cyclic run of more than k zeros, the decoding algorithm presented above may be
adapted to the correction of this type of errors, even if the number of errors exceeds
t = bd−12 c.
We state the corresponding version of the error trapping algorithm, whose proof is
similar to the one given above (HW):

Proposition 35. Let C be a [n, k, d] cyclic code over F, with generator polynomial
g(x) such that bursts of length at most l are contained in distinct cosets (C is l-burst
error correcting).
Suppose that u(x) is a received word. If its error pattern e(x) = u(x) − c(x) is a
burst of length at most l, then the following algorithm identifies and corrects it:

(1) Compute the syndromes Si(x) of xiu(x) until for some m, (Sm(x)) is a
burst of length at most l;

(2) compute the remainder r(x) of the division of xn−mSm(x) by xn − 1;
(3) decode u(x) into u(x)− r(x).

The details of the following example are left as an exercise (HW):

Example 36. The [15, 9, 5] binary cyclic code with generator polynomial

g(x) = 1 + x+ x2 + x3 + x6

is 3-burst-error-correcting. If

r(x) = 1 + x+ x2 + x4 + x5 + x9 + x10 + x13

we find that the syndrome of x8r(x) is 1 + x+ x2.
This leads to the decoding

r(x)− x7(1 + x+ x2) = 1 + x+ x2 + x4 + x5 + x7 + x8 + x10 + x13

Notice that the syndrome of x5r(x) is x3 + 1, which is not a burst of lenght less
or equal than 3 but has weigth 2. If we chose to correct a random error instead of
a burst error, then minimal distance decoding would lead to the decoding

r(x)− x10(1 + x3) = 1 + x+ x2 + x4 + x5 + x9.



12

1.3. Zeros and Minimal Distance of a Cyclic Code. In order to understand
the properties of cyclic codes, we analyze their algebraic structure in greater detail.
Let C be a [n, k] cyclic code over F with generator polynomial g(x).
If F = Fq (where q is a power of a prime) and m is the order of q modulo n, Fqm
contains a primitive n-th root of unity α; xn − 1 has, in this field, the roots

αi, 0 ≤ i < n;

as g(x) divides xn − 1, it has in Fqm [x] a factorization

g(x) =
∏
i∈T

(x− αi),

where T ⊂ {0, 1, · · · , n− 1} is called the defining set of C. We have

Proposition 37. The defining set T of a cyclic code satisfies |T | = n − k and is
the union of a subset of the cyclotomic cosets modulo n with respect to q.
If

{i1, · · · , il}
is a system of representatives of the distinct cyclotomic cosets intersecting T ,

g(x) =

l∏
j=1

pαij (x).

Proof. (HW). �

As a cyclic code C is the ideal of F[x]/(xn − 1) generated by g(x), it turns out
that it may be characterized by T :

Proposition 38. For any c(x) ∈ F[x]/(xn − 1), c(x) ∈ C if and only if c(αi) = 0
for all i ∈ T .

Proof. (HW). �

Remark 39. It must be noticed that the defining set T depends on the choice
of the primitive n-th root of unity α: if 1 < l < n is prime to n, αl is also a
primitive n-th root and with respect to it the new defining set is T ′ = l−1T = {il−1
mod n : i ∈ T}.

Exercise 40. Show that if c(x) is a codeword of a cyclic code C ⊂ Fq[x]/(xn − 1),
then its zero set Z(c) = {i : c(αi) = 0} is a union of cyclotomic cosets modulo n,
with respect to q.

We discuss now the problem of estimating the distance d of cyclic codes. We
prove the simplest general bound for this class of codes, the BCH bound:

Theorem 41. Suppose that C is a [n, k, d] cyclic code over Fq, with generator
polynomial g(x), and α is a primitive n-th root of unity in Fqm where m is the
order of q modulo n. Let T be the defining set of C with respect to α, ie,

T = {0 ≤ i ≤ n : g(αi) = 0}.

If T contains δ cyclically consecutive elements, then d ≥ δ + 1.
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Proof. By assumption the zeros of C include αb, αb+1, · · · , αb+δ−1. Let c(x) =∑n−1
i=0 cix

i be a codeword of minimal weight d and let c = (ci0 , ci1 , · · · , cid−1
)t be

the column vector whose coordinates are all the nonzero coefficients. Suppose that
d < δ + 1; then the matrix

M =
[
α(b+s)ij

]0≤j<d
0≤s<d

,

where s is the row index and j the column index, satisfies Mc = 0.
But

det(M) = αb(i0+···+id−1) det
[
αsij

]0≤j<d
0≤s<d

and this last matrix is a Vandermonde matrix with a nonzero determinant, a con-
tradiction. �

Remark 42. Vandermonde matrices will be used when studying a particular class
of codes (Reed-Solomon codes), and their properties will be discussed at that point.

Remark 43. The application of this result depends on the choice of α. As noticed
before, replacing α with αl, for some l prime to n, the defining set T is replaced
with l−1T , which may contain a longer sequence of consecutive elements.

Example 44. We consider again the [15, 7] cyclic code which has generator

g(x) = x8 + x7 + x6 + x4 + 1

and confirm that it has in fact minimal distance 5. We start by computing the
cyclotomic cosets modulo 15, with respect to 2:

C0 = (0), C1 = (1, 2, 4, 8), C2 = (3, 6, 12, 9), C3 = (7, 14, 13, 11), C4 = (5, 10).

Eeach coset Ci corresponds to an irreducible factor pi(x) of x15 − 1. So g(x) is
the product of two of the degree 4 factors, and the BCH bound guarantees that for
two of these products, p1p2 and p2p3, the minimal distance of the code generated
by them is at least 5, as the union of the corresponding cosets contains 4 cyclically
consecutive elements.
It is easy to compute the polynomials pi(x) because they are the only degree 4 ir-
reducible polynomial over F2: they must satisfy p(0) = p(1) = 1 and we need to
exclude x4 +x2 +1 = (x2 +x+1)2, where x2 +x+1 is the unique irreducible degree
2 polynomial; so the pi are (in some order)

x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1.

Moreover, two of the polynomials have, in F24 , primitive elements as roots: we know
the order of the roots of each irreducible polynomial, in the corresponding splitting
field, is the same, and F24 has φ(15) = 8 primitive elements. This implies that the
order of the roots of one of the polynomials must be 5, corresponding to the coset
C2, and we verify that it is the last one: if β is a root

β5 = β4 + β3 + β2 + β = 1.

We may choose either of the remaining two degree 4 polynomials to define a prim-
itive element (notice that the correspondance between the two polynomials and the
cosets C1 and C3 depends on the choice of the primitive root). But in this case
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we don’t even need to work with the primitive element; to confirm that g(x) cor-
responds to one of the two desired products, we just need to verify that p2(x) =
x4 + x3 + x2 + x+ 1 divides g(x).
Alternatively, we could see that the remaining product

p1(x)p3(x) = (x4 + x+ 1)(x4 + x3 + 1)

does not coincide with g(x).

Example 45. In this example we determine a [13, 5] cyclic code over F5. We start
by noticing that the order of 5 modulo 13 is 4, and so x13 − 1 splits completely in
F54 . The cyclotomic cosets modulo 13 with respect to 5 are

C0 = (0), C1 = (1, 5, 12, 8), C2 = (2, 10, 11, 3), C3 = (4, 7, 9, 6),

and we have, given a primitive 13-root of identity α, the corresponding irreducible
polynomials pi(x) =

∏
j∈Ci

(x− αj).
C1 ∪C3 contain a sequence of 6 consecutive elements and so there exists a degree 8
generator polynomial g(x) with 6 roots, implying that the minimal distance of the
code will be at least 7. In fact, any product of two degree 4 factors pi(x) will satisfy
this condition: this is because αj has order 13 for any j ∈ {1, · · · , 12}; so, for an
appropriate choice of primitive n-root of identity λ = αt, any product of two degree
4 factors pi(x) will equal

∏
j∈C1∪C3

(x− λj).
The difficulty lies in determining the polynomials pi(x), as we don’t know in advance
a primitive 13-root of identity α. We would need to identify, from the 150 degree
4 irreducible polynomials over F5 the three that have order 13.The most common
solution for this type of problem is either to look for the answer in available lists of
irreducible polynomials or to use a computer. It is possible, however, to solve the
problem directly and the ideas involved may even be helpful in more general settings.
The details of the computations are left as an exercise.
We fix the unknown 13-root α and write the polynomials as sums of monomials:
for p1(x) we obtain

p1(x) = (x− α)(x− α5)(x− α8)(x− α12) =

= x4− (α+α5 +α8 +α12)x3 +(2+α4 +α6 +α7 +α9)x2− (α+α5 +α8 +α12)x+1.

This expression leads us naturally to consider the sums ai =
∑
j∈Ci

αj; the expres-
sion above becomes

p1(x) = x4 − a1x3 + (2 + a3)x2 − a1x+ 1,

and we find in a similar way, that

p2(x) = x4−a2x3+(2+a1)x2−a2x+1, [p3(x) = x4−a3x3+(2+a2)x2−a3x+1.

We know that

p1(x)p2(x)p3(x) =

12∑
i=0

xi,

and comparing coefficients for i < 4, we deduce (HW) the relations a1 + a2 + a3 = −1
a1a2 + a1a3 + a2a3 = 1
a1a2a3 = −1
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These symmetric polynomials on the ai appear in the well known Newton relations:

(y−a1)(y−a2)(y−a3) = y3−(a1+a2+a3)x2+(a1a2+a1a3+a2a3)x−a1a2a3 = y3+y2+y+1.

But the roots of this last polynomial in F5 are 2, 3 and 4 (why?) and so we de-
termined the ai. However the relations obtained are not enough: for instance,
assuming (with no loss of generality) that a1 = 2, is a3 equal to 3 or to 4? In the
first case, we would have

p1(x) = x4 + 3x3 + 3x+ 1

while in the second
p1(x) = x4 + 3x3 + x2 + 3x+ 1.

Either by computing the order of the polynomials or by identifying which one is a
factor of x13 − 1, we find that the first is the correct option.
We may finally write explicitly the polynomials pi(x):

x4 + 3x3 + 3x+ 1, x4 + x3 + 4x2 + x+ 1, x4 + 2x3 + x2 + 2x+ 1.

Example 46. Suppose we want to construct a binary cyclic code of length 11. We
may start with the observation that the two factors in the polynomial decomposition
x11 − 1 = (x− 1)

∑10
j=0 x

j are irreducible over F2. In fact, let f(x) =
∑10
j=0 x

j; the

irreducibility of f(x) may be confirmed by Rabin’s criterion: the conditions

f(x) | (x2
10

− x), gcd(f(x), x2
5

− x) = gcd(f(x), x2
2

− x) = 1

are easily verified, even by hand. We could also confirm these conditions noticing
that 210 − 1 = 3× 11× 31 and in F210

- f(x) splits completely as the product of factors (x−λ) where λ is a primitive
11-root of 1,

- x2
5 − x splits as x(x− 1)

∏
(x− λ), with λ a primitive 31-root of 1,

- and x2
2 − x splits as x(x− 1)

∏
(x− λ), with λ a primitive 3-root of 1.

This shows that the only non-trivial binary cyclic codes of length 11 have dimen-
sion 1 or 11.
However, we have other cyclic codes by passing to an extension field: as we know,
f(x) factors as the product of two degree 5 irreducible polynomials p1(x) and p2(x)
over F4 = F2[α] (where α2 = α + 1). Concretely, let β denote a primitive 11-root
of unity (in F210); as the cyclotomic cosets modulo 11 with respect to 4 are

C0 = (0), C1 = (1, 4, 5, 9, 3), C2 = (2, 8, 10, 7, 6),

we have pi(x) =
∏
j∈Ci

(x− βj). Expanding these products, one finds that, putting

a =
∑
j∈C1

βj and b =
∑
j∈C2

βj,

p1(x) = x5 + ax4 + x3 + x2 + bx+ 1, p2(x) = x5 + bx4 + x3 + x2 + ax+ 1;

as neither a or b is in F2 and a + b = 1, we know that we may take a = α and
b = α2.
If we choose, for instance, (x − 1)p1(x) as the generator polynomial, we obtain a
[11, 5, d] code over F4 with d ≥ 4.

By a (very) tiresome verification or applying more advanced results, we find that
d = 5 and so the code is 2-error correcting. Moreover, any error pattern with weight
2 contains a string of cyclically consecutive zeros with length at least 5, and so the
error-trapping algorithm may be applied.
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Exercise 47. Show that the code from the last example is not 3-burst error cor-
recting.

1.3.1. Generating Polynomials and Idempotents. Besides the generator polynomial
g(x), other polynomials also generate the same ideal, ie, the same code:

Proposition 48. v(x) ∈ F[x]/(xn − 1) generates C if and only if, in F[x],

gcd(v(x), xn − 1) = g(x).

Proof. Suppose that gcd(v(x), xn − 1) = g(x). This implies that v(x) ∈< g(x) >=
C; on the other hand, there exist a(x), b(x) ∈ F[x] such that

g(x) = a(x)v(x) + b(x)(xn − 1),

implying that, modulo xn − 1, g(x) = a(x)v(x) and so the ideal generated by g(x)
is contained in the ideal of F[x]/(xn − 1) generated by v(x).
For the converse, assume C =< v(x) >; then, because g(x) ∈ C, there must exist
polynomials a(x), b(x) ∈ F[x] such that

g(x) = a(x)v(x) + b(x)(xn − 1);

if d(x) = gcd(v(x), xn − 1), this implies that d(x) | g(x); but d(x), by a reasoning
similar to the above also belongs to C; as g(x) is the unique monic polynomial with
minimal degree contained in C, we must have g(x) = d(x). �

The proof shows that the generator polynomial is obtained as a greatest common
divisor:

Proposition 49. If C ⊂ F[x]/(xn − 1) is a cyclic code generated by a polynomial
v(x), the generator polynomial g(x) of C is the greatest common divisor of v(x)
and xn − 1 in F[x].

Proof. Let d(x) = gcd(v(x), xn − 1). Because

v(x) = a(x)g(x) + f(x)(xn − 1) = [a(x) + f(x)h(x)]g(x),

g(x) divides d(x). But also

g(x) = v(x)u(x) + (xn − 1)

and so d(x) must divide g(x). �

Definition 50. A polynomial e(x) ∈ F[x]/(xn−1) is an idempotent if e(x)e(x) =
e(x) (more precisely, if this equality holds modulo xn − 1).

It turns out that each cyclic code C ⊂ F[x]/(xn−1) contains - and is determined
by - a unique generating idempotent:

Proposition 51. Given a cyclic code C ⊂ F[x]/(xn − 1),

i) a nonzero idempotent e(x) ∈ C generates the code if and only it is a unit
of C, ie for all c(x) ∈ C, e(x)c(x) = c(x);

ii) there exists a unique idempotent e(x) such that C =< e(x) >.
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Proof. To prove i) we notice that, if e(x) is a nonzero idempotent and a unit of
C, then, for any c(x) ∈ C, c(x) = c(x)e(x) ∈< e(x) >, and so e(x) generates C.
Conversely, if 0 6= e(x) is an idempotent and C =< e(x) >, then any c(x) ∈ C is of
the form c(x) = f(x)e(x), but

e(x)c(x) = e(x)e(x)f(x) = e(x)f(x) = c(x),

ie, e(x) is a unit in C.
Since n is prime to the order q of the field F, xn − 1 has no multiple roots in its
splitting field over F, and so the Euclidean algorithm for F[x] implies the existence
of polynomials a(x) and b(x) such that

1 = a(x)g(x) + b(x)h(x)

where h(x) = xn−1
g(x) .

Define e(x) = a(x)g(x) (modulo xn − 1); obviously e(x) ∈ C, and

e(x)e(x) = a(x)g(x) (1− b(x)h(x)) = a(x)g(x)−a(x)b(x)(xn−1) ≡ e(x) mod xn−1.

Uniquenes follows from i): if e(x) and e′(x) are two idempotents that generate C,
they are both units in C and so

e(x) = e(x)e′(x) = e′(x).

�

Example 52. Let C ⊂ F3[x]/(x11−1) be the cyclic code with generator polynomial

g(x) = x5 + x4 + 2x3 + x2 + 2;

then h(x) = x6 + 2x5 + 2x4 + 2x3 + x2 + 1 and applying the Euclidean algorithm

1 = (x4 + x3 + 1)h(x) + (2x5 + x4 + x2)g(x).

So the generating idempotent of C is e(x) = 2(x10 + x8 + x7 + x6 + x2).

Proposition 53. Let C1 and C2 be cyclic codes of length n over the same field
F with generator polynomials gi(x) and generating idempotents ei(x) (i ∈ {1, 2}).
Then C1 ∩ C2 and C1 + C2 are both cyclic codes and

i) C1∩C2 has generator lcm(g1(x), g2(x)) and generating idempotent e1(x)e2(x),
ii) C1 +C2 has generator gcd(g1(x), g2(x)) and generating idempotent e1(x) +

e2(x)− e1(x)e2(x).

Proof. (HW) �

The generating idempotents are helpfull in the construction of certain families
of cyclic codes and in the study of their properties. For now, we see how they are
related to the algebraic structure of the algebras F[x]/(xn − 1) anf its ideals (ie,
cyclic codes).

Remark 54. The results that follow are in fact particular cases of the Wedderburn
Structure Theorems for semi-simple commutative algebras.

We have in F[x] the factorization xn − 1 =
∏
i∈I fi(x) in distinct irreducible

factors. We denote by f̂i(x) = xn−1
fi(x)

.

Theorem 55. Given the factorization xn − 1 =
∏
i∈I fi(x),
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i) the ideals < f̂i(x) > are all the minimal nonzero ideals of F[x]/(xn − 1);
ii) we have the following direct sum decomposition F[x]/(xn − 1) = ⊕i <

f̂i(x) >;

iii) the generating idempotents êi(x) of < f̂i(x) > satisfy êi(x)êj(x) = 0 for all
i 6= j;

iv)
∑
i∈I êi(x) = 1;

v) the only idempotents of < f̂i(x) > are 0 and êi(x);
vi) If e(x) is a nonzero idempotent there is a subset J ⊂ I such that

e(x) =
∑
i∈J

êi(x) < e(x) >= ⊕i∈J < f̂i(x) > .

Proposition 56. The minimal ideals of F[x]/(xn − 1) are extension fields of F:
the map

F[x]/(fi(x))→< f̂i(x) >, v(x)→ v(x)êi(x)

is a ring isomorphism.

The proof of both results is left as a possible exercise (HW), but we illustrate
them with a simple example:

Example 57. Let q = 2 and n = 7. Over F2 we have the irreducible factorization

x7 − 1 = f0(x)f1(x)f2(x)

with
f0(x) = x+ 1, f1(x) = x3 + x+ 1, f2(x) = x3 + x2 + 1.

The corresponding f̂i(x) and êi(x) are
f̂0(x) = x6 + x5 + x4 + x3 + x2 + x+ 1 = ê0(x)

f̂1(x) = x4 + x3 + x2 + 1, ê1(x) = x6 + x5 + x3 + 1

f̂2(x) = x4 + x2 + x+ 1 = ê2(x)

Obviously F2[x]/(x+ 1) = F2. Denoting

F2[x]/(f1(x)) = F2[α] F2[x]/(f2(x)) = F2[β]

we have the direct sum decomposition

F2[x]/(x7 − 1) ' F2 ⊕ F2[α]⊕ F2[β].

This isomorphism sends v(x) to (v(1), v(α), v(β)).

1.4. Supplementary Results and Problems.

Exercise 58. Find a generator polynomial and a generator matrix for a [15, 5, d]
binary cyclic code that corrects all errors with weight less or equal than 3.

Exercise 59. a) Determine all the possible dimensions of cyclic codes of length
13 over F3.

b) Verify that p(x) = x3 +2x+1 is irreducible over F3 and use it to determine
a primitive 13-th root of unity.
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c) Use the previous results to justify that g(x) = x7 + 2x6 + x5 + 2x4 + x2 + 2
is the generator polynomial of a [13, 6, d] cyclic code with d ≥ 5.

d) Encode by some form of systematic encoding the source message (0, 1, 1, 2, 0, 1).
e) Decode by error trapping the received word

r = (1, 0, 1, 1, 2, 1, 0, 1, 2, 0, 1, 2, 2),

assuming the error has weight less or equal than 2.
f) Find if the code corrects all bursts with weight 3.

Exercise 60. Let C be the binary [15, 9] cyclic code with generator polynomial

g(x) = 1 + x3 + x4 + x5 + x6.

C is known to be a 3-burst error correcting code.
Decode (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1).

Exercise 61. Determine the smallest length of a binary cyclic code with generator
polynomial

g(x) = 1 + x4 + x5.

Exercise 62. Let C be a cyclic code over Fq with defining set T and generator
polynomial g(x). Let Ce be the subcode

Ce = {c = (ci) ∈ C :
∑
i

ci = 0}.

a) Prove that Ce is cyclic and has defining set T ∪ {0}.
b) Prove that C = Ce if and only if 0 ∈ T if and only if g(1) = 0.
c) Prove that if C 6= Ce then the generator polynomial of Ce is (x− 1)g(x).


