
1. Finite Fields

The first examples of finite fields are quotient fields of the ring of integers Z: let
t > 1 and define Z/t = Z/(tZ) to be the ring of congruence classes of integers modulo
t: in practical terms, we identify the clases with the remainders {0, 1, · · · , t − 1}
and define the sum and product modulo t. Then Zt is a field iff t is a prime. For
a prime q, we denote this field by Fq. Some general properties of these fields are
necessarily shared by all finite fields. They are reviewed in the next sections.

1.1. The Additive structure of Finite Fields. Let F be any finite field with
sum a+b and multiplication ab, for all a, b ∈ F . There exist necessarily two distinct
elements in F, the 0 (defined as the unique element such that 0 + a = a+ 0 = a for
all a ∈ F) and the 1 (defined as the unique element such that 1a = a1 = a for all
a ∈ F \ {0}). The multiplicative subgroup of non-zero elements of F is denoted by
F×.
There is a naturally defined homomorphism of rings from Z to F

ψ : Z→ F : ψ(t) = t · 1 =


∑t
i=1 1 if t > 0

−
∑−t
i=1 1 if t < 0

0 if t = 0

We denote ψ(t) simply as t.
The kernel of ψ is an ideal qZ ⊂ Z, with q > 0 necessarily a prime, as otherwise,
if q = st with both s > 1 and t > 1, 0 = ψ(st) = ψ(s)ψ(t) and F would contain
divisors of zero.

We conclude that there exists a injective homomorphism of Fq into F and, iden-
tifying Fq with its image, we may consider Fq as a subfield of F; it is called the
prime subfield of F and q is called the characteristic of F.
This implies that F is a vector space over Fq of finite dimension m and so |F| = qm.
This field is denoted as Fqm , a notation that hints, implicitely, to the fact that a
finite field with that given cardinality is essentially unique. When there is no ambi-
guity, we will denote this field simply as F, but will use sistematically the notation
Fq for the prime fields.
The vector space structure described above completely determines the additive
structure of F: it is isomorphic to a direct product of m copies of Fq; given a basis
u1, · · · , um, the elements of F may be identified with the corresponding vectors of
coordinates with respect to that basis and sum is performed component wise.

1.2. Multiplicative structure: Orders and Primitive Elements. Let again
F = Fqm . The understanding of the multiplicative structure of F starts with the
following basic property:

Proposition 1 (Fermat/Euler). For every a ∈ F×, aq
m−1 = 1. Equivalentely, for

every a ∈ F, aq
m

= a.

Proof. The equivalence of both statements is obvious. Suppose a 6= 0 and let the
nonzero elements of the field be indexed as ai, 1 ≤ i < qm. The mapping

F× → F×, ai → aai
1
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is a bijection. So

aq
m−1

qm−1∏
i=1

ai =

qm−1∏
i=1

aai =

qm−1∏
i=1

ai,

which implies the result, because
∏qm−1
i=1 ai 6= 0. �

Definition 2. For any a ∈ F×, the order of a is defined as

ord(a) = min{k > 0 : ak = 1}.

Proposition 3. For any a, b ∈ F×,

i) ord(a) | (qm − 1);

ii) ord(aj) = ord(a)
gcd(j,ord(a)) ;

iii) If ord(a) = s, ord(b) = t and gcd(s, t) = 1, then ord(ab) = st.

Proof. HW. �

Remark 4. The definition and properties of multiplicative order are generalized
for elements of a general commutative finite group. In particular, given a positive
integer m, we define, for any a prime to m,

ordm(a) = min{k > 0 : ak ≡ 1 mod m} = min{k > 0 : m | (ak − 1)}.

We now consider the problem of computing the number of elements in a finite
field, with a given order. For each t | (qm − 1) let O(t) = {a ∈ F× : ord(a) = t}.

Assume O(t) 6= ∅ and a ∈ O(t); then {a, a2, · · · , at−1} are distinct roots of xt−1.
But a polynomial over a field can not have more roots than its degree (a fact to be
verified below); and as any b ∈ O(t) is also a root of that polynomial, we conclude,
taking into account the properties of the order, that, if O(t) is nonempty,

O(t) = {aj : 1 ≤ j < t; gcd(j, t) = 1},
and |O(t)| = φ(t), where φ denotes the Euler function. Therefore,

qm − 1 = |F×| =
∑

t|(qm−1)

|O(t)| ≤
∑

t|(qm−1)

φ(t).

We recall that Euler’s φ function is, by definition, a multiplicative function:
if gcd(m,n) = 1 then φ(mn) = φ(m)φ(n) (HW). From this observation, and from
the easily confirmed fact that for a prime q, φ(qk) = qk − qk−1, we obtain the
general formula

φ(n) = φ

(
r∏
i=1

qtii

)
=

r∏
i=1

(
qtii − q

ti−1
i

)
= n

r∏
i=1

(
1− 1

qi

)
Moreover,

∑
t|n φ(t) = n for any n.

Exercise 5. Prove that
∑
t|n φ(t) = n for any n, by induction on the number of

distinct prime divisors of n.

Back to our problem, we conclude that |O(t)| = φ(t) for every t | (qm − 1) (ie,
O(t) is always non-empty). In particular, we obtain the following result:

Proposition 6. If F = Fqm , there exist exactly φ(qm − 1) elements a ∈ F× with
order ord(a) = qm − 1.
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An α ∈ F× with order ord(α) = qm − 1 is called a primitive element or
primitive root of the field.
The multiplicative structure of F is in this way completely determined: F× is a
cyclic group (of order qm − 1) {αi : 0 ≤ i < qm}.
When a primitive element α is known, multiplications in the field are turned into
sums by means of a ”table of logarithms”: for any c, d ∈ F×

cd = αsαt = αs+t.

Example 7. 2 is a primitive element of F11; the following table presents the cor-
respondance between exponents 0 ≤ j < 10 in the first row and field elements 2j in
the second:

0 1 2 3 4 5 6 7 8 9

1 2 4 8 5 10 9 7 3 6

It is easy to see that if α is a primitive element then αj is primitive if and only
if gcd(j, qm − 1) = 1 (HW).

The following map, the Frobenius automorphism of F over Fq, is essential
for the theory:

Proposition 8. Let σ : F→ F be defined by σ(a) = aq. Then σ is a field automor-
phism, ie, it is bijective and satisfies σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).
Furthermore, σ(a) = a iff a ∈ Fq.

Proof. HW. �

In order to construct non-prime finite fields and to understand their properties,
we need to consider in some detail polynomials in one variable.

1.3. Polynomials over F. In this subsection F denotes a field, not necessarily
finite. Denote by F[x] the ring and F-vector space of polynomials (in a variable x)
with coefficients in F:

F[x] = {p(x) =
∑
k≥0

akx
k |ak ∈ F;∃M : ak = 0∀k > M}

If am 6= 0 and ak = 0 ∀k > m, m = deg(p(x)) is the degree of p(x);
if m = deg(p(x)) and am = 1, p(x) is monic. Obviously, for every nonzero polyno-
mial p(x) ∈ F[x] there exists unique a ∈ F× and monic g(x) such that p(x) = ag(x).

The notation p(x) =
∑
k≥0 akx

k (with no explicit reference to the degree) sim-
plifies the presentation of the formulas for algebraic operations:

If
f(x) =

∑
k≥0

akx
k, g(x) =

∑
k≥0

bkx
k,

then
(f + g)(x) =

∑
k≥0

(ak + bk)xk,

f · g(x) =
∑
k≥0

 k∑
j=0

ajbk−j

xk;
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the multiplication by a scalar c ∈ F is a particular case (c 6= 0 is a polynomial of
degree 0):

cf(x) =
∑
k≥0

(cak)xk.

The well known division algorithm of polynomials shows that

Lemma 9. For any f(x), g(x) ∈ F[x], with g(x) not the zero polynomial, there
exist unique polynomials u(x) and r(x) satisfying

f(x) = u(x)g(x) + r(x), deg(r(x)) < deg(g(x)).

If r(x) = 0, we say that g(x) divides f(x): g(x) | f(x).
On the basis of this division Lemma, an Euclidean algorithm is defined, giving rise
to the proof of the existence of the gcd(f(x), g(x)) of two nonzero polynomials,
similarly to what happens in Z. If

i) h(x) | f(x), h(x) | g(x) and
ii) (v(x) | f(x) ∧ v(x) | g(x)) =⇒ v(x) | h(x),

then also ch(x) has the same property, for any c ∈ F×. We thus define gcd(f(x), g(x))
as the unique monic polynomial satisfying i) and ii).
Again as in Z, there exist polynomials u(x) and v(x) such that

gcd(f(x), g(x)) = u(x)f(x) + v(x)g(x),

that may be determined using the extended Euclidean algorithm: denoting
r−1(x) = f(x) and r0(x) = g(x), the algorithm computes, applying the division
algorithm, a sequence of remainders

rk+1(x) = rk−1(x)− qk+1(x)rk(x),

and a pair of sequences uk(x) and vk(x) satisfying

rk(x) = uk(x)f(x) + vk(x)g(x);

by a simple computation and induction argument, it is easy to verify that these
may be obtained by the initial conditions and recurrence relations

u−1(x) = 1 u0(x) = 0 uk+1(x) = uk−1(x)− qk+1(x)uk(x)

v−1(x) = 0 v0(x) = 1 vk+1(x) = vk−1(x)− qk+1(x)vk(x).

Furthermore,

Lemma 10. The quotients qk(x), remainders rk and coefficients uk and vk obtained
in the extended Euclidean algorithm applied to f(x), g(x)inF[x] satisfy, for all k,

i) uk(x)vk+1(x)− uk+1(x)vk(x) = (−1)k+1;
ii) rk(x)vk+1(x)− rk+1(x)vk(x) = (−1)k+1f(x);
iii) rk+1(x)uk(x)− rk(x)uk+1(x) = (−1)k+1g(x);

iv) - deg(uk(x)) =
∑k
i=2 deg(qi(x)),

- deg(vk(x)) =
∑k
i=1 deg(qi(x)),

- deg(rk(x)) = deg(f(x))−
∑k+1
i=1 deg(qi(x)).

Proof. (HW). �
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Example 11. Let q = 13 and

f(x) = 7x6 + 5x4 + x+ 2, g(x) = 4x5 + 5x3 + 3x2 + 6.

The following table presents the simultaneous calculations for the sequence of
remainders and of the polynomials uk(x) and vk(x):

ri qi ui vi
7x6 + 5x4 + x+ 2 1 0

4x5 + 5x3 + 3x2 + 6 0 1
6x4 + 11x3 + 10x+ 2 5x 1 8x

4x3 + 5x2 + 8x+ 7 5x+ 6 8x+ 7 12x2 + 4x+ 1
8x2 + 12x+ 4 8x+ 9 x2 + 2x+ 3 8x3 + 3x2 + 3x+ 4

x+ 1 7x+ 8 6x3 + 4x2 + 10x+ 9 9x4 + 6x3 + 6x2 + 4x+ 8
0 8x+ 4 4x4 + 9x3 + 9x2 + 7x+ 6 6x5 + 7x4 + x3 + 12x2 + x+ 11

We conclude that d(x) ≡ x + 1 is the greatest common divisor of
f(x) and g(x), in the ring Z/13[x], and we have the equality

x+ 1 ≡ (6x3 + 4x2 + 10x+ 9)f(x) + (9x4 + 6x3 + 6x2 + 4x+ 8)g(x).

Definition 12. f(x) ∈ F[x] with positive degree is irreducible if f(x) = g(x)h(x)
implies that at least one of these factors is a constant (a degree 0 polynomial).

Monic irreducible polynomials play the same role in F[x] that primes do in Z.
In particular,

Proposition 13. If f(x) is monic and irreducible, and f(x) | g(x)h(x) then f(x)
divides one of the factors in the product.

Proof. HW. �

And we have a version of the Fundamental Theorem of Arithmetic:

Theorem 14. Each monic polynomial has a unique, up to order of the factors,
decomposition as a product of monic irreducible polynomials.

Proof. HW. �

Definition 15. a ∈ F is called a root of f(x) ∈ F[x] if f(a) = 0 (considering f(x)
as a function on F) or, equivalentely, if (x− a) | f(x).

By induction on the degree, for instance, one proves that

Proposition 16. If deg(f(x)) = k > 0 then f(x) has no more than k roots (counted
with multiplicity).

Proof. HW. �

Remark 17. An obvious corollary is that a degree k polynomial over a field has no
more than k distinct roots. This corollary has an independent and almost immediate
proof, which is left as an exercise also.
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Later we will study in detail the factorization of polynomials over finite fields.
For the moment, we notice an important special case:

Definition 18. A polynomial f(x) ∈ F[x] is said to split completely if it decom-
poses as a product of distinct linear factors.

Proposition 19. If F is a field with qm elements, the polynomial xq
m − x splits

completely in F[x]

Proof. HW. �

1.4. Construction of Extensions of Fq. The existence and explicit construction
of finite fields other than the prime fields follows from the following result:

Proposition 20. Let f(x) ∈ Fq[x] be an irreducible polynomial of degree m. Then
the quotient ring Fq[x]/(f(x)) is a field with qm elements.

Proof. HW. �

This field may be seen, in an informal way, as the set of polynomials with coef-
ficients in Fq and degree less than m (the remainders upon division by f(x)), with
the operations of sum and product done modulo f(x).
It is more convenient to denote by a new symbol, say β, the congruence class of x
in the quotient and identify F with Fq[β], the field obtained from Fq by adding the
”new” element β; this new element satisfies f(β) = 0 and this equality determines
the operations of sum and product: 1, β, · · · , βm−1 is a basis of F over Fq; given
a, b ∈ F

a =

m−1∑
i=0

siβ
i, b =

m−1∑
i=0

tiβ
i with ai, bi ∈ Fq

the sum and product are obtained as the usual sum and product of the polynomial
expressions; the product, which is a polynomial expression of degree less or equal
than 2m− 2 is then reduced to a linear combination of the powers βi, 0 ≤ i < m,
by the repeated use of the equality f(β) = 0.
It should be noticed, however, that F = Fq[β] does not imply that β is a primitive
element of the field: take, for example, F3[x]/(x3 + x2 + 2).

Remark 21. This construction of the field F as a finite algebraic extension of
Fq, is no different from the maybe more familiar extensions of the rational field, as

Q[
√

2] ' Q[x]/(x2−2), which may appear ”more natural” only because we consider,

implicitely, Q as a subfield of the algebraically closed field C, where
√

2 exists, so
to speak. However, as in our case, that extension of the rationals is completely
independent of this inclusion and is valid also inside other algebraic completions of
Q, such as the p-adic fields.

Example 22. The simplest of all non-trivial examples of this construction is the
following: x2 +x+1 ∈ F2[x] is irreducible. We may then represent F = F2[x]/(x2 +
x + 1) as F = {0, 1, β, β + 1}. The sum and product tables are easily deduced: for
instance β(β + 1) = 1, etc.

Example 23. We consider the field F27 ' F3[x]/(x3+2x+2) which can be identified
with

F3[α] = {a+ bα+ cα2 : a, b, c ∈ F3}
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where α satisfies α3 = α+ 1.

For example,

α(α2 + α+ 1) = α3 + α2 + α = α+ 1 + α2 + α = α2 + 2α+ 1.

To compute (α+ 1)−1, we solve (α+ 1)(a+ bα+ cα2) = 1.

(α+ 1)(a+ bα+ cα2) = a+ (a+ b)α+ (b+ c)α2 + cα3 =

= a+ (a+ b)α+ (b+ c)α2 + c(α+ 1) = (a+ c) + (a+ b+ c)α+ (b+ c)α2

But

(a+ c) + (a+ b+ c)α+ (b+ c)α2 = 1⇔

 a+ c = 1
a+ b+ c = 0
b+ c = 0

So (α+ 1)−1 = 2α+ α2.

The same reasoning may be applied starting with any finite field F: if f(x) ∈ F[x]
is irreducible with degree d, F′ = F[x]/(f(x)) is a degree d extension of F. Of course,
if F is a degree m extension of a prime field Fq, F′ is a degree dm extension of Fq.
We will confirm that, for each q and m there exists, up to isomorphism, only one
extension of Fq with degree m.
On the other hand, given a fixed extension Fqm , we have

Proposition 24. Fqm contains a unique subfield Fqd for each d | m and these are
the only subfields of Fqm .

Proof. The theorem of Fermat-Euler shows that xq
d−x, because it divides xq

m−x,
splits completely in Fqm as a product of linear factors. Applying the Frobenius
automorphism of Fqm over Fq confirms that the roots of that polynomial are a
subfield.
The last statement is an immediate consequence of the properties of the order.

�

The construction of finite extensions of Fq depends on the existence and knowl-
edge of irreducible polynomials f(x) ∈ Fq[x].

1.4.1. Counting Irreducible Polynomials. We start with some general facts about
arithmetic functions:

Definition 25. A function f : N→ C is multiplicative if f(mn) = f(m)f(n) for
any coprime integers m and n.

Proposition 26. If f : N→ C is a multiplicative function, then

F : N→ C, F (n) =
∑
d|n

f(d)

is also multiplicative.

Proof. HW. �
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Definition 27 (Möbius Function). The Möbius function µ : N → {−1, 0, 1} is
defined as

µ(n) =

 1 if n = 1
(−1)k if n is squarefree with k distinct prime factors
0 otherwise

The function µ is obviously multiplicative and it satisfies the following

Theorem 28. For any n ∈ N∑
d|n

µ(d) =

{
1 if n = 1
0 otherwise

Proof. For n = 1 the result is obvious. Suppose that n > 1 and, if n has the prime
factorization n =

∏t
i=1 p

ki
i (with ki > 0), define rad(n) =

∏t
i=1 pi. It is clear∑

d|n

µ(d) =
∑

d|rad(n)

µ(d)

as for other divisors of n the corresponding summand is zero by definition. This
sum may be written, taking the number of factor primes of d as a parameter, as∑

d|rad(n)

µ(d) =

t∑
j=0

(
t

j

)
(−1)j = 0

by Newton’s Binomial formula. �

The main property of the Möbius function is expressed in the following funda-
mental result:

Theorem 29 (Möbius Inversion Formula). Given f : N→ N,

F (n) =
∑
d|n

f(d)⇔ f(n) =
∑
d|n

µ(d)F
(n
d

)
.

Proof. The proof consists in a straightforward computation:∑
d|n

µ(d)F
(n
d

)
=
∑
d|n

µ(d)
∑
t|n/d

f(t) =
∑
t|n

f(t)
∑
d|n/t

µ(d) = f(n)

as a consequence of the previous theorem.
The converse is proved in the same way. �

A similar argument proves

Theorem 30. Given f : N→ N,

F (n) =
∏
d|n

f(d)⇔ f(n) =
∏
d|n

(
F
(n
d

))µ(d)

.

Proof. HW. �
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The Inversion Formula is used to disclose several formulas for arithmetical func-
tions and relations between them.
Here we apply this theorem to obtain a formula for the number of irrreducible poly-
nomials, of given degree n, over a prime field Fq:
denote this number as Iq(n); we saw before that xq

m−x factors over Fq as the prod-
uct of all monic irreducible polynomials with degree dividing m; equating degrees,
we have

qm =
∑
d|m

dIq(d).

Möbius Inversion formula implies

Proposition 31. Let q be a prime. For any n ∈ Z+, the number of irreducible
polynomials of degree n in q[x] is

Iq(n) =
1

n

∑
d|n

µ(d)qn/d.

In particular, Iq(n) > 0, thus assuring the existence of irreducible polynomials
and so of field extensions of Fq of any given degree.

1.4.2. Minimal polynomials.

Definition 32. Given a ∈ F = Fqm , the minimal polynomial of a over Fq is the
(unique) monic polynomial pa(x) ∈ Fq[x] of minimum degree such that pa(a) = 0.

We state several properties of minimal polynomials:

Proposition 33. 1. pa(x) exists and is unique;
2. pa(x) is irreducible;
3. If p(x) ∈ Fq[x] is a monic irreducible polynomial and p(a) = 0 for some
a ∈ F, then p(x) = pa(x);

4. pa(x) | xqm − x and so deg(pa(x)) | m;
5. if α is a primitive element of Fqm then deg(pα(x)) = m.

Proof. The second part of 4. will be a consequence of a proposition in the next
section. The proof of the other statements is left as an exercise. �

The first example of a minimal polynomial was already provided by the con-
struction of F = Fq[β] = Fq[x]/(f(x)) itself, as it is easily seen that f(x) is the

minimal polynomial of β (and of course of the other roots βq
s

). More generally,
minimal polynomials of elements of Fqm are exactly the irreducible polynomials
with coefficients in Fq and degree dividing m.

Remark 34. We notice that, as a consequence of 5. in the previous proposition,
the construction of a finite field as the quotient of the polynomial ring Fq[x] by the
ideal generated by a monic irreducible polynomial f(x) of degree m gives rise to all
possible finite fields F of cardinality qm: suppose F is a finite extension of Fq and α
a primitive element with minimal polynomial p(x). Then F = Fq[α] ' Fq[x]/(p(x)).
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1.5. Factorizations of Polynomials. We focus our study of finite fields on the
problem of factorization of polynomials, which is also essential for the applications
to follow. This may be done, with advantage, in the framework of a general finite
field FN (where, of course, N is a prime power) and its extensions.
It is convenient to generalize the definition of the Frobenius automorphism:

Definition 35. Given a finite field FN and an extension FNm , the Frobenius au-
tomorphism of the extension is the mapping

σ : FNm → FNm , σ(x) = xN .

It satisfies
σ(x+ y) = σ(x) + σ(y), σ(xy) = σ(x)σ(y),

and
σ(x) = x⇔ x ∈ FN

Exercise 36. Verify that σ has the stated properties. Hint: remember that N = qt

for some prime q.

Remark 37. Only if we need to identify the extension for which the automorphism
is defined, we use the more detailed notation σ[FNm :FN ].

Remark 38. The Frobenius automorphism of the extension of FN by FNm induces
an automorphism of the ring FNm [x], which we denote again by σ, by the formula

σ

(∑
i

aix
i

)
=
∑
i

σ(ai)x
i.

Exercise 39. Verify that the mapping defined in the previous remark is a ring
automorphism

σ(g(x) + h(x)) = σ(g(x)) + σ(h(x)), σ(g(x)h(x)) = σ(g(x))σ(h(x)),

and that σ(g(x)) = g(x) if and only if g(x) ∈ FN [x].

1.5.1. Order and degree of irreducible polynomials. Given an irreducible polynomial
f(x), and the corresponding field Fq[β], as above, we have

Claim 40. f(x) splits completely over Fq[β], ie, it decomposes as the product of
distinct degree 1 factors

f(x) =

m−1∏
s=0

(x− βq
s

).

Proof. HW. Hint: Use the Frobenius automorphism. �

Proposition 41. The roots of f(x) have all the same order.

Proof. Let ord(β) = d; we have ord(βq
s

) = d
gcd(qs,d) . But d | (qm−1) and obviously

qm − 1 and qs are coprime.
�

As we will see now, f(x) | (xqm − x):
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Proposition 42. If h(x) ∈ Fq[x] is irreducible and deg(h(x)) = t then

h(x) | (xq
m

− x) iff t | m.

Proof. Let F = Fq[x]/(h(x)) = Fq[β] and consider the equality

xq
m

− x = u(x)h(x) + r(x),

with deg(r(x)) < t. Suppose first that t | m. We have that, for any c ∈ F and every

j > 0, cq
tj

= c (HW); in particular, cq
m

= c for all c ∈ F. This implies that the
t distinct roots of h(x) in F must also be roots of r(x), which can happen only if
r(x) = 0.
Conversely, suppose that h(x) | (xqm − x); this implies that σm(β) = βq

m

= β. Let
α be a primitive element of F (ie, an element of F with order qt − 1); there exist

vl ∈ Fq, 0 ≤ l < t, such that α =
∑t−1
l=0 vlβ

l; applying the Frobenius automorphism
again

σm(α) =

t−1∑
l=0

vlσ
m(βl) =

t−1∑
l=0

vlβ
l = α.

So αq
m−1 = 1 and (qt − 1) | (qm − 1), which can only happen if t | m (HW). �

Corollary 43. In Fq[x], xq
m − x =

∏
h(x) where the product runs over all irre-

ducible polynomials with degree dividing m.

Define the order o(f) of an irreducible polynomial f(x) ∈ Fq[x] as the order of
any of its roots in Fqm = Fq[x]/(f(x)).

Proposition 44. Let f(x) ∈ Fq[x] be an irreducible polynomial with deg(f(x)) = m
and o(f) = e.

a) o(f) | qm − 1;
b) f(x) | xo(f) − 1;
c) o(f) | n⇔ f(x) | (xn − 1):

Proof. HW. �

The order of f(x) determines its degree:

Theorem 45. Let f(x) ∈ Fq[x] be an irreducible polynomial with deg(f(x)) = m
and o(f) = e. Then m = orde(q), ie, m is the least positive integer satisfying
e | (qm − 1).

Proof. HW. �

However, deg(f(x)) does not determine o(f). Consider for example (HW) the
polynomials over F2

f(x) = x4 + x+ 1, g(x) = x4 + x3 + x2 + x+ 1.
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But it is possible to determine o(f) in the following way: o(f) | (qm − 1) so, if

qm − 1 =
∏
i p
ki
i is the prime factor decomposition, we must have o(f) =

∏
i p
ti
i

with ti ≤ ki; in fact,

ti = ki −max

{
s : o(f) | q

m − 1

psi

}
.

By Proposition 39,

o(f) | q
m − 1

psi
⇔ f(x) |

(
x

qm−1
ps
i − 1

)
,

and we may determine ti by a sequence of polynomial divisions.

At this point, we may clarify the claim of uniqueness of finite fields:

Theorem 46. Let q be a prime and m ≥ 1. There exists a unique, up to isomor-
phism, field Fqm with cardinality qm.

Proof. The existence of the field follows from the existence of an irreducible poly-
nomial f(x) ∈ Fq[x] with degree m.
As to uniqueness, suppose that f(x) and g(x) are two irreducible polynomials of the
same degree m. Let α be a primitive element of Fq[x]/(f(x)) and Fq[x]/(g(x)) =

Fq[β]. We have the decomposition into irreducible factors xq
m−1 − 1 =

∏
i pi(x),

where the pi(x) are minimal polynomials of its roots. g(x) divides xq
m−1 − 1, so

we must have g(x) = pi(x) for some i, ie, g(x) is the minimal polynomial of αi for
some i, ie, Fq[β] ' Fq[αi] ⊂ Fq[α]. But the two fields have the same cardinality so
we have equality. �

We end this section by answering the question of how does an irreducible poly-
nomial over a finite field F factor in an extension of it. To simplify the notation,
we will denote as Fm a finite field, where of course m is a power of a prime q.

Theorem 47. Let Fm be a finite field and Fmn an extension. Suppose f(x) ∈ Fm[x]
is an irreducible polynomial with degree t and let d = gcd(t, n).
Then f(x) factors in Fmn [x] as the product of d polynomials, each with degree t

d .
In particular, f(x) remains irreducible over Fmn if and only if gcd(t, n) = 1.

Proof. Suppose that g(x) is an irreducible factor of f(x) in Fmn [x] with degree s.
It suffices to show that s = t

d .
First, notice that if Fmns = Fmn [x]/(g(x)) = Fmn [α], ie, α is a root of g(x) in
Fmn [x]/(g(x)), then α is also a root of f(x) and so Fmt = Fm[x]/(f(x)) = Fm[α] is
a subfield of Fmns = Fmn [α]. In particular, t | (ns) which implies t

d | s.
Now, let u = ord(f); this implies, by Theorem 38 above, that t = ordu(m).
But then α has order u, both as an element of Fm[x]/(f(x)) = Fm[α] and of
Fmn [x]/(g(x)) = Fmn [α], implying that s = ordu(mn). But the properties of mul-
tiplicative order imply that

ordu(mn) =
ordu(m)

gcd(ordu(m), n)
=
t

d
.

�
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1.5.2. Cyclotomic cosets and Factorizaton. Given a primitive element α of F, we
may compute the minimal polynomial pαi(x) (which we will denote now simply by
pi(x)) of any other nonzero element, using the notion of cyclotomic cosets:

Definition 48. For any n co-prime to q, the cyclotomic coset of i modulo n,
with respect to q, is

Ci = {iqj mod n : j ≥ 0};

in other words, Ci is the orbit of i ∈ Z/n under the mapping

Z/n → Z/n x→ xq.

Obviously, the cyclotomic cosets partition Z/n; {i1, · · · , is} is called a complete
set of representatives of cyclotomic cosets if {Ci1 , · · · , Cis} are a partition of Z/n.

Example 49. The cyclotomic cosets modulo 26 with respect to 3:

{0}, {1, 3, 9}, {2, 6, 18}, {4, 12, 10}, {5, 15, 19},

{7, 21, 11}, {8, 24, 20}, {13}, {14, 16, 22}, {17, 25, 23}.
The cyclotomic cosets modulo 16 with respect to 3:

{0}, {1, 3, 9, 11}, {2, 6}, {4, 12}, {5, 15, 13, 7}, {8}, {10, 14}.

Remark 50. Let m be the order of q in Z×/n, ie m, the minimal positive integer

such that n | (qm − 1). If Ci is the cyclotomic coset of i modulo n, with respect to
q, it is clear that |Ci| = u where u is the least positive integer such that

i(qu − 1) ≡ 0 mod n;

it follows that |Ci| = m if gcd(i, n) = 1; on the other hand, if gcd(i, n) = v > 1 and
n1 = n/v, then we get from the same equation that |Ci| = p where p is the order of
q in Zn1

and so, in any case, p | m.

The next theorem generalizes the factorization of f(x) in Fq[x]/(f(x)) identified
before:

Theorem 51. Let α be a primitive element of Fqm . The minimal polynomial of αi

over Fq is

pi(x) =
∏
j∈Ci

(x− αj),

where Ci is the cyclotomic coset of i modulo qm − 1, with respect to q.

Proof. αi is obviously a root of the given polynomial. We verify that

pi(x) ∈ Fq[x];
pi(x) has no multiple roots;
any polynomial f(x) that has αi as a root is divisible by pi(x).

�

The details of the proof are left as an exercise (HW).
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Corollary 52. Let α be a primitive element of Fqm and {i1, · · · , ir} a complete set
of representatives of the cyclotomic cosets modulo qm − 1, with respect to q. Then

xq
m−1 − 1 =

r∏
k=1

pik(x).

Example 53. p(x) = x3 + 2x+ 1 is irreducible over F3, so we may take F27 to be
F3[α] where α is a root of p(x). It turns out that α is also a primitive element. The
following table gives the correspondence between powers of α and the expression of
the same element on the basis 1, α, α2:

0 1 9 α+ 1 18 α2 + 2α+ 1
1 α 10 α2 + α 19 2α2 + 2α+ 2
2 α2 11 α2 + α+ 2 20 2α2 + α+ 1
3 α+ 2 12 α2 + 2 21 α2 + 1
4 α2 + 2α 13 2 22 2α+ 2
5 2α2 + α+ 2 14 2α 23 2α2 + 2α
6 α2 + α+ 1 15 2α2 24 2α2 + 2α+ 1
7 α2 + 2α+ 2 16 2α+ 1 25 2α2 + 1
8 2α2 + 2 17 2α2 + α

The cyclotomic cosets found before allow us to factor x26 − 1 over F3:

{0} x− 1
{1, 3, 9} (x− α)(x− α3)(x− α9) = x3 + 2x+ 1
{2, 6, 18} (x− α2)(x− α6)(x− α18) = x3 + x2 + x+ 2
{4, 12, 10} (x− α4)(x− α12)(x− α10) = x3 + x2 + 2
{5, 15, 19} (x− α5)(x− α15)(x− α19) = x3 + 2x2 + x+ 1

... ...

1.5.3. Roots of unity and factorization of xn− 1. An element a ∈ F× is a n-root of
unity if an = 1 and a primitive n-root of unity if ord(a) = n.
If F = Fqm then the multiplicative group F× contains as a subgroup the n-roots of
unity if and only if n | (qm − 1). In particular, gcd(n, q) = 1; in fact, if n = qtu
with gcd(u, q) = 1, a n-root of unity in F is also a u-root of unity.
The smallest extension of Fq containing the n-roots of unity is Fqm with m =
ordn(q). If β is a primitive element (ie a primitive qm − 1 root of unity) the
primitive n-roots of unity are (HW)

{βk|k =
qm − 1

n
t; 1 ≤ t < n; gcd(t, n) = 1}.

We have also the following generalization of Corollary 43:

Theorem 54. Suppose that gcd(q, n) = 1 and that m is the order of q in Z×n . Let
α be a primitive element of Fqm and {i1, · · · , ir} a complete set of representatives of
the cyclotomic cosets modulo n, with respect to q. Then the following factorization
holds in Fq[x]:

xn − 1 =

r∏
j=1

pijs(x)

where s = qm−1
n where pl(x) is the minimal polynomial of αl.
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Proof. Under the conditions in the statement, αs is a primitive n-th root of identity
in Fq[α] and so, over this field,

xn − 1 =

n−1∏
j=0

(x− αjs);

the n exponent values are partitioned as a disjoint union of cyclotomic cosets modulo
qm − 1 because if a coset contains a multiple of s then all its elements are also
multiples of s; on the other hand, the mapping

Z/n → Z/(qm−1), i→ is

is well defined, injective, and it preserves cyclotomic cosets with respect to q, ie, i
and j are in the same coset modulo n if and only if is and js are in the same coset
modulo qm − 1; this implies that a complete system of representatives of cosets
modulo n corresponds, by this map, to a complete system of representatives of the
cosets modulo qm − 1 that contain the multiples of s.
So, for each 1 ≤ v ≤ r, we obtain an irreducible factor

pivs(x) =
∏

i∈Civs

(x− αi)

where Civs denotes the cyclotomic coset modulo qm − 1; if |Civs| = h,

pivs(x) =

h−1∏
j=0

(x− αivsq
j

).

The details of the argument are left as an exercise (HW). �

Example 55. Consider the polynomial x16 − 1 ∈ F3[x]; a complete system of
representatives for the cyclotomic cosets modulo 16, with respect to q = 3, was
obtained above: {0, 1, 2, 4, 5, 8, 10}. As 34 − 1 = 16 × 5, we must use a primitive
element α of F81.
Define F81 = F3[x]/(x4 + x + 2) = F3[α]. By the previous theorem, we have the
factorization

x16 − 1 = p0(x)p5(x)p10(x)p20(x)p25(x)p40(x)p50(x),

and, for instance,
p0(x) = (x− α0) = x− 1

while

p10(x) = (x− α10)(x− α30) = x2 − (α10 + α30)x+ α40 = x2 + x+ 2

The computation of the other factors is left as an exercise (HW).

The method of cyclotomic cosets to factor polynomials xn− 1, with n | (qm− 1)
into irreducible factors (which are minimal polynomials of their roots) has the
disadvantage of depending on computations envolving a primitive element of the
extension field. This disadvantage is stressed by the fact that there is no general
method to find primitive elements, even for prime fields.
The next two subsections are devoted to the application of other mathematical
concepts and theories to the problem of determining irreducible polynomials.
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1.5.4. Cyclotomic Polynomials. It is possible to obtain partial factorizations of xn−
1 working only in Fq[x] using the theory of cyclotomic polynomials.
Let F be any field containing the group of n-th roots of unity, or more precisely
an isomorphic copy of it. This may be C but it may also be Fqm for m such that
n | qm − 1.

Definition 56. Let n | (qm − 1). The n-th cyclotomic polynomial over Fqm is
defined as Φn(x) =

∏
a:ord(a)=n(x− a).

Although our definition depends on the extension field containing the n-roots of
unity, we’ll see that the cyclotomic polynomials do not depend on that choice. We
start with the following result:

Theorem 57. Φn(x) ∈ Fq[x] and its degree is φ(n). Moreover xn−1 =
∏
d|n Φd(x).

Proof. HW. �

The same argument used in the proof of the second version of Möbius Inversion
Formula gives us an explicit formula for the cyclotomic polynomials:

Proposition 58. For n ∈ Z+,

Φn(x) =
∏
d|n

(xn/d − 1)µ(d).

Proof. HW. �

As a consequence, we have

Lemma 59. Let p be prime and n, k ∈ Z+. Then

1. Φpn(x) =

{
Φn(xp) if p | n
Φn(xp)
Φn(x) if p - n

2. Φpkn(x) =

 Φn(xp
k

) if p | n
Φn(xpk )

Φn(xpk−1 )
if p - n

Proof. HW. Hint: In 1. apply the Inversion Formula for cyclotomic polynomials.
In the case p | n, notice that if d | pn then either d | n or d - n and p2 | d; in the
case p - n, notice that the divisors of pn are either divisors of n or of the for pd
with d | n.
2. is a easy consequence of 1. �

We have the following theorem, which we state without proof:

Theorem 60. For n ∈ Z+, Φn(x) is irreducible over Z.

However, the cyclotomic polynomials Φn(x) are not, in general, irreducible over
Fq: consider, for example, the case n = qm−1; then, assuming that α is a primitive
element in F = Fqm , we have the factorization

Φn(x) =
∏

0<i<qm−1;gcd(i,qm−1)=1

(x− αi);
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but the minimal polynomial of each of these αi over Fq has degree m. We conclude
that, over this field, Φqm−1(x) factors as a product of degree m irreducible polyno-
mials.
But the fact that a degree m irreducible polynomial f(x) ∈ Fq[x] totally splits in
Fqm (or in any extension field containing it) and that all its roots have the same
order, implies that if f(x) is a factor of some xn− 1 then it must be a factor of one
of the cyclotomic polynomials Φd(x) with d | n.

1.5.5. Minimal polynomials by Linear Algebra. A Linear Algebra approach to the
computation of irreducible polynomials over finite fields is as follows: let α ∈
Fq[β] = Fq[x]/(f(x)), where f(x) is an irreducible polynomial of degree m. As
it was seen above, 1, β, · · · , βm−1 is a basis of the Fq vector space Fq[β]. In partic-
ular, we have a matrix M such that

(1, α, α2, · · · , αm) = (1, β, · · · , βm−1)M.

It is then clear (HW) that a polynomial p(x) =
∑m
i=0 aix

i ∈ Fq[x] satisfies p(α) = 0
if and only if

M

 a0

...
am

 = 0.

So to find the minimal polynomial of α corresponds to determine the solution
(a0, · · · , am)t of this last equation such that there exists k for which ak = 1, ai = 0
for i > k, with k minimal. This can be done applying row-reduction to M , obtaining
a matrix of the form [

I U
0 V

]
where I is the k-dimensional identity matrix, and the first column of U is nonzero.
The solution wanted is then easily obtained (HW).

Exercise 61. Let F3[β] be defined by β3 = β + 2, and α = β2 + β + 2. Compute
the minimal polynomial of α by the method described in this subsection.
In an example above, it was seen, by a direct computation, that β (denoted as α in
that example) is in fact a primitive element of the field. Use the table given there
and the rsults about cyclotomic cosets to confirm the result.

1.5.6. Rabin’s Criterion for Irreducibility. Although the results in previous sections
may help in identifying irreducibility, they do not provide a general criterion and/or
method. One such criterion was proposed by Rabin:

Proposition 62. Let f(x) ∈ Fq[x] be a degree m polynomial, {p1, · · · , pt} the
primes dividing m, and mi = m

pi
. Then f(x) is irreducible if and only if

i) f(x) | (xqm − x);
ii) For all 1 ≤ i ≤ t, gcd(f(x), xq

mi − x) = 1.
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Proof. Suppose f(x) is irreducible; then it obviously satisfies i) and ii) (HW).
Suppose, on the other hand that f(x) satisfies i) and ii). Then, by Fermat-Euler
Theorem, f(x) totally splits in Fqm ; if f(x) has an irreducible factor g(x) with
degree n < m then Fqn = Fq[x]/(g(x)) is a subfield of Fqm and so n | m. But
then n | mi for some 1 ≤ i ≤ t; this would imply Fqn ⊂ Fqmi and in particular

g(x) | gcd(f(x), xq
mi − x), contradicting ii).

The details of the argument are left as an exercise (HW). �

1.6. Automorphisms, Norm and Trace. This subsection collects some basic
results on the group of automorphisms of an extension Fqm of a prime field Fq and
on the Norm and Trace maps associated to it. Many details are left as an exercise.

Recall that a map τ : Fqm → Fqm is an automorphism if it is a bijection satisfying

τ(x+ y) = τ(x) + τ(y), τ(xy) = τ(x)τ(y), ∀x, y ∈ Fqm .

Definition 63. Gal(Fqm/Fq) denotes the group of automorphisms of Fqm that leave
the points of Fq fixed.

As we saw above, an example of such an automorphism is the Frobenius auto-
morphism σ. We will see that in fact Gal(Fqm/Fq) = {σk : 0 ≤ k < m}, where, of
course, σk denotes de k-fold composition of σ.

By definition, each ϕ ∈ Gal(Fqm/Fq) is a linear invertible transformation of Fqm ,
as a vector space over Fq (HW). The set L(Fqm) of all Fq-linear transformations
of Fqm is also a vector space over Fqm , and we have

Lemma 64. The automorphisms in Gal(Fqm/Fq) are linearly independent over
Fqm (as elements of L(Fqm)).

Proof. Assume ϕ1, · · · , ϕr ∈ Gal(Fqm/Fq) and a1, · · · , ar ∈ F×qm . are such that

a1ϕ1 + · · ·+ arϕr = 0

is a shortest nontrivial linear relation. Obviously r > 1 and the ϕi are all distinct.
Let x ∈ Fqm be some element such that ϕ1(x) 6= ϕ2(x). Then, for any y ∈ Fqm ,

r∑
i=1

aiϕi(xy) =

r∑
i=1

aiϕi(x)ϕi(y) = 0

which implies that
∑r
i=1 aiϕi(x)ϕi = 0 is also a linear relation. But then

r∑
i=2

ai(ϕi(x)− ϕ1(x))ϕi = 0

is a shorter linear relation, a contradiction. �

As a consequence,

Lemma 65. Gal(Fqm/Fq) contains at most m elements.
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Proof. Suppose that this is not the case and let ϕ1, · · · , ϕn be distinct elements of
Gal(Fqm/Fq), with n > m. If v1, · · · , vm is a basis of Fqm over Fq, then the system
of m linear equations (over Fqm) in n variables ϕ1(v1) ϕ2(v1) · · · ϕn(v1)

...
...

. . .
...

ϕ1(vm) ϕ2(vm) · · · ϕn(vm)


 x1

...
xn

 =

 0
...
0


must have a nontrivial solution (a1, · · · , an). This implies that

∑n
i=1 aiϕi(y) = 0,

for any y ∈ Fqm , ie, the automorphisms ϕi are linearly dependent, contradicting
the result in the previous lemma. �

Corollary 66. Gal(Fqm/Fq) = {σk : 0 ≤ k < m}, where σ is the Frobenius
automorphism

σ : Fqm → Fqm , σ(x) = xq.

The norm and trace maps associated to the extension are fundamental in the
theory of finite fields and will play also a role in the applications to coding.
Their definition and main properties arelisted in the propositions below.

Proposition 67. The Trace map, defined by

Tr(a) =

m−1∑
j=0

aq
j

=

m−1∑
j=0

σj(a),

satisfies

i) Tr(a) ∈ Fq ∀a ∈ Fqm ;
ii) Tr(a+ b) = Tr(a) + Tr(b) ∀a, b ∈ Fqm ;
iii) Tr(ta) = tT r(a) ∀t ∈ Fq, ∀a ∈ Fqm ;
iv) For each t ∈ Fq, Tr(x) = t has qm−1 distinct solutions.
v) Tr(x) = 0⇔ x = y − yq, for some y ∈ Fqm .

Proof. (HW). �

In other words, Tr is a surjective linear mapping from the Fq-vector space Fqm
to Fq, with kernel

y − yq : y ∈ Fqm .

Proposition 68. The Norm map, defined by

N(a) =

m−1∏
j=0

σj(a), ∀

is a surjective homomorphism from F×qm to F×q (both multiplicative groups) with
kernel

{ x

σ(x)
: x ∈ F×qm}.

Proof. (HW). �
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1.7. Supplementary Results and Problems.

Lemma 69. For any q, u, v > 1, gcd(qu − 1, qv − 1) = qgcd(u,v) − 1.

Proof. HW. Hint: Analise the application of Euclides’s algorithm to the two pairs
of integers �

Problem 70. Find a primitive element and construct a logarithmic table for (some
isomorphic copy of) F25.

Problem 71. Find the irreducible factors of x24 − 1 over Z and over F7.

Problem 72. Verify if each one of the following polynomials is irreducible over
F2:

a) x4 + x3 + 1;
b) x8 + x7 + x6 + x5 + x4 + x+ 1.

Problem 73. Compute the decomposition x9 − 1 =
∏
d|9 Φd(x).

Compute the cyclotomic cosets modulo n = 9 with respect to q = 2 and use them to
justify that the factors in the previous decomposition are irreducible in F2[x].

Problem 74. The application of Rabin’s result to determine if a given polynomial
is irreducible may involve computations with polynomials of reasonably large degree,
requiring a computer.Sometimes a more elementary approach solves the problem.
Verify that the polynomial p(x) = x4 + x2 + 2 is irreducible over F5:

i) Verify that p(x) has no factors of degree 1;
ii) Write p(x) as a product of two degree 2 polynomials and derive a contra-

diction.

Repeat the exercise for p(x) = x4 + x3 + 1.

Problem 75. Determine the order of each one of following polynomials

a) x6 + x+ 1 ∈ F2[x];
b) x6 + x4 + x2 + x+ 1 ∈ F2[x];
c) x4 + x+ 2 ∈ F3[x];
d) x5 + 2x+ 1 ∈ F3[x]:

Problem 76. Let F2[α] be defined as F2[x]/(x5 + x2 + 1) (ie, α5 +α2 + 1 = 0). Is
this a field? Is it a direct sum of fields?
Rewrite as a sum of monomials with coefficients in F2 the polynomial

(x− α)(x− α2)(x− α4)(x− α8)(x− α16).
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1.7.1. Hermitian Inner product. It is possible to define other inner products other
than the canonical one. An example is the following

Definition 77. Let F4 = F2[α] where α2 = α+ 1. Define the conjugate map a→ ā
by

0̄ = 0, 1̄ = 1, ᾱ = α2, ᾱ2 = α.

Given x, y ∈ Fn4 , their Hermitian inner product is

< x, y >H=
∑
i

xiȳi.

Exercise 78. Prove that < , >H has the properties of an inner product.

The hexacode is the [6, 3, 4] code over F4 with generator

G =

 1 0 0 1 α α
0 1 0 α 1 α
0 0 1 α α 1


Exercise 79. Prove that the hexacode is not self-dal with respect to the usual inner
product but is self-dual with respect to the Hermitian inner product.


