
1. Channels, Vector random variables and Codes

This set of notes gives an overview of the application of the model of a channel,
discussed earlier, and the related notions of conditional entropy, mutual informa-
tion, etc., to the process of encoding, transmission and decoding of messages using
a block code.
We deduce, as a motivation, a relation betwen the information rate of a code, the
capacity of the channel and the probability of error in that process. This result is
superseded by the main result, Shannon’s theorem.

We consider a block code of length n and size M as a subset C of Fnq with
|C| = M . The notions of input, output and forward and backward conditional
probabilities are generalized in the natural way:

if y = (y1, · · · , yn) ∈ On, p(y|c) =
∏
i p(yi|ci);

the output probability distribution is given by p(y) =
∑
c∈C p(y|c)p(c),

depending on a probability distribution on the code C;

and similarly for the backward probabilities and joint probabilities. As for indi-
vidual symbols, codewords and output strings are values of vector random variables
X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn).
In our typical application codewords c ∈ Fnq are used to encode messages u ∈ Fkq .
If p() is a probability distribution on the alphabet Fq, the coordinates ui of a mes-
sage u are values of independent random variables Ui, so we have a probability

distribution on Fkq given by p(u) =
∏k
i=1 p(ui) and we may define the probabil-

ity distribution on the code by p(c) = p(u). If the probability distribution on
the alphabet is uniform, we obtain an also uniform probability distribution on C:
p(c) = M−1, for all c ∈ C.
Similarly, the final decoding of the output y will be a v ∈ Fkq , which is the value of
another random variable V = (V1, · · · , Vk).

Exercise 1. Show that the above formulas for p(y|c) and p(y) define forward con-
ditional probabilities and a probability distribution on the output strings.

The definitions and properties of entropy, conditional entropy and mutual infor-
mation generalize directly to the case of vector random variables.
However, for this generalization to be coherent we must use the base M for the loga-
rithm. This will be particularly relevant when the entropy and mutual information
related to different codes are compared.

In particular, we get a version of Fano’s inequality. This is particularly relevant
because, as we’ll confirm later, the exact computation of the conditional entropy
associated with a code may be difficult, depending on a detailed knowledge of its
structure.

Proposition 2 (Fano’s inequality). If X and Y are the random variables associ-
ated, respectively, to the input and output of the transmission of codewords from a
size M code, and pe = p(X 6= Y ), then

H(X|Y ) ≤ H(pe) + pe log(M − 1).
1
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We have also that the sequence of random variables

U −→ X −→ Y −→ V

corresponding to the three steps coding-transmission-decoding, form a Markov
chain, and we may conclude (HW) that I(U ;V ) ≤ I(X;V ) ≤ I(X;Y ).

On the other hand, the first and last of these mutual informations may be com-
pared to the ones of their coordinates.

Proposition 3. Let U = (U1, · · · , Uk) and V = (V1, · · · , Vk) be random vectors,
with the Ui (resp. the Vi) taking values in the same set I (resp. O), |I| = q, such
that the components Ui are independent. Then

1

logq(M)

∑
i

I(Ui;Vi) ≤ I(U ;V ).

Proof. To simplify the notation, we will denote the values of the Ui by x and the
ones of the Vi by y. In the same way the values of U and V will be denoted u and
v. Notice that the probability distributions of the Ui (as those of the Vi) may be
distinct. We will denote p(Ui = x) by pi(x), p(Vi = y|Ui = x) by pi(y|x), and so
on.
First, according to the definition of mutual information,∑

i

I(Ui;Vi) =
∑
i

∑
x,y

pi(x, y) logq

(
pi(x|y)

pi(x)

)
.

In the same way,

I(U ;V ) =
∑
u,v

p(u, v) logM

(
p(u|v)

p(u)

)
=

1

logq(M)

∑
u,v

p(u, v) logq

(
p(u|v)

p(u)

)
,

and the hypothesis of independence of the Ui implies that, for u = (u1, · · · , uk),

p(u) =
∏
i

pi(ui) =
∏
i

p(Ui = ui).

To compare the two quantities, we view the Ui and Vi, and so also the functions

fi(x, y) = logq

(
pi(x|y)
pi(x)

)
as being defined in the same sample space of U × V ,

ie, Ik × Ok = (I × O)k: if u = (u1, · · · , uq) ∈ Ik and v = (v1, · · · , vk) ∈ Ok,
fi(u, v) = fi(ui, vi).
Because mutual information is an expected value, we compute now the expected
value, over Ik ×Ok of

∑
i fi(u, v):∑

u,v

p(u, v)
∑
i

logq

(
pi(x|y)

pi(x)

)
=
∑
i

∑
u,v

p(u, v) logq

(
pi(x|y)

pi(x)

)
=

=
∑
i

∑
x,y

∑
u:ui=x
v:vi=y

p(u, v) logq

(
pi(x|y)

pi(x)

)
=
∑
i

∑
x,y

pi(x, y) logq

(
pi(x|y)

pi(x)

)
=
∑
i

I(Ui;Vi).

So, ∑
i

I(Ui;Vi) =
∑
u,v

p(u, v)
∑
i

logq

(
pi(x|y)

pi(x)

)
=
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=
∑
u,v

p(u, v) logq

(∏
i

pi(x|y)

pi(x)

)
.

To make the notation clear, for each u = (u1, · · · , uk) and v = (v1, · · · , vk),(∏
i

pi(x|y)

pi(x)

)
=

(∏
i

p(Ui = ui|Vi = vi)

p(Ui = ui)

)
.

But then∑
i

I(Ui;Vi)−logq(M)I(U ;V ) =
∑
u,v

p(u, v) logq

(∏
i

pi(x|y)

pi(x)

)
−
∑
u,v

p(u, v) logq

(
p(u|v)∏
i pi(x)

)
=

=
∑
u,v

p(u, v) log

(∏
i pi(x|y)

p(u|v)

)
≤ logq

(∑
u,v

p(u, v)

p(u|v)

∏
i

pi(x|y)

)
,

by Jensen’s inequality. As p(u,v)
p(u|v) = p(v), we get∑

u,v

p(v)
∏
i

pi(x|y) =
∑
v

p(v)
∑
u

∏
i

pi(x|y);

but for a fixed v,∑
u

∏
i

pi(x|y) =
∑
u1

∑
u2

· · ·
∑
uk

∏
i

pi(x|y) =
∑
u1

p1(x|y)
∑
u2

p2(x|y) · · ·
∑
uk

pk(x|y) = 1;

therefore ∑
v

p(v)
∑
u

∏
i

pi(x|y) =
∑
v

p(v) = 1,

and ∑
i

I(Ui;Vi)− logq(M)I(U ;V ) ≤ 0.

�

Proposition 4. Let X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn) be the input and
output of a memoryless channel (ie, p((y1, · · · , yn)|(x1, · · · , xn)) =

∏n
i=1 p(yi|xi)).

Then

I(X;Y ) ≤ 1

logq(M)

n∑
i=1

I(Xi;Yi).

Proof. (HW). �

Let’s consider now the consequences of these results to our coding-transmission-
decoding process sketched above. We will restrict ourselves to the simplest non-
trivial case: we’ll assume the channel is binary, and that the source messages u =
(u1, · · · , uk) are the values of a random vector U = (U1, · · · , Uk) where the Ui are
independent and uniformly distributed. The reasoning applies, essentially, in the
general case.
Suppose we want to guarantee that this process satisfies pe = p(Ui 6= Vi) < ε for
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some small ε.
We know that

I(U ;V ) ≥ 1

logq(M)

∑
i

I(Ui;Vi) =
1

logq(M)

∑
i

(H(Ui)−H(Ui|Vi)),

and Fano’s inequality gives us

H(Ui|Vi) ≤ H(pe) + pe log(q − 1) ≤ H(ε).

Since the distribution of the Ui is uniform, we get

I(U ;V ) ≥ k

logq(M)
(1−H(ε)).

On the other hand, I(X;Y ) ≤ 1
logq(M)

∑
i I(Xi;Yi) ≤ n

logq(M)Cap, where Cap

denotes the channel’s capacity. We arrive at

k(1−H(ε)) ≤ nCap⇔ k

n
≤ Cap

1−H(ε)
.

This shows, roughly speaking, that if our code has rate larger than the channel
capacity, the decoding error is bounded below away from zero. On the other hand,
a fixed small ε implies an upper bound on the rate of the code. In another section,
we’ll see how Shannon’s theorem answers the question of how close can we get to
that upper bound.
Before that, we are going to study the problem of bounding the probability of error
from a different point of view.

2. Probability of error, Ideal observers, and Maximum Likelywood
Decision

We want to understand the properties and relation with probability of error of
a general decoding procedure.
Considering the decoding procedure, it is necessary to admit the possibility that
some received strings can not be decoded, according to the decoding criteria used.
We formalize that possibility by adding a new codeword:

A decision scheme (or decoding scheme) is a function f : Fnq → C ∪ {∗}.
f(u) = ∗ occurs if the output u is not decoded, and corresponds in practice to ask
instead for a retransmission or simply report an error. The definition of backward
conditional probabilities is generalized putting p(∗|u) = 0 for any u ∈ Fnq .
The function f determines a partition of Fnq in sets

Bc = {u ∈ Fnq : f(u) = c}
together, eventually, with the set B∗ = {u ∈ Fnq : f(u) = ∗} of undecodable strings.

If c is sent, u is received and f(u) 6= c we have a decision error. The probability
of a decision error, given that c is sent, is

p(error|c) =
∑
u/∈Bc

p(u|c).

Averaging over all codewords, we have

pe =
∑
c∈C

p(error|c)p(c) =
∑
c∈C

∑
u/∈Bc

p(u|c)p(c).
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This depends on the input distribution as well as on the decision scheme.
In principle, a good decision scheme is one that minimizes pe. In order to identify
more clearly how to achieve this, we take the point of view of the decoder and
rewrite the error probability in terms of the output: given that u is received, a
correct decision happens if f(u) = c, so

p(error|u) = 1− p(f(u)|u);

averaging over all u

pe =
∑
u∈Fn

q

p(error|u)p(u) = 1−
∑
u∈Fn

q

p(f(u)|u)p(u)

and this is minimized by maximizing the sum on the right. But the factors p(u) =∑
c∈C p(u|c)p(c) do not depend on the decision scheme. So the choice is to maximize

p(f(u)|u) for each u.

Definition 5. A decision scheme f such that

∀u p(f(u)|u) = max
c∈C

p(c|u)

is called an ideal observer.

So an ideal observer chooses for each output string u the codeword most likely
to have been sent, given that u was received.

The definition of an ideal observer depends not only on the channel forward
probabilities but also on the input probability distribution. This dependence may
be avoided by choosing not to minimize the average probability of error but the
maximum probability of error

pmaxe = max
c∈C

p(error|c).

This has the advantage of not depending on the input probability distribution and
giving a uniform bound on the error probability for any distribution. Unfortunately,
no general method to choose decision schemes that minimize pmaxe is known.
Another way to avoid that dependence is suggested by the observation that, if we
fix the uniform probability distribution p(c) = 1

M for every c ∈ C, then

pe =
1

M

∑
c∈C

p(error|c);

This last expression is sometimes called the uniform probability of error and
denoted by pue . But for the uniform probability distribution

p(c|u) =
p(u|c)p(c)
p(u)

=
1

Mp(u)
p(u|c),

and so

max
c∈C

p(c|u) = max
c∈C

1

Mp(u)
p(u|c) =

= max
c∈C

(
1∑

c∈C p(u|c)
p(u|c)

)
=

1∑
c∈C p(u|c)

max
c∈C

p(u|c).

We define, regardless of the input probability distribution,
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Definition 6. f is a Maximum Likelihood Decision scheme, or a MLD
scheme, if it satisfies

∀u p(u|f(u)) = max
c∈C

p(u|c).

So in a Maximum Likelihood Decision scheme, for each u, f(u) is the codeword
c such that u is most likely of being received given that c is sent.

Remark 7. If p(c) = 1
M for every c ∈ C, a MLD scheme is the same thing as an

ideal observer.

We relate now this decision schemes with the decoding by minimal distance.
Recall that the Hamming distance dist(x, y) between two vectors x, y ∈ Fnq is equal
to the number of coordinates where the two vectors are different.

Definition 8. A discrete memoryless channel is strongly symmetric if the for-
ward probabilities satisfy

p(yj |xi) =


1− ρ if yj = xi

ρ
q−1 if yj 6= xi

for some 0 ≤ ρ < 1/2.

Suppose that we have a strongly symmetric channel . Then

p(u|c) =

n∏
i=1

p(ui|ci) =

(
ρ

q − 1

)dist(u,c)

(1−ρ)n−dist(u,c) = (1−ρ)n
(

ρ

(1− ρ)(q − 1)

)dist(u,c)

is maximized by minimizing dist(u, c).
So, under these conditions, a MLD scheme is equivalent to minimal distance de-
coding.

However, this equivalence does not hold for other channels, even symmetric. The
computational details of the following example are left as na exercise.

Example 9. Consider the linear code over F3 with generator

G =

 1 0 0 1 0 2
0 1 0 2 1 0
0 0 1 0 2 1

 .
Let u = (0, 0, 0, 1, 1, 1) be a received word. It has syndrome (1, 1, 1). The error
patterns in the corresponding coset with minimal weight are

e1 = (1, 2, 0, 0, 0, 0), e2 = (2, 0, 1, 0, 0, 0), e3 = (0, 1, 2, 0, 0, 0),

corresponding, respectively, to decoding into the codewords

c1 = (2, 1, 0, 1, 1, 1), c2 = (1, 0, 2, 1, 1, 1), c3 = (0, 2, 1, 1, 1, 1).

Suppose the channel has matrix of forward probabilities 3/5 3/10 1/10
1/10 3/5 3/10
3/10 1/10 3/5

 ;
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Then

p(u|ci) =
1

6

3

10

(
3

5

)4

but

p(u, 0) =

(
3

10

)3(
3

5

)3

which is larger.
So, in this case, the MLD scheme does not correspond to minimal distance decoding.

3. Probability of error and Code parameters

As it was seen before, under appropriate conditions Maximum Likelywood De-
coding coincides with Minimal Distance Decoding. We discuss now the relation
between code parameters and estimates on the probability of decoding error:
A (n,M, d) code over Fq (ie, a code - not necessarily linear- with length n, size M
and minimal distance d) is said to be optimal if it is not contained in a (n,M+1, d)
code.
This is a good point to introduce another parameter for block codes: the sphere of
radius r around x ∈ Fnq is

N(x, r) = {y ∈ Fnq : dist(x, y) ≤ r};

Definition 10. the covering radius of the linear code C is

cov(C) = min{s : ∪c∈CN(c, s) = Fnq }.

With this definition, a (n,M, d) code is optimal if and only if cov(C) < d ( HW).

We have also the following characterizations of the covering radius for linear
codes:

Lemma 11. The covering radius of a linear code C is equal to

i) max{i : αi > 0}, where αi denotes the number of unique coset leaders with
weight i;

ii) the smallest integer s such that any v ∈ Fn−kq is a linear combination of
some s columns of the parity check matrix of C.

Suppose that the following hypothesis are satisfied:

i) The input probability distribution is uniform;
ii) The channel is strongly symmetric, with p(a|a) = 1 − ρ for every a ∈ Fq,

ρ < 0.5.

We then have

Proposition 12. If C is an optimal (n,M, d) code over Fq, the probability of
decision error, under MLD, satisfies

n∑
j=d

(
n

j

)
ρj(1− ρ)n−j ≤ pe ≤ 1−

t∑
j=0

(
n

j

)
ρj(1− ρ)n−j

where t = bd−12 c.
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Proof. The first inequality follows from the observation that, if c is sent and u
received and dist(u, c) ≥ d, then there exists some c′ 6= c such that dist(u, c′) <
dist(u, c) and so u is incorrectly decoded; the second inequality is a consequence of
C being t-error correcting. The details are left as an exercise (HW). �

The following theorem follows from the first inequality, under the same hypoth-
esis on the input and channel probabilities. We omit the proof, which depends on
estimates on binomial coefficients that follow essentially from Stirling’s formula.

Theorem 13. Let Cn be a family of (n,Mn, dn) codes. If, for some s < ρ, and all
sufficiently large n

dn − 1

n
< s

then the probability of decoding error of Cn approaches 1 as n→ +∞.

3.1. Probability of error and Syndrome Decoding. Let C be a [n, k, d] linear
code over Fq. Under syndrome decoding, error patterns are corrected if they are
unique coset leaders. Let, as above, αi denote the number of unique coset leaders
with weight i. Then the probability of correct decoding is

n∑
i=0

αi

(
ρ

q − 1

)i
(1− ρ)n−i

or equivalently

Proposition 14. The probability of decoding error is

1−
n∑
i=0

αi

(
ρ

q − 1

)i
(1− ρ)n−i.

If the received word u is a codeword (different from c) then not only the error is
not corrected but is undetected. This will happen if and only if the error pattern
u− c is also a codeword. So we have

Proposition 15. The probability of an error pattern to be undetected is

ped =

n∑
i=1

Ai

(
ρ

q − 1

)i
(1− ρ)n−i

where Ai denotes the number of codewords with weight i.

3.2. Example: The Binary Symmetric Channel. In this subsection, we illus-
trate the computation of probability of error, probability distributions and entropy
for three codes used in the encoding of messages from F4

2.
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3.2.1. Probability of error. Obviously, different codes encode the same message with
different probability of decoding error. The details of the example below, namely
the deduction of the various explicit formulas for the error, are left as an exercise
(HW).

Consider a Binary Symmetric Channel with crossover probability ρ. The prob-
ability of error in the decoding of a message (x1, x2, x3, x4), if Minimal Distance
Decoding is applied, is

i) 1− (1− ρ)4 if the message is not encoded (equivalently, if the trivial code
F4
2 is used);

ii) 1−(1−ρ)7−7ρ(1−ρ)6 if the message is encoded with the Hamming [7, 4, 3]
code;

iii) and finally,

1−
4∑
j=0

(
4

j

)(
3ρ(1− ρ)2

)j
(1−ρ)12−3j =

4∑
j=1

(
4

j

)
(3ρ2−2ρ3)j(3ρ(1−ρ)2+(1−ρ)3)4−j ,

if the message is encoded with the 3 repetition code, ie, if the encoded
message is

(x1, x1, x1, x2, x2, x2, x3, x3, x3, x4, x4, x4).

For ρ = 0.01 the approximate values of these probabilities are respectively

0.03094, 0.00203, 0.00119;

for ρ = 0.1 we get, respectively,

0.344, 0.15, 0.107.

The information rates are

1, 4/7, 1/3.

As expected, the improvement in error-correcting capability is obtained at the cost
of lower information rates.

3.3. Conditional Entropy. For the remainder of this section, we fix the channel
matrix with ρ = 0.1, [

0.9 0.1
0.1 0.9

]
and consider now the computation of the conditional entropy. If the input prob-
ability distribution is uniform, we know the same happens for the output; so
H(x) = H(y) = 1.
The backward conditional probabilites are equal to the forward ones and the con-
ditional probabilities are

H(x|0) = H(x|1) = H(x|y) = H(ρ) ≈ 0.469.
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3.3.1. The trivial code. Consider first the no-coding case:
If the messages are, as above, vectors (x1, x2, x3, x4) and we use the trivial code
F4
2, the probability of each codeword c is 2−4 and, for any output vector u, p(Y =
u|X = c) = ρs(1− ρ)4−s where s = dist(u, c).
Using the Binomial theorem, we confirm that the output probability distribution
is uniform as well: p(u) = 2−4 for any u ∈ F4

2, and so the backward probabilities
are p(X = c|Y = u) = p(Y = u|X = c).

This implies that, for any u,

H(X|u) = −
∑
c

p(c|u) log(p(c|u)) = −
4∑
s=0

(
4

s

)
ρs(ρ)4−s log

(
ρs(ρ)4−s

)
,

which, if computed with the base 24 for the logarithms is exactly equal to H2(ρ)
(HW).
So, if suitably normalized, H(X|Y ) = H(x|y).

3.3.2. Direct Sum codes. This observation may be generalized: the trivial [4, 4] code
F4
2 is the direct sum of four copies of the trivial [1, 1] code. We consider the general

problem of computation of the probability distributions, conditional probabilities
and conditional entropies for the direct sum of codes, starting with the case of two
codes C1 and C2, with sizes respectively M1 and M2, over Fq. The direct product
has size M = M1M2.
Because we will not need to refer explicitly to vector coordinates, we may denote
a vector of the direct product as v1v2, with vi ∈ Ci. We will use a similar notation
for random variables, etc.
Assuming the uniform probability on the alpabet, we have uniform probability
distribution in the codes and, in particular, p(c1c2) = p(c1)p(c2). It follows that
(HW)

p(u1u2|c1c2) = p(u1|c1)p(u2|c2), p(u1u2) = p(u1)p(u2) and p(c1c2|u1u2) = p(c1|u1)p(c2|u2).

For any output u1u2, we have then (HW)

H(X|u1u2) = H(X1|u1) +H(X2|u2).

However, this equality holds with the same choice of logarithm in both sides,
and, following the definition, we should use logM in the lefthand side and logMi

in
each of the summands of the righthand side. But

logM (a) = (1 + logM1
(M2) logM1

(a),

and so we obtain the general formula, where the subscript in H indicates the choice
of base:

HM (X|u1u2) =
HM1

(X1|u1)

1 + logM1
(M2

+
HM2

(X2|u2)

1 + logM2
(M1

.

It is easy (HW) to generalize this to a direct sum of codes C1, · · · , Ct, with sizes
M1, · · · ,Mt respectively: in a more symmetric form, and denoting M =

∏
iMi, for

any u = u1 · · ·ut,

HM (X|u) =

t∑
i=1

HMi(Xi|ui)∑
j logMi

(Mj)
=

t∑
i=1

HMi(Xi|ui)
logMi

(M)
,
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i.e., the conditional entropy of the direct sum of codes is a weighted average of the
conditional entropies of the summands.

Finally, we obtain a similar formula

HM (X|Y ) =

t∑
i=1

HMi
(Xi|Yi)

logMi
(M)

.

Exercise 16. Prove the last formula. Hint: Consider first the case t = 2 and
apply induction.

In the case that all the codes Ci have the same size M , this simplifies to

HMt(X|u) =
1

t

t∑
i=1

HMi
(Xi|ui), HMt(X|Y ) =

1

t

t∑
i=1

HMi
(Xi|Yi).

3.3.3. Repetition Code. We consider now the [3, 1] repetition code:

If p(0) = p(1) = 0.5 then also p(000) = p(111) = 0.5. The forward conditional
probabilities for the code would now form a 2× 8 matrix. We have

p(000|000) = p(111|111) = (1−p)3 = 0.729, p(000|111) = p(111|000) = p3 = 0.001;

other values of p(u|c) are determined by the distance; so p(100|000) = (1− p)2p =
0.081 while p(100|111) = (1− p)p2 = 0.009, and so on.

We obtain the output probabilities p(000) = p(111) = (1−p)3+p3
2 = 0.365, while all

other vectors have probability

(1− p)2p+ (1− p)p2

2
=

(1− p)p
2

= 0.045.

The backward conditional probabilities are

p(000|u) =


(1−p)3

(1−p)3+p3 ≈ 0.9986 u = 000

1− p = 0.9 w(u) = 1
p = 0.1 w(u) = 2

p3

(1−p)3+p3 ≈ 0.00137 w(u) = 3

and these values are reversed for p(111|u).

It turns out that the conditional entropies are

H(X|000) = H(X|111) ≈ 0.015, H(X|u) = H(ρ) ≈ 0.467 for other u,

and finally, H(X|Y ) ≈ 0.137. As expected the uncertainty on X remaining after
the knowledge of Y is much smaller than with no coding.

If we apply this to the encoding of messages (x1, x2, x3, x4) ∈ F4
2, we are using a

direct sum of four copies of the repetition [3, 1] code, and we may apply the results
from the last paragraph. In particular, we confirm that the conditional entropy
H(X|Y ), suitably normalized by the size of the code, is approximately equal to
0.137.
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3.3.4. Hamming Code. Now consider the [7, 4] Hamming code with uniform input
probability, p(c) = 2−4 for every c.
Again, if we want to normalize entropy, we must use base 24 logarithms, i.e., we
may use base 2 and divide everything by 4. With this convention, H(X) = 1. The
forward conditional probabilities will be

p(u|c) = (1− p)7−sps

where s = dist(u, c), and so

p(u) = 2−4
∑
c

p(u|c);

We know that the code contains 1 vector with weight 0, 7 with weight 3, 7 with
weight 4 and 1 with weight 7; this implies that the output probability of the zero
vector is

p(Y = 0) = 2−4((1− p)7 + 7(1− p)4p3 + 7(1− p)3p4 + p7) ≈ 0.03;

translation invariance of Hamming distance implies the output probability of any
codeword c is equal to this:

p(Y = c) = 2−4
∑
d∈C

(1− p)7−sps,

where s = dist(c, d); but dist(c, d) = dist(0, d − c) and d → d − c is a bijection of
the code.
This reasoning shows that we need to compute p(Y = u) only for one element in
each coset, e.g., the coset leader. It happens that, for each coordinate i, there exist
exactly 3 codewords of weight 3 and 4 codewords of weight 4 that are nonzero at i.
With this fact, it is then easy to compute for any vector e with weight 1

p(Y = e) = 2−4((1−p)6p+3(1−p)5p2+4(1−p)4p3+4(1−p)3p4+3(1−p)2p5+p6) ≈ 0.0046.

We are now able to compute backward conditional probabilities p(c|u): if c and d
are distinct codewords,

p(X = c|Y = d) =
p(Y = d|X = c)p(X = c)

p(Y = d)
≈ p(Y = d|X = c)× a,

where a = 2.083. So

p(X = c|Y = d) =


a(1− p)7 ≈ 0.996 if dist(c, d) = 0
a(1− p)4p3 ≈ 0.00137 if dist(c, d) = 3
a(1− p)3p4 ≈ 1.52× 10−4 if dist(c, d) = 4
ap7 = 2.083× 10−7 if dist(c, d) = 7

If u is not a codeword, and

b =
p(X = c)

p(Y = u)
=

2−4

4.6× 10−3
≈ 13.587,

then

p(X = c|Y = u) =



b(1− p)6p ≈ 0.720 if dist(c, u) = 1
b(1− p)5p2 ≈ 0.082 if dist(c, u) = 2
b(1− p)4p3 ≈ 0.009 if dist(c, u) = 3
b(1− p)3p4 ≈ 0.001 if dist(c, u) = 4
b(1− p)2p5 ≈ 1.1× 10−4 if dist(c, u) = 5
bp6 = 1× 1.36× 10−5 if dist(c, u) = 6
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If c is a codeword, H(X|c) ≈ 0.02762, while for other vectors u, H(X|u) ≈ 0.3795.
Finally, H(X|Y ) ≈ 0.2088.

4. Shannon’s Second Theorem

Shannon’s second theorem, also called the Noisy Channel Theorem, tells us that,
as long as the information rate is kept below the channel’s capacity, the probability
of error may be made arbitrarly small:

Theorem 17 (Shannon). Consider a discrete memoryless channel with capacity
Cap. For any R < Cap there exists a sequence Cn of q-ary codes with decision
schemes fn such that

i) Cn is a (n,M) code with M ≥ dqnRe);
ii) pmax

e (n), the maximum probability of error of Cn approaches 0 as n→ +∞.

Proof. We present only a sketch of a proof: we fix a large n (to be specified later),
and define

Ω = {(x, y) ∈ Fnq × Fnq }
to be the pairs of possible inputs and outputs of the channel. This becomes a prob-
ability space defining p(x) to be the product of the probabilities of the coordinates,
for a fixed probability distribution on Fq; p(y|x) is defined in a similar way and
p(y) =

∑
x∈Fn

q
p(y|x)p(x).

Let R′ satisfy R < R′ < Cap, and consider the subset

T = {(x, y) ∈ Ω : log2

(
p(y|x)

p(y)

)
≥ nR′}.

Suppose now that C ⊂ Fnq is a code with size M , also to be chosen later; we choose
as decoding scheme the following: for each output y, if

S(y) = {x : (x, y) ∈ T};

contains exactly one codeword c we put f(y) = c; otherwise, we put f(y) = ∗.
If we denote, for c ∈ C, Pe(c) to be the probability that a decoding error occurs
when c is transmitted, we may give the following rough estimate: denoting

Λ(x, y) =

{
1 if (x, y) ∈ T
0 if (x, y) /∈ T

Pe(c) ≤
∑
y

(1− Λ(c, y))p(y|c) +
∑
x∈C\c

∑
y

Λ(x, y)p(y|x) = Qc.

Notice that Qc is in fact a function on C, which is virtually impossible to compute
or even estimate for large or complicated codes. The approach is then to estimate
its average over all possible (n,M) codes. For this, we turn the space of these
codes into a probability space, putting p(C) =

∏
c∈C p(c). This corresponds to the

informal idea of randomly choosing the codewords.
The estimates on the expected values of the summands of Qc (seen as random
variables on the space of all codes) is the most technical point in the proof and
we omit all the details. It turns out that the expected value of the first summand
above is

p((x, y) /∈ T ) = p(log2

(
p(y|x)

p(y)

)
< nR′),
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and that it follows from the weak law of large numbers that this approaches zero
as n→ +∞.
On the other hand, for each x ∈ C, the corresponding term in the second summand
has expected value bounded above by 2−nR

′
. So the expected value for the sum-

mand is bounded above by M2−nR
′
.

This is the point where we choose M = 21+dnRe implying that M2−nR
′

can be
made arbitrarly small, by choosing n sufficiently large. Putting all together, we
may claim that, given ε, we have that the expected value of Qc is, for sufficiently
large n, bounded above by ε/2.
The last step is to define a global error function

Pe(C) =
1

M

∑
ci

Pe(ci),

where each summand is already a function of all the codewords in C. The estimates
above imply that the expected value of the random variable Pe is (always for large
n) bounded by ε/2, and so there must exist a code C with size M such that
Pe(C) < ε/2. This code may not satisfy the conditions of the theorem, because it
my contain codewords c for which pe(c) > ε. But this may occur at most for half
of the codewords. Discarding these we obtain the desired code. �

This proof is difficult at some points (the ones omitted above) but its version for
the Binary Symmetric Channel, and uniform probability distribution on F2, may
be a good exercise to grasp its fundamental ideas.
However, the crucial observation is that the proof relies on a nonconstructive exis-
tence argument. To this day, no family of codes with the above properties is known.
And it should also be noticed that, from a practical point of view, the codes in a
family fulfilling those conditions (for some R arbitrarily close to the capacity of the
channel) may be too long or have too complicated decision schemes to make them
useful for encoding.

Shannon’s Theorem has also converse statements, which we summarize in the
next theorem:

Theorem 18. Consider a discrete memoryless channel with capacity C. Let Cn
be a sequence of q-ary (n, dqnRe) codes and corresponding decision schemes fn with
uniform probability of decision error pue (n).
If R > C then

i) there exists δ > 0 such that pue (n) > δ for all n;
ii) limn p

u
e (n) = 1.

Since it is very difficult to obtain explicit codes satisfying the conditions of
Shannon’s Theorem, the next best thing to ask for is a family of codes such that
neither the size nor the distance become too small, compared to the length:

Definition 19. A family Cn of codes is asymptotically good if it contains a
subset Cni

with parameters [ni, ki, di] satisfying:

i) limi→+∞ ni = +∞;
ii) lim infi→+∞

ki
ni
> 0;

iii) lim infi→+∞
di
ni
> 0.
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A family is asymptotically bad if it does not contain such a subfamily.

5. Supplementary Results and Problems

Problem 20. Consider the channel with channel matrix 1/6 1/3 1/2
1/3 1/2 1/6
1/2 1/6 1/3

 .
Given the input distribution

p(x = 0) = 0.5, p(x = 1) = p(x = 2) = 0.25,

find the best decision scheme (for transmission with no coding) and the associated
average and maximum probabilities of error.

The following two subsections include, in the form of a sequence of exercises, two
results related to the material in these notes that were not included in the main
text.

5.1. Maximal and uniform probability of error. Shannon’s Theorem and its
converses give results either on the maximal probability of error pmax

e or on the
uniform probability of error pue . The following proposition shows that we may use
either of them in the statement:

Proposition 21. Consider a discrete memoryless channel with capacity C. The
following are equivalent:

1- For any R < C, there exists a sequence Cn of q-ary (n, dqnRe) codes, with
decision schemes fn, such that

lim
n→+∞

pmax
e (Cn) = 0.

2- For any R′ < C, there exists a sequence Dn of q-ary (n, dqnR′e) codes, with
decision schemes gn, such that

lim
n→+∞

pue (Dn) = 0.

Exercise 22. It is only necessary to prove 2 =⇒ 1.

In order to prove 2 =⇒ 1, we need the following

Lemma 23. Suppose 0 < R < C. There exists R′ satisfying, for sufficiently large
n,

R+
logq(2)

n
+

1

n
≤ R′ < C, and

1

2
dqnR

′
e ≥ dqnRe.

Exercise 24. Prove the lemma.
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Exercise 25. Complete the proof of the proposition as follows: assume 2 and let
R < C. For a fixed ε > 0, justify the existence of a sequence Dn of (n, dqnR′e)
q-ary codes such that pue (Dn) < ε

2 .
Show that, as a consequence, at least half of the codewords d ∈ Dn satisfy p(error|d) <
ε.
Conclude the proof of 1.

5.2. Fano’s Inequality. We state again Fano’s inequality:

Theorem 26 (Fano’s Inequality). For any code C with size M , and any decision
scheme f , and for any probability distribution on the codewords, if pe denotes the
probability of decision error, then

H(X|Y ) ≤ H(pe) + log(M − 1)pe.

Remark 27. In the inequality, all logarithms have the same base. If we use log2

on the righthand side and the normalized entropy on the left, the formula is

HM (X|Y ) ≤ H2(pe) + log2(M − 1)pe
log2(M)

.

Fano’s inequality plays an important role in the deduction of the converse of
Shannon’s Theorem.

Proof. Fix u ∈ Fnq and assume, without loos of generality, that f(u) = c1. Denote
ρi = p(ci|u). The following exercise contains a general fact about entropy functions.
Recall that H(s) denotes the entropy function H(s, 1 − s) = −(s log(s) + (1 −
s) log(1− s)).

Exercise 28. H(ρ1, · · · , ρM ) = H(1− ρ1) + (1− ρ1)H
(

ρ2
1−ρ1 , · · · ,

ρM
1−ρ1

)
.

Exercise 29. Apply the result in the exercise to get

H(X|Y = u) ≤ H(p(error|u)) + p(error|u) log(M − 1).

Exercise 30. Prove that for any s1, · · · , sm with 0 ≤ si ≤ 1 and non-negative
t1, · · · , tm such that

∑
i ti = 1,∑

i

tiH(si) ≤ H

(∑
i

tisi

)
.

Exercise 31. Finish the proof of the theorem.

�


