
1. Convolutional Codes

1.1. Coding with memory. Introduction. The concept of a convolutional code
may be motivated by the idea of instantaneously encoding strings of variable length,
with memory. In this short introduction, we always take F = F2, although every-
thing is generalizable, with the obvious adaptations, to any other finite field F.
Let then for t = 0, 1, 2, · · · , x(t) ∈ Fk be a string of data to be encoded; the variable
t may be thought as representing time: at each time unit, the coding ”machine”
accepts k bits and produces n bits, but, contrary to what happens in the block
codes studied before, the codeword c(t) ∈ Fn depends, linearly, on x(t) but also,
possibly, in a finite number of previous inputs.

Example 1. Let C be the code defined by

c0(t) = u(t) + u(t− 1) + u(t− 2), c1(t) = u(t) + u(t− 2).

In this example k = 1 and n = 2; if the input data is defined for t ≥ 0, we must
naturally extend the definition to t ≥ −2 putting x(−2) = x(−1) = 0 in order that
the equations apply for t ≥ 0.
In the same way, we add two extra zero coordinates in the end of the string, so that
the entries of the message are read while they stay in the memory of the encoding
process.
The string 100111010 is completed as

00|100111010|00

and encoded to(
1
1

) (
1
0

) (
1
1

) (
1
1

) (
0
1

) (
1
0

) (
0
1

) (
0
0

) (
1
0

) (
1
1

) (
0
0

)

Example 2. Another example, now with k = 2 and n = 3, would be

c0(t) = u0(t), c1(t) = u0(t−1)+u1(t), c2(t) = u0(t)+u0(t−1)+u1(t−1);

The string, already completed at the beginning and end with the extra coordinate,(
0
0

) (
1
0

) (
1
1

) (
1
0

) (
0
0

) (
0
1

) (
0
0

)
is encoded to 1

0
1

  1
0
0

  1
1
1

  0
1
1

  0
1
0

  0
0
1

 .

Remark 3. Both the input x(t) ∈ Fk and output c(t) ∈ Fn are assumed to be
accepted and produced by the coding in a unique time unit, and simultaneously.
In the representation above we represented each entry of the input and codeword
as column vectors, in order to distinguish the dimension of these vectors from the
other ”horizontal” dimension, which is time.
However, we may represent both the input and codeword as strings of 0 and 1,
interleaving the coordinates: in the second example above, for example, the input
and otput would be represented as

u = 00|1011100001|00, c = 101100111011010010

1

2

1.2. Polynomial and Formal Power Series representation. We see now how
the idea of a coding with memory is conveyed by the following algebraic construc-
tion: let G = [gi j(D)] be a generator matrix, where the entries are polynomials in
a variable D: gij(D) ∈ F[D], with 0 ≤ i < k, 0 ≤ j < n and gi j(D) =

∑
t gi j(t)D

t.
An input message u, with u(t) ∈ Fk for every t, is identified with

(u0(D), · · · , uk−1(D)) ∈ (F[D])k, ui(D) =
∑
t

ui(t)D
t,

and encoded into

(c0(D), · · · , cn−1(D))

with

cj(D) =
∑
t

cj(t)D
t =

k−1∑
i=0

ui(D)gi j(D) =

k−1∑
i=0

∑
t

(
t∑

s=0

gi j(s)ui(t− s)

)
Dt =

=
∑
t

(
t∑

s=0

k−1∑
i=0

gi j(s)ui(t− s)

)
Dt.

So the output ”at time ”t is a linear combination of the inputs u(t−s), where, of
course, s is bounded by M = maxij deg(gij(D)), which is the memory of the code.
In fact, and this will be important later, we see that the values of cj(t) depend, for
each 0 ≤ i < k, on the ui(t− s), with 0 ≤ s ≤ mi = maxj deg(gij(D)).

Remark 4. The name convolutional code comes from these equations, as a sum of
the form

∑
s gij(s)ui(t − s) is the t-coordinate of the convolution of the sequences

gij(t) and ui(t).
The choice of D as variable is motivated by the idea that it represents a delay
operator.

Example 5. The code from example 1 and 2 is represented by the generator matrix

G =
[

1 +D +D2 1 +D2
]

The input string 10011101010 corresponds to the polynomial

u(D) = 1 +D3 +D4 +D5 +D7 +D9

c0(D) = (1+D3+D4+D5+D7+D9)(1+D+D2) = 1+D+D2+D3+D5+D8+D9,

whose sequence of coefficients corresponds to the sequence of the first coordinates in
the codeword computed above. The same happenswith the second coordinate c1(D)

Example 6. The generator matrix for the second example is

G =

[
1 D 1 +D
0 1 D

]
.

Here the input is the vctor u(D) ∈ (F[D])
2

= F2[D]

u(D) =

(
u0(D)
u1(D)

)
=

(
1 +D +D2

D +D4

)
=

=

(
1
0

)
+

(
1
1

)
D +

(
1
0

)
D2 +

(
0
0

)
D3 +

(
0
1

)
D4

and the codeword c(D) is computed in the same way.

3

Although in practical applications it may be useful and necessary to establish
an upper bound for the length of the input strings, we want to keep the definition
free of that type of constraints. One way to formalize the definition of these codes
in a manner similar to that of block codes is to use an infinite field:
let F[D] denote the ring of polynomials with coefficients in F over a variable D and

F(D) be its field of fractions, ie, the field of rational functions p(D)
q(D) where p(D) and

q(D) 6= 0 are polynomials.

More generally, we consider the ring of Formal Power Series in D

Definition 7. F[[D]] = {a(D) =
∑

t≥0 atD
t : at ∈ F}.

This is a commutative ring, whose units (ie, invertible elements) are determined
(HW) by the condition

a(D) is a unit ⇔ a0 6= 0,

and its field of fractions is the field of Laurent Series

Definition 8. F((D)) = {
∑

t≥m atD
t : at ∈ F; m ∈ Z}.

We have the inclusions

F[D] ⊂ F[[D]], F[D] ⊂ F(D) ⊂ F((D));F[[D]] ⊂ F((D)).

Moreover, a(D) = p(D)
q(D) ∈ F[[D]] ∩ F(D) iff q(0) 6= 0.

Exercise 9. Find the formal power series expression for a(D) = 1+D
1+D+D2 .

As we have seen with polynomials, the vector space (F((D)))
n

may be identified
with Fn((D)), ie, the vector space of Laurent series with coefficients from Fn.

We define

Definition 10. A convolutional binary code with length n and dimension k is a k
dimensional subspace of (F((D)))

n
that has a basis v0, · · · , vn−1 with vi ∈ Fn[D].

R = k/n is the information rate of the code. If G = [gij] is a generator matrix,
M = maxij deg(gij) is the memory of the generator.

Remark 11. Distinct generator matrices of the same code may have different mem-
ories. A more intrinsic notion of memory will be discussed later.

1.2.1. Scalar representation by interleaving. As we saw before, both the input and
codewords of a [n, k] convolutional code may be transformed into strings with ele-
ments from F, interleaving the coordinates of the vectors. A generator matrix may
be written as

G = G0 +G1D + · · ·+GMD
M =

∑
t

GtD
t,

where each Gt is a k × n matrix over F, and Gt = 0 if t < 0 or t > M .

Define the infinite matrix I(G) in the following way: I(G) = [Bi j]
0≤j
0≤i where each

4

Bi j is a k × n matrix and Bi j = Gj−i.
Replacing x = (x0(D), · · · , xk−1(D)) by

I(x) = (x0(0), x1(0), · · · , xk−1(0), x0(1), · · · , xk−1(1), · · ·)
ie, interleaving the coefficients of coordinates of x,we obtain that

I(x)I(G) = (c0(0), c1(0), · · · , cn−1(0), c0(1), · · · , cn−1(1), · · ·)
which is the interleaving of the coefficients of the cj(D) (HW).

As mentioned earlier, in concrete applications, we deal with finite data. This
means that we restrict the source messages x(D) to polynomials with degree less
than L < +∞, ie, the restricted coding is a map

(PL[D])
k → (PL+M [D])

n
,

where Pm[D] denotes the set of polynomials with degree less than m and coefficients
in F.
To this restriction corresponds the truncation IL(G) of the scalar matrix I(G),
which is a generator matrix of the truncated [n(M + L), kL] binary code, with
information rate

RL =
kL

n(M + L)
.

By taking L much larger than M , we obtain codes with information rate very close
to R.

1.3. Encoding and State Diagrams. The algorithmic implementation of the
computation with polynomials is sometimes represented by shift registers (or phys-
ical encoders) and also by state diagrams, in order to capture the notion of a step
by step encoding, in which ,at each time t, we receive and encode the input u(t).
We describe that last representation, as it is relevant for the decoding algorithm
studied below.
A state diagram for the convolutional code C may be visualized as a finite state
automaton: a directed graph whose vertices are the possible states of memory; an
edge corresponds to an input u(t) that changes the state and produces an out-
put c(t); the input and output are usually represented as a label of the edge. We
illustrate the concept with a simple example:

Example 12. Let C be the code from example 1; the possible states are

00 01 10 11.

If at time t we are at state 00, ie u(t − 1) = u(t − 2) = 0, for example, the input
u(t) = 1 takes us to the state 01 and produces the output c(t) = (1, 1); if the initial
state is 01 and u(t) = 1, the final state is 11 and the output is c(t) = (0, 1).
So the encoding of a source message is read through a path in the graph. For a
finite message, this path naturally starts and ends in the 00 state. More precisely,
assuming, without loss of generality, that the message is u(0), · · · , u(L − 1), the
sequence of states starts with u(−2)u(−1) = 00 and ends with u(L)u(L+ 1) = 00,
independently from the value of the last entry in the message. This implies that if
the source message has length L, the codeword has length 2(L+ 2).
The encoding procedure works with 3 variables a, b, and x, initialized as a = b = 0,

5

x = u(0); at step t, the procedure has a = u(t − 2), b = u(t − 1) already defined,
accepts the input value u(t), creates the output

(c0(t), c1(t)) = (a+ b+ x, a+ x),

which is appended to the string of previous outputs, and replaces a = b and b = x.

In the general case of a (binary) convolutional [n, k] code with generator matrix
G = [gi j], we must consider the maximal degree mi of the entries of rowi(G),
0 ≤ i < k: if (ui(t)) is the input at time t, the corresponding output (cj(t))
depends on the ui(t− s) with 0 ≤ s ≤ mi.
So the number of states is 2m0+···+mk−1 . An input (ui(t))0≤i<k determines an edge
with initial vertex

(ui(t− s)), 0 ≤ i < k, 1 ≤ s ≤ mi

and final vertex

(ui(t− s)), 0 ≤ i < k, 0 ≤ s < mi,

and an output c(t) with

cj(t) =

k−1∑
i=0

mi∑
s=0

gi j(s)xi(t− s).

Example 13. Let C be the [3, 2] binary convolutional code with generator

G =

[
1 0 1 +D
0 1 D2

]
.

The input at each time t is (x, y) = (u0(t), u1(t)) and we have memory variables

a = u0(t− 1), b = u1(t− 2), c = u1(t− 1),

(all initialized as zero).
The encoding produces the output

(c0(t), c1(t), c2(t)) = (x, y, x+ a+ b),

and updates the memory variables

a = x, b = c, c = y.

Exercise 14. Suppose the input is the binary string (interleaving of u(D))

0 1 1 1 1 0 0 0 0 1 1 0

Determine the sequence of states visited by the corresponding path in the state dia-
gram, and the output.

Example 15. If the sum of maximal degrees of the rows of the generator satisfies∑
imi < k, the state diagram will have multiple arrows between pairs of states.

A particularly simple example is given by the [4, 2] binary code with generator

G =

[
1 1 1 1
0 1 +D D 1

]
.

6

The state diagram has only two states S(0) and S(1), corresponding, at each time
t, to the value of u1(t− 1). And we have the arrows

S(0) −−−−−→
01|0101

S(1), S(0) −−−−−→
11|1010

S(1),

where, for example, the label 01|0101 represents the input and corresponding output,
both written in interleaved form.

Exercise 16. Complete the state diagram for this example.

The graphical representation of the state diagram as a directed labelled graph is
useful to vizualise the encoding procedure, but is only feasible for small values of
k, n and mi. The usefulness of the concept, however, goes beyond the algorithmic
implementation of the encoding, as we’ll see.

1.4. Free Distance. The appropriate notion of distance for convolutional codes is
called free distance and denoted df (C). For each coordinate cj =

∑
t≥m cj(t)D

t

of a codeword, we define its weight w(cj) as the number of nonzero coefficients
cj(t). Naturally, cj may have infinite weight. The weight of a codeword is defined
as w(c) =

∑
j w(cj), and

Definition 17. The free distance of a convolutional code C is the minimal weight
of a nonzero finite weight codeword.

So, the free distance of C coincides with the usual Hamming distance of the code
obtained from C by interleaving the coeficients of the coordinates, as described
above.

When a convolutional code C with free distance df and generator matrix G

is used to encode an input u(D) =
∑L−1

t=0 as a codeword c(D) =
∑L+M−1

t=0 , and

an output y(D) =
∑L+M−1

t=0 is received. If the number of errors created by the

transmission process is less or equal than
df−1

2 , we know that c(D) is the unique
codeword at minimal distance from y(D); so, applying some form of Minimal Dis-
tance Decoding, it is possible to correct the errors.

As it happens with block codes, the computation of df (C) is in general a dif-
ficult problem. The state diagram associated with the generator, described in the
last section, may be used, in many cases (see remark below), to compute the free
distance and much more, in the following way:

We construct a modified state diagram, by splitting the state with all entries
equal to 0, which we denote here as S(0), into a initial state I and a final state
T ; the arrows leaving S(0) have I as its source, while the arrows terminating at
S(0) now terminates at T ; the loop at S(0) that corresponds to a zero input is
eliminated.
Each arrow of this modified state diagram is then labeled with a monomial Xs,
where s is the weight of the output. If we multiply these monomials along a path in
the state diagram, starting at I and ending at T , we obtain a monomial Xu, where
u is the total weight of the output, ie, of the codeword resulting from the encoding
of that input.

7

From this, we compute the generating function W (X) =
∑

i≥0 aiX
i where ai is the

number of fundamental paths of weight i, ie, paths starting and ending at the
zero state but with no intermediate passages by it.
The encoding of a finite weight input corresponds to the concatenation of finitely
many such fundamental paths, and possibly of loops at the zero state of the original
diagram. So the least i such that ai 6= 0 gives us the free distance of the code.

This construction may be modified to give even more information if each arrow is
labeled with a monomial XsY rZ, where r is the weight of the input. The monomial
associated to a I−T path gives is XuY vZl, where, u is the weight of the codeword,
v the weight of the corresponding input, and l the length of the path.
The generating function W (X,Y, Z) classifies all codewords with respect to those
three parameters.
We may recover the simpler generating function as W (X, 1, 1).

Example 18. We consider again the [2, 1] binary code with generator

G = [D2 +D + 1 D2 + 1].

Let ψS denote the function of X,Y and Z determined by paths starting at I and
ending at state S. Reading the diagram we find (HW) the equations

ψT = X2Zψ01

ψ10 = XZ(ψ11 + ψ01)
ψ11 = XY Z(ψ11 + ψ01)
ψ01 = X2Y Z + Y Zψ10

Notice that in the last equation we put ψI = 1, which is coherent with the definition.
We want to obtain the explicit expression for W (X,Y, Z) = ψT , by eliminating the
other unknown functions. We have from the third equation

ψ11 =
XY Z

1−XY Z
ψ01,

and replacing in the second,

ψ10 =

(
X2Y Z2

1−XY Z
+XZ

)
ψ01 =

XZ

1−XY Z
ψ01;

using the last equation, we arrive at

ψ10 =
XZ

1−XY Z
(
X2Y Z + Y Zψ10

)
⇔ ψ10

(
1− XY Z2

1−XY Z

)
=

X3Y Z2

1−XY Z
⇔

⇔ ψ10 =
X3Y Z2

1−XY Z(1 + Z)

and so,

W (X,Y, Z) =
X5Y Z2

1−XY Z(1 + Z)
= (X5Y Z2)

∑
j≥0

(XY Z(1 + Z))j .

Putting Y = Z = 1 we get

W (X, 1, 1) = X5
∑
j≥0

(2X)j = X5 + 2X6 + 4X7 + 8X8 + · · ·

8

Remark 19. It must be stressed that the generating function discussed above counts
the number of fundamental paths in the modified state diagram. This allow us to
count the number of finite weight codewords that result from the encoding of finite
weight inputs, of a given length, by the given generator matrix. The number of
codewords of a given finite weight may be infinite.
The function may be computed if the modified state diagram does not contain a
loop or, more generally, a cycle with output of weight zero. The existence of such
a cycle implies that, for the corresponding generator matrix, there are finite weight
codewords that result from the encoding of a infinite weight input.
The relation between different generator matrices is discussed in another section.
The following simple example illustrates these remarks.

Example 20. We consider the binary convolutional code C with generator

G = [1 1 +D].

It is easy to see (HW) that the generating function for the number of fundamental
paths in the modified state diagram is

W (X) =
X3

1−X
=
∑
j≥3

Xj .

In particular, the free distance of the code is 3, as it is easy to confirm directly. It is
also easy to verify that C contain infinitely many codewords of weight, for example
6: consider the inputs u(D) = 1 + Ds for any s ≥ 2. The state diagram may be
helpful to conclude that in fact the same is true for any weight w ≥ 6.
On the other hand, it is clear (HW) that a finite weight codeword must result from
the encoding of a finite weight input.

Now

G1 = [D + 1 D2 + 1]

is also a generator:

c(D) = u(D)G⇔ c(D) =
u(D)

1 +D
G1.

The unique codeword of weight 3 results, for G1, from the encoding of

u(D) =
1

1 +D
=
∑
j≥0

Dj .

In the corresponding modified state diagram, this is realized as an infinite path,
starting at state 00, going to state 01, then to state 11 and then looping infinitely
many times at this state.

9

1.5. Viterbi’s algorithm. In order to explain an algorithm for the decoding of
finite messages we develop the state automaton described above into a trellis di-
agram:
A trellis diagram is a table with rows indexed by the states and columns indexed
by time units; an edge with u(t)|c(t) label joins (a, t) to (b, t + 1) where a is the
initial state and b the final state; both u(t) and c(t) are presented in interleaved
form.
Viterbi’s algorithm goes as follows: suppose a message y(t) with 0 ≤ t < L+M is
received, corresponding to an input u(t) with 0 ≤ t < L.
We construct step by step the trellis diagram, replacing the label of an edge from
t to t+ 1 with weight equal to the Hamming distance between y(t) and the output
c(t); a survivor path at time t is a path that has minimal weight among all paths
starting at the zero state and ending at a given state at time t. After each time
step, we identify the survivor paths and only continue these to the next step. A
possible decoding of y is a survivor path at time L+M ending at the zero state.
An induction argument on the length of the path shows that the survivor path
found is a closest codeword to the output y. This means that the algorithm per-
forms minimal distance decoding.

The images below illustrate the application of Viterbi’s algorithm for the code
with generator [D2 +D + 1 D2 + 1]: in the first image the algorithm was applied
up to step 3; in each step only the surviving paths are shown. The last picture
presents the decoding and corresponding input.

T
J

ts

o C
)

U

? tr + tr

\
f!

t7 + t-
,

10

F
+ ()

\7
I + (, -l-

l.-
.= F ,

Ir

^.
. oo o o lo

o

O
O

c+

G

\-

t. N + U

+
H u

o o
{-

- o
\<

' It

O
G

G
- €o

l<
a

G

o

o

tlj

e [)
(J

l+
C

2
-{

- t3
}l + (:

11

t I

o
o o

\
lt

C
J(

3

o oo

-t
r.

ii.
;i fii
l

:;t
'

.*
*+

**
-*

**
"*

*-
ii4

l
iit

t

i i.-
.

.

oO
lo

o

\-
-/

\r

:

11 (
,

Ln

.0
'

t \7 1 t7 N + n

.> o * I

H

r-

o

v(
) 30)

cr (1
,

12

-\ -.,5 t : ;

(> o
o F
s

-s

\
It

oo o o O
o

o
o

l-
-'-

r'

(r
r

.\,
N + 19 I

c\
'

v N +

t-
iL

l t t t t **

ru r
'

-
-t

C

D

r-
\

-\
,

\._

I

(-
:} rt
-

\ tr

e,
o

C
)o

O
r,

\-
-/ n n

? v +
'

=
fu

n
Ln

\" N .+ E I s Jr

"\
-

\
B

I

13

A modified trellis diagram may be used to compute the free distance of the code
in the following way:

- eliminate the edge from zero state at time 0 to the zero state at time 1;
- label each remaining edge starting at state zero and time 0 with the weight

of the corresponding output;
- for each s > 0, label each state a at time s with the least weight of a path

ending there and starting at the zero state and time 0;
- stop at time s0 if the label w of state zero at time s0 is less or equal than

the labels of the remaining states at the same time.

The free distance is then equal to w, because we found a fundamental path with
weight w and any other fundamental path will have weight larger or equal than w.

1.6. Canonical Generator Matrices. A convolutional code has many polyno-
mial generator matrices. The complexity of the encoding and decoding processes
depend heavily on the maximal degree of the entries of the generator matrix G.
In fact, the number of states of the state diagram induced by G is the important
parameter to determine that complexity. This number equals the sum, over all
rows, of the maximal degree of the entries of each row of G, which is called the
external degree of G. Formally:

Definition 21. If G = [gi j(D)] is a polynomial generator matrix, mi = deg(rowi(G)) =
maxj deg(gi j(D)), and the external degree of G is

extdeg(G) =
∑
i

mi.

Definition 22. A polynomial generator matrix G of the convolutional code C is
canonical if it has minimal external degree among all polynomial generator matri-
ces for C, ie

extdeg(G) ≤ extdeg(MG)

for all nonsingular matrices M ∈Mk×k(F2(D)) such that MG is polynomial.

A matrix M(D) ∈ Mk×k(F2[D]) is unimodular if it has determinant equal
to 1. This is equivalent to M(D) being invertible with polynomial inverse, ie
(M(D))−1 ∈Mk×k(F2[D]): in general a square matrix over a ring has inverse with
entries in the ring if and only if its determinant is a unit (ie, invertible element) of
the ring; the units of the ring F[D] are the nonzero elements of F. So, for a more
general field F, unimodularity of M(D) ∈Mk×k(F[D]) means det(M(D)) ∈ F×.

Definition 23. A polynomial generator matrix G is reduced if

extdeg(G) ≤ extdeg(MG)

for all unimodular matrices M .

Obviously, being reduced is a necessary condition for a generator matrix to be
canonical. However, it is not sufficient.

14

Definition 24. The internal degree intdeg(G) of G is defined as the maximum
of the degrees of all k × k minors of G.
A polynomial generator matrix G is basic if it has minimal internal degree among
all polynomial generator matrices for C.

Lemma 25. Let G be a generator matrix.

a) If T is a nnsingular polynomial matrix (ie, T has entries in F[D] and
det(T) 6= 0) then intdeg(TG) = intdeg(G) + deg(det(T)). In particular,
intdeg(G) ≤ intdeg(TG) with equality iff T is unimodular.

b) intdeg(G) ≤ extdeg(G).

Proof. HW. �

Example 26.

G =

[
1 D 1 +D2

D 1 +D2 1 +D +D2

]
G1 =

[
D2 1 +D +D3 1 +D

1 +D +D2 D2 +D3 1

]
=

[
D 1 +D

1 +D D

]
G

are two generator matrices for the same code. The matrix[
D 1 +D

1 +D D

]
is unimodular. The internal degree of G and G1 is 4. The externa degrees differ:
extdeg(G) = 4 and extdeg(G1) = 6.

The importance of the last definitions lies in the following theorem, whose proof
is given later:

Theorem 27. A polynomial generator matrix G is canonical if and only if it is
basic and reduced.

Of course, this result would have no practical consequences if it was not for the
existence of equivalent properties that make it possible to verify if a matrix is basic
and/or reduced. We state some of these conditions in the next two propositions.
Before that, we recall, without proof, some concepts and results from the algebraic
theory of matrices over F[D], which are valid for any Euclidean domain:

Proposition 28. Let A be a m × n matrix over F[D], m ≤ n. Then there exist
invertible matrices (over F[D]) P and Q, such that the entries sij of PAQ satisfy

i) sii = di, for all 1 ≤ i ≤ m,
ii) sij = 0, for all i 6= j, and

iii) the di are either monic polynomials or zero and di | di+1, for all 1 ≤ i < m.

The coefficients di are called the invariant factors of A and are uniquely de-
termined by the matrix.

Proposition 29. For any 1 ≤ l ≤ m,
∏l

i=1 di is equal to the greatest common
divisor of the l × l minors of A.

Remark 30. The matrix PAQ is usually called the Smith Normal Form of A.

15

Proposition 31. The following conditions are equivalent:

1- G is basic;
2- the invariant factors d1, · · · , dk of G are all equal to 1;
3- The greatest common divisor of the k × k minors of G is 1;
4- G has a polynomial right inverse: there exists a n× k polynomial matrix U

such that GU = Ik;

5- if x(D) = u(D)G ∈ (F2[D])
n

then u(D) ∈ (F2[D])
k

(polynomial output
implies polynomial input).

Proof. The properties of the invariant factors stated above show that 2⇔ 3 (HW).
Notice also (HW) that, because G has rank k, its invariant factors are all nonzero.
Suppose that G is basic and let S = PGQ be its Smith Normal Form. Then G
and G1 = PG = SQ−1 generate the same code and have the same internal degree,
because P is unimodular. We may multiply G1 on the left by the diagonal matrix
D, with Dii = 1

di
and obtain a new generator

G2 =
[
Ik|0k×(n−k)

]
Q−1 = DPG;

but then (HW) we have

intdeg(G2) = intdeg(G)−
∑
i

deg(di);

if some di is not 1, this contradicts the hypothesis of G being basic.
Assuming 2, we know that PGQ =

[
Ik|0k×(n−k)

]
. We leave as an exercise (HW)

to find a n× k polynomial matrix U satisfying 4.
The proof of 4⇒ 5 is straightforward and is left as an exercise (HW).
Finally, assuming 5, if TG is a polynomial matrix, each of its rows is the encoding
of a row of T and we conclude that T must in fact be a polynomial matrix. But
then, by lemma 25, intdeg(TG) ≥ intdeg(G), ie, G is basic. �

Proposition 32. The following conditions are equivalent:

1- G is reduced;
2- extdeg(G) = intdeg(G);
3- If Ḡ is the binary k × n matrix defined by Ḡi j = the coefficient of Dmi in

Gi j, where mi = deg(rowi(G)), then Ḡ has rank k;

4- For any u(D) ∈ (F2[D])
k
,

deg (u(D)G) = max
i

(deg(ui(D)) + deg(rowi(G)))

Proof. We prove first that 1 =⇒ 3. In order to better understand the proof, we
notice that the definition of Ḡ means that, for each i,

rowi(G) = Dmi rowi Ḡ+ a row of polynomials with degree less than mi.

We assume, without loss of generality, that the mi are ordered in nondescend-
ing order, and suppose that 3 is false: there exists then a nonzero vector a =
(a0 · · · ak−1) such that aḠ = 0; let l be the highest index such that al 6= 0; then
we conclude (HW) that

l∑
t=0

atD
ml−mt rowt(G)

16

is a linear combination of rows of G with maximal degree strictly less than ml.
We may replace rowl(G) by this linear combination, by elementary row operations,
obtaining a matrix with smaller external degree, a contradiction.
To prove that 3 =⇒ 2, we notice that, assuming 3, there must exist a k × k
submatrix V of Ḡ with nonzero determinant. For the corresponding k×k submatrix
of G, the coefficient of Dm0+···+mk−1 in its determinant is det(V) 6= 0, showing that

intdeg(G) ≥
k−1∑
i=0

mi = extdeg(G).

As the other inequality is always true, the proof is complete.
Now we verify that 2 =⇒ 1: let T be a unimodular k × k matrix. Then

extdeg(TG) ≥ intdeg(TG) = intdeg(G) = extdeg(G),

where we used Lemma 25 and the hypothesis 2.
Finally, we prove 3⇔ 4. Let u(D) ∈ Fk[D] be an input and

c(D) =

k−1∑
i=0

ui(D) rowi(G)

the codeword. If deg(ui(D)) = di, the degree of c(D), ie, the maximal degree of its
entries, is at most d = maxi(di +mi). Now, the vector of coefficients of Dd in c(D)
is (HW) bḠ, where b = (b0, · · · , bk−1) and bi is the coefficient in ui(D) of Dd−mi .
At least one of these bi is nonzero, by definition of d, and so bḠ is not the zero
vector, ie, condition 4 is satisfied, if and only if Ḡ has rank k, ie 3 is satisfied. �

Exercise 33. Show that the matrix G in example 26 is canonical, while G1 is basic
but not reduced. find a polynomial right inverse for each one of them.

We give now the proof of Theorem 27:

Proof. Suppose tht G is canonical. We must show that G is basic; let G0 be a
basic generator for the same code with minimum external degree, among all basic
generators.
We verify that G0 is necessarily reduced, because, if T is a unimodular matrix,

extdeg(TG0) ≥ extdeg(G0).

Moreover, Lemma 25 shows that intdeg(TG0) = intdeg(G0) and so TG0 is also
basic, for any unimodular T . We have

intdeg(G0) ≤ intdeg(G) = extdeg(G) ≤ extdeg(G0) :

the first inequality follows from the hypothesis that G0 is basic, the equality and
the last inequality from the hypothesis that G is canonical, and so reduced.
But we confirmed that G0 is also reduced and so intdeg(G0) = extdeg(G0), and all
the values are equal, in particular, intdeg(G) is minimal, ie, G is basic.
Conversely, if G is basic and reduced, and G1 is any other generator of the same
code, Lemma 25 and the hypothesis imply

extdeg(G1) ≥ intdeg(G1) ≥ intdeg(G) = extdeg(G),

ie, G has minimal external degree. �

17

It is possible to prove also the following

Theorem 34. Suppose G is a canonical generator of a code and G1 is any generator
of the same code. If the row degrees mi of G and ti of G1 are both in nodescending
order

m0 ≤ · · · ≤ mk−1, t0 ≤ · · · ≤ tk−1,
then mi ≤ ti for all 0 ≤ i < k.
In particular, the canonical generator matrices of a code have all the same sequence
of row degrees.

Proof. (A slightly more difficult HW).
Hint: assume that, for some choice of canonical G and any G1, there exists an
i0 such that ti0 < mi0 and mi ≤ ti for all i < i0. By proposition 31, the rows
rowi(G1) are linear combinations of the rows rowi(G) with polynomial coefficients;
by Proposition 32, the rows rowi(G1) with i < i0 are linear combinations of the
rowi(G), with i < i0. Justify these claims and deduce a contradiction.
The last statement of the Theorem is immediate. �

Remark 35. The common row degrees of all canonical generator matrices of a
code are called the Forney indices of the code.

