
1. Weight Enumerators

Given a [n, k, d] code C over Fq, let Aj = |{c ∈ C : w(c) = j}|. This set of
parameters is the weight distribution of the code.
The polynomial WC(z) =

∑n
j=0Ajz

j (i.e., the ordinary generating function associ-

ated with the sequence (Aj)) is the weight enumerator of C. The values Ai carry
important information about the code that can be applied to decoding problems.

Proposition 1. Let C be a [n, k, d] code over Fq. Then

a) A0 = 1 and Aj = 0 for 0 < j < d.
b)
∑
j Aj = qk.

c) If q = 2 and C contains the vector 11 · · · 1 (vi = 1 for 1 ≤ i ≤ n), then
Aj = An−j.

Proof. HW. �

Exercise 2. Express the statements of the previous proposition as properties of the
function WC(z).

Example 3. Let C be the binary code with generator matrix

G =

[
1 0 1 1 0
0 1 1 0 1

]
.

Then (HW) WC(z) = 1 + 2z3 + z4.

Remark 4. In a linear code the number of codewords at distance i from a fixed
codeword c does not depend on c (HW). In a nonlinear code this does not have to
happen (a code with this property is called distance-invariant) and so the weight
distribution does not characterize the distances between code words.
For a general (n,M, d) code we define the distance distribution coefficients as

di(C) =
1

M
( number of ordered pairs u, v of codewords such that dist(u, v) = i).

1.1. MacWilliams equations. The direct computation of the weight distribution
of a code may be extremely difficult. One of the most useful tools to circumvent
that problem is a set of equalities, the MacWilliams equations, that relate the
weight distribution coefficients Aj of C with those of C⊥, which we denote as A⊥j .
However, in the process of deduction of the MacWilliams equalities, we use, for
clarity, the notation Bj .

As A0 = 1 and
∑n
j=0Aj = qk for any linear [n, k] code over Fq, we have a first

equation
n∑
j=0

Aj = qkB0.

Let L be a qk × n matrix whose rows are the codewords of C in some order. We
count the zero entries of L in two different ways: counting by rows we have that the
number is

∑n
j=0(n− j)Aj ; on the other hand, we have that, for a fixed coordinate
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i, either coli(L) is the zero vector, or it contains the same number of copies of each
x ∈ Fq: the projection

φi : C → Fq, φi(c) = ci

is either the zero map or it is surjective and, if this is the case, the sets {c ∈ C :
ci = x} are the cosets of the kernel of φi and so they all have the same cardinality
qk−1.
But the number of zero columns of L is B1

q−1 , so the total number of zero entries is

qk

q − 1
B1 +

(
n− B1

q − 1

)
qk−1 = qk−1(nB0 +B1).

These two counts give the second equation

n∑
j=0

(n− j)Aj = qk−1(nB0 +B1).

The strategy to find the remaining equalities is based on the same idea of count-
ing in two ways l-tuples of zeros in the rows of L.
Let Nl be the number of l-tuples of (not necessarily consecutive) zeros in the rows

of L. A row of weight j has
(
n−j
l

)
l-tuples and so

Nl =

n∑
j=0

(
n− j
l

)
Aj .

If, on the other hand, we fix a l-tuple S ⊂ [n] of columns and consider the
corresponding submatrix of L, we see that - denoting by S̄ the complement [n] \ S
of S - its distinct rows correspond to vectors of C [S̄] (the puncturing of C in S̄);
puncturing is a linear surjective map, so its kernel has qk−kS where kS is the
dimension of C [S̄]. So

Nl =
∑
|S|=l

qk−kS = qk−l
∑
|S|=l

ql−kS ;

if we denote by Dj(S) the weight coefficients of
(
C [S̄]

)⊥
, which is a [|S|, |S| − kS ]

code, we may apply a previous equality to obtain

Nl = qk−l
∑
|S|=l

l∑
j=0

Dj(S) = qk−l
l∑

j=0

∑
|S|=l

Dj(S).

But
(
C [S̄]

)⊥
=
(
C⊥
)

[S̄]
, where the right-hand side is the shortening of the dual

of C at the complement of S, and so a vector with weight j in
(
C [S̄]

)⊥
is the

puncturing of a x ∈ C⊥ with weight j and support contained in S.
This means that

∑
|S|=lDj(S) counts the number of elements of

T = {(x, S) : x ∈ C⊥;w(x) = j; supp(x) ⊂ S; |S| = l}.
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Now, for each x ∈ C⊥ with weight j, there are
(
n−j
l−j
)

sets S ⊂ [n] with l elements

containing supp(x); so ∑
|S|=l

Bj(S) = |T | =
(
n− j
l − j

)
Bj .

Putting everything together, we have
+

Theorem 5 (MacWilliams Equalities). The weight distribution coefficients of C
and C⊥ satisfy the equalities

n−l∑
j=0

(
n− j
l

)
Aj = qk−l

l∑
j=0

(
n− j
n− l

)
A⊥j ∀l ≤ n.

As
(
m
t

)
= 0 if t > m, the equations may be writen in matrix form as[(

n− j
l

)]0≤j≤n

0≤l≤n
(Aj) = D

[(
n− j
n− l

)]0≤j≤n

0≤l≤n
(A⊥j )

where D is the diagonal matrix with diagonal entries qk−l, 0 ≤ l ≤ n.

The MacWilliams equalities have several equivalent formulations. Some of them
involve the weight enumerator WC(z). If we replace z by z/y and multiply by
yn we obtain a two variable generating function WC(z, y) =

∑
j Ajz

jyn−j .

Proposition 6. The following equation is equivalent to the MacWilliams equalities:

WC⊥(z, y) =
1

qk
WC(y − z, y + (q − 1)z).

Proof. If we consider the variable u = y − z, the equality stated becomes

WC⊥(z, u+ z) =
1

qk
WC(u, u+ qz),

or
n∑
i=

Biz
i(u+ z)n−i =

1

qk

n∑
i=0

Aiu
i(u+ qz)n−i.

Applying Newton’s binomial formula and changing the order of summation on both
sides, the equality is easily seen to be equivalent to the MacWilliams equalities. The
details are left as an exercise (HW). �

Exercise 7. Consider the code [6, 3] C over F3 with generator matrix

G =

 1 0 0 1 2 1
0 1 0 2 1 1
0 0 1 1 1 1

 .
a) Verify directly that C and C⊥ have both minimal distance 3 and that

A0 = A⊥0 = 1, A3 = A⊥3 = 6.

b) Use the MacWilliams equalities to deduce the remaining weight coefficients.
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Exercise 8. Show that exchanging the roles of C and C⊥ in

WC⊥(z, y) =
1

qk
WC(y − z, y + (q − 1)z),

and replacing z with y+ u results in the following equivalent form of MacWilliams
equalities:

n∑
j=t

(
j

t

)
Aj = qk−t

t∑
i=0

(−1)i
(
n− i
n− t

)
(q − 1)t−iBi ∀0 ≤ t ≤ n.

Exercise 9. Recall that a q-ary Hamming code C is defined by a parity-check matrix
H whose columns are representatives of the different 1-dimensional subspaces of Fmq .

It is a [ q
m−1
q−1 ,

qm−1
q−1 −m, 3]-code.

a) Compute the weight coefficients and the weight enumerator of the simplex
code dual of the Hamming code described above;

b) Compute the weight coefficients and the weight enumerator of the Hamming
codes with m = 2, for q = 5 and q = 7.

Hint for a): the weight of a codeword of the simplex code is determined by the
number of 1-dimensional subspaces of Fmq that are orthogonal to a given vector.
Hint for b): Use Exercise 10.

Exercise 10. Show that, if WC(z) is the weight enumerator of a binary code C
then

a) WCe
(z) = 1

2 (WC(z) +WC(−z)) where Ce = {c ∈ C : w(c) ≡ 0 mod 2};
b) WĈ = 1

2 ((1 + z)WC(z) + (1− z)WC(−z)) where Ĉ is the parity extension
of C.

Exercise 11. Find all possible weight enumerators of binary self-dual [8, 4] codes.

Exercise 12. Show that the weight enumerator of the direct sum of two codes
satisfies

WC1⊕C2
(z) = WC1

(z)WC2
(z).

1.2. Weight Enumeration and Generating Functions: an example. The
computation of the Aj may be a hard problem. In special cases, the properties of
the code alows for a more direct computation. We consider here the case of the
binary Hamming codes. It provides a good example of application of ideas from
Enumerative Combinatorics.

Remark 13. Warning: This example involves the solution of a differential equa-
tion, a subject which is not a prerequisite of this course and that will be not used
elsewhere.



5

Example 14. Let C be the binary Hamming code with length n = 2t − 1 and let
H denote a parity-check matrix. We start with the obvious observation, valid for
any binary linear code, that the codewords with weight j correspond to the sets of j
columns of H with zero sum (HW).
We now take advantage of the fact that the columns of H are all the nonzero vectors
in Ft2. So, a set of j columns with zero sum corresponds, non-uniquely, to a set of
j − 1 columns (because we may always choose one last column to obtain the zero
sum).
We may choose j − 1 columns in

(
n
j−1

)
ways, and there are three possibilities:

i) the sum of those columns is 0;
ii) the sum of those columns is one of the chosen columns;

iii) the sum of those columns is one of the remaining columns.

Exercise 15. Show that case i) occurs Aj−1 times, case ii) occurs (n−(j−2))Aj−2

times, and case iii) occurs jAj times.

So we have

jAj =

(
n

j − 1

)
−Aj−1 − (n− (j − 2))Aj−2.

Notice (HW) that the deduction is valid for 2 ≤ j ≤ n+ 1 (and even for j = 1, if
we assume that the sum of an empty set is zero by definition), but that the equality
remains trivially correct for j > n+ 1.

We use now a standard technique of generating functions: we multiply the equal-
ity by zj−1 and sum over j:∑

j

jAjz
j−1 =

∑
j

(
n

j − 1

)
zj−1 −

∑
j

Aj−1z
j−1 −

∑
j

(n− (j − 2))Aj−2z
j−1.

We may let j vary over all positive integers as, in each of the sums, the summand
is zero outside of a given interval:
The left-hand side is W ′C(z), the derivative of the weight enumerator. For the first
two sums on the right-hand side we have∑

j

(
n

j − 1

)
zj−1 =

n+1∑
j=1

(
n

j − 1

)
zj−1 =

n∑
l=0

(
n

l

)
zl = (1 + z)n,

and ∑
j

Aj−1z
j−1 =

n+1∑
j=1

Aj−1z
j−1 =

n∑
l

Alz
l = WC(z).

The last sum needs a bit more work, along the same lines:∑
j

(n− (j − 2))Aj−2z
j−1 = nz

n+2∑
j=2

Aj−2z
j−2 − z2

n+2∑
j=3

(j − 2)Aj−2z
j−3 =

= nz

n∑
l=0

Alz
l − z2

n∑
l=1

lAlz
l−1 = nzWC(z)− z2W ′C(z).

We end up with the differential equation

(1− z2)W ′C(z) = (1 + z)n − (1 + nz)WC(z),
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which happens to have, given the initial condition WC(0) = 1, the unique solution

WC(z) =
1

n+ 1
(1 + z)n +

n

n+ 1
(1 + z)(n−1)/2(1− z)(n+1)/2.

1.3. Weight coefficients of MDS codes. In general, the weight coefficients of
a code are not determined by the basic parameters like length, size, distance and
field over which it is defined. MDS codes are an exception:

Theorem 16. If C is a [n, k, d] MDS code over Fq, then

Ai =

(
n

i

) i−d∑
j=0

(−1)j
(
i

j

)
(qi+1−d−j − 1), ∀d ≤ i ≤ n.

The proof consists on a clever application of ideas and techniques from enumer-
ative combinatorics.

Proof. Given a T ⊂ [n] with |T | = t, the shortening C[T ] is a [n− t, k − t, d] MDS
code if t < k (and the zero code otherwise). So C(T ) (the subcode {c ∈ C : ci =
0∀i ∈ T}) has size

|C(T )| =
{
qk−t if t < k
1 if t ≥ k

and so, for each 0 ≤ l ≤ n, we have

Nt =
∑

T⊂[n],|T |=t

|C(T )| =
{ (

n
t

)
qk−t if t < k(

n
t

)
if t ≥ k

Nt counts the codewords with w(c) ≤ n− t, each codeword being counted once for

each T such that supp(c) ⊂ [n] \ T . So, if w(c) = i, c is counted
(
n−i
t

)
times and

therefore

Nt =

n−t∑
i=0

Ai

(
n− i
t

)
.

We now want use these equations to recover the Ai from the Nt. The following
computation is an application of the Principle of Inclusion-Exclusion: Fixing i

i∑
j=0

(−1)j
(
n− i+ j

j

)
Nn−i+j =

i∑
j=0

(−1)j
(
n− i+ j

j

) i−j∑
l=0

Al

(
n− l

n− i+ j

)
=

reversing the order of summation

=

i∑
l=0

Al

i−l∑
j=0

(−1)j
(

n− l
n− i+ j

)(
n− i+ j

j

)
=

i∑
l=0

Al

i−l∑
j=0

(−1)j
(
n− l
n− i

)(
i− l
j

)
,

using a well known identity of binomial coefficients:(
a

b+ c

)(
b+ c

c

)
=

(
a

b

)(
a− b
c

)
;

this can be verified by direct inspection of the explicit expressions for the binomial
coefficients in terms of factorials, or, better still, by a counting argument.

We obtain
i∑
l=0

Al

(
n− l
n− i

) i−l∑
j=0

(−1)j
(
i− l
j

)
;
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but the inner sum equals 0 if i > l and 1 if i = l and so we get

Ai =

i∑
j=0

(−1)j
(
n− i+ j

j

)
Nn−i+j ;

we use the expressions obtained before for Nt, separating the values of j such
that n− i+ j < k from the others:

Ai =

k−n+i−1∑
j=0

(−1)j
(
n− i+ j

j

)(
n

n− i+ j

)
qk−(n−i+j)+

i∑
j=k−n+i

(−1)j
(
n− i+ j

j

)(
n

n− i+ j

)
=

using the same relation as above

=

k−n+i−1∑
j=0

(−1)j
(
n

i

)(
i

j

)
qk−(n−i+j) +

i∑
j=k−n+i

(−1)j
(
n

i

)(
i

j

)
=

using the equality n− k + 1 = d

=

(
n

i

)i−d∑
j=0

(−1)j
(
i

j

)
qi+1−d−j +

i∑
j=i−d+1

(−1)j
(
i

j

) =

applying again the Binomial theorem to the second sum

=

(
n

i

)i−d∑
j=0

(−1)j
(
i

j

)
qi+1−d−j −

i−d∑
j=0

(−1)j
(
i

j

) =

(
n

i

) i−d∑
j=0

(−1)j
(
i

j

)(
qi+1−d−j − 1

)
.

�

Repetition codes are clearly MDS [n, 1, n] codes. Their duals are also MDS with
parameters [n, n − 1, 2]. These are considered to be the trivial MDS codes. We
notice that these codes exist for arbitrary n, independently of the field.
We will see, as a simple consequence of the previous theorem, that this is not the
case for non-trivial MDS codes. In fact, if C is a [n, k, n− k+ 1] code over Fq with
1 < k (and so d < n), then

Ad+1 =

(
n

d+ 1

)
[(q2 − 1)− (d+ 1)(q − 1)] =

(
n

d+ 1

)
(q − 1)(q − d),

which implies that n− k + 1 = d ≤ q.
Applying the same reasoning to C⊥, which is a [n, n − k, k + 1] code, we have
k + 1 ≤ q. In conclusion,

Proposition 17. If C is a MDS [n, k, n− k + 1] code over Fq and 1 < k < n− 1,
then

k ≤ q − 1, n ≤ q + k − 1 ≤ 2(q − 1).
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1.4. Relation with probability of decoding error. REcall that assuming the
conditions that guarantee the equivalence of Minimal Distance Decoding and Max-
imal Likelihood Decoding,

i) The input probability distribution is uniform;
ii) The channel forward probabilities are

p(yj |xi) =


1− ρ if yj = xi

ρ
q−1 if yj 6= xi

for some 0 ≤ ρ < 1/2,

we have

Proposition 18. The probability of an error pattern to be undetected is

ped =

n∑
i=1

Ai

(
ρ

q − 1

)i
(1− ρ)n−i

where Ai denotes the number of codewords with weight i.

Proof. HW. �

The result of this proposition can be rewritten as

ped = [1− ρ]n(WC(δ)− 1)

where δ = ρ
(q−1)(1−ρ) .

Exercise 19. Consider the binary code C with generator matrix

G =

 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

 .
Determine the weight distribution of C and, assuming C is being used for trans-
mission through the channel described above (for q = 2), compute the probability of
detection error.

We discuss now another situation relating the weight enumerator with probabil-
ity of error, this time only for binary codes. Many details will be left as an exercise
(HW).
Assume that the input probability distribution is uniform and that the channel
forward probabilities are given by the matrix[

1− ρ ρ
τ 1− τ

]
Suppose that codewords from a [n, k, d] binary code are transmitted through this

channel and decoded using Maximum Likelyhood decoding. Consider first that the
zero codeword (which we denote as 0) is sent; if y is received, it will be decoded
into c such that p(y|c) is minimal; if p(y|c) > p(y|0) the decoding procedure will
not output 0 and we have a decoding error. So, if

Yc = {y ∈ Fn2 : p(y|c) ≥ p(y|0)},
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the probability of decoding error in this case satisfies

pe(0) =
∑

y∈∪cYc

p(y|0) ≤
∑

c∈C\{0}

Qc

where

Qc =
∑
y∈Yc

p(y|0).

The condition defining Yc implies then that Qc ≤
∑
y∈Yc

√
p(y|c)p(y|0) and so also

Qc ≤
∑
y∈Fn

2

√
p(y|c)p(y|0) =

∑
y∈Fn

2

n∏
i=1

√
p(yi|ci)p(yi|0);

notice that, separating the summands with y1 = 0 from those with y1 = 1,∑
y∈Fn

2

n∏
i=1

√
p(yi|ci)p(yi|0) =

= (
√
p(0|c1)p(0|0) +

√
p(1|c1)p(1|0))

∑
y∈Fn−1

2

n∏
i=2

√
p(yi|ci)p(yi|0);

and repeating this (or using induction (HW) we get

Qc ≤
n∏
i=1

∑
y∈F2

√
p(yi|ci)p(yi|0).

denoting λ =
√
p(0|1)p(0|0) +

√
p(1|1)p(1|0), we conclude finally (HW) that

Qc ≤ λw(c)

and so

pe(0) ≤
∑

c∈C\{0}

λw(c) =

n∑
i=1

Aiλ
i = WC(λ)− 1.

If the sent codeword is d 6= 0, the same reasoning leads to

pe(d) ≤
∑

c∈C\{d}

λdist(c,d)

but the number of codewords at distance i from d is equal to the number of code-
words with weight i and so we have the same estimate

Proposition 20. If a binary code is used in a Binary channel, the probability of
error satisfies

pe(d) ≤WC(λ)− 1,

where λ = λ =
√
p(0|1)p(0|0) +

√
p(1|1)p(1|0).

Exercise 21. If the channel is symmetric, this upper bound may be improved, in
some cases:
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a) Show that, if in the definition of the forward probabilities of the channel we

have τ = ρ < 1/2 (and so λ = 2
√
ρ(1− ρ)), then the condition defining Yc

may be used to get the estimate

Qc ≤
{
λw(c) if w(c) is even
λw(c)+1 if w(c) is odd

b) Deduce the upper bound

pe(0) ≤ 1

2
[(1 + λ)WC(λ) + (1− λ)WC(−λ)]− 1.

Hint for a): Verify that, if y ∈ Yc and t is the number of coordinates such that
yi = 0 and ci = 1, then w(c) ≥ 2t. Apply this, in the case of w(c) odd, to strenght
the inequality

p(y|0) ≤
√
p(y|c)p(y|0).


