
1. Algebraic Constructions of Codes

We have met already some methods to construct new codes from old ones (punc-
turing, shortening, etc). We focus now in different methods.

1.1. Subfield and Trace codes.

1.1.1. Subfield subcodes. Let q be a prime power and C a [n, k, d] code over Fqm .
Then

CFq
= C ∩ Fn

q

is a linear code of length n over Fq (HW).
Given a parity-check matrix H for C, this subcode may be characterized as

CFq = {x ∈ Fn
q : Hxt = 0}.

A parity-check matrix for CFq
is obtained in the following way: let Fqm = Fq[β];

then 1, β, · · · , βm−1 is a basis for Fqm as a Fq vector space; each x ∈ Fq[β] has a
unique representation

x =

m−1∑
i=0

xiβi.

Replacing each entry x =
∑m−1

i=0 xiβ
i of H by the column vector (xi), we obtain a

(n− k)m by n matrix over Fq. If we eliminate linear dependent rows the resulting
matrix is a parity-check matrix for CFq

, because if c = (cj) ∈ CFq
and (xj) is a row

of H, with xj =
∑m−1

i=0 xi jβ
i,

∑
j

xjcj = 0⇔
∑
i

∑
j

xi jcj

βi = 0⇔
∑
j

xi jcj = 0∀i.

Example 1. Let F4 = F2[β] with β2 = β + 1. Recall that the code over F4 with
generator

G =

 1 0 0 1 β β
0 1 0 β 1 β
0 0 1 β β 1


is called the hexacode; it is a [6, 3, 4] code.
Applying the construction described above to the parity-check

H =

 1 β β 1 0 0
β 1 β 0 1 0
β β 1 0 0 1


we obtain first

H̃ =


1 0 0 1 0 0
0 1 1 0 0 0
0 1 0 0 1 0
1 0 1 0 0 0
0 0 1 0 0 1
1 1 0 0 0 0


1
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and

HF2
=


1 0 0 1 0 0
0 1 1 0 0 0
0 1 0 0 1 0
1 0 1 0 0 0
0 0 1 0 0 1

 .

By Gauss-Jordan reduction we find that the subfield subcode of the hexacode has
generator [

1 1 1 1 1 1
]

ie, it is the [6, 1, 6] repetition code.

Example 2. Let F52 = F5[β], where β2 = 2 and C be the [8, 4, d] cyclic code over
F52 with generator

g(x) = x4+(2β+4)x3+(3β+2)x2+(β+1)x+2 = (x−β)(x−β2)(x−β3)(x−β4).

We verify that

x8 − 1 = g(x)(x4 + (3β + 1)x3 + (3β + 2)x2 + (4β + 4)x+ 2)

and so the dual code is generated by the polynomial (HW)

x4 ++(β + 1)x3 + (4β + 1)x2 + (4β + 3)x+ 3,

which determines the parity-check matrix for C

H =

[
3 4β + 3 4β + 1 2β + 2 1 0 0 0

· · ·

]
We then obtain

H̃ =

 3 3 1 2 1 0 0 0
0 4 4 2 0 0 0 0

· · ·


and, finally, eliminating row dependencies, the parity-check matrix for CF5

is
1 0 0 0 0 0 2 2
0 1 0 0 0 0 1 3
0 0 1 0 0 0 4 0
0 0 0 1 0 0 0 4
0 0 0 0 1 0 2 2
0 0 0 0 0 1 1 3


CF5

has dimension 2 and minimal distance 6.

Example 3. Let F16 = F2[λ] where λ is a primitive 5-root of unity satisfying
λ4 = λ3 + λ2 + λ+ 1.

H =

[
1 λ λ2 λ3 λ4

1 λ2 λ4 λ λ3

]
is a parity-check matrix for the [5, 3, 3] Reed-Solomon code C. We want to determine
CF4

.
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We define F4 = F2[β], β
2 = β + 1. {1, λ} is a basis of F16 over F4. To compute

the parity-check matrix for CF4
we need the coefficients in this basis for the powers of

λ. Putting λ2 = a+bλ, where a, b ∈ F4 are to be determined, we obtain successively

λ3 = aλ+ bλ2 = ab+ (a+ b2)λ,
λ4 = a2 + ab2 + b3λ,
λ5 = ab3 + (a2 + ab2 + b4)λ

But we know (why?) that a and b are not zero, and on the other hand λ5 = 1, so
the coefficients are determined by{

ab3 = 1
a2 + ab2 + b4 = 0

⇔
{

a = 1
b2 + b = 1

We may choose b = β or b = β2 = β + 1. With the first choice,

λ2 = 1 + βλ, λ3 = β + βλ, λ4 = β + λ

and

H̃ =


1 0 1 β β
0 1 β β 1
1 1 β 0 β
0 β 1 1 0


which has already linearly independent rows. The matrix is in fact row equivalent,

over F4, to 
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


confirming that CF4

is the repetition [5, 1, 5] code.

Exercise 4. Let C be the cyclic code with length 9 over F4 with generator polyno-
mial g(x) = β2 + β2x+ x3 + x4.

a) Verify that C is a [9, 5, 3] code.
b) Find generator and parity-check matrices for the subfield subcode CF2

and
determine its dimension and minimal distance.

Proposition 5. If C is a [n, k, d] linear code over Fqm and CFq
is a [n, kq, dq] code,

a) n−m(n− k) ≤ kq ≤ k;
b) d ≤ dq.

Proof. (HW: Notice that k and kq are dimensions of spaces over different fields;
find bounds for the rank of the parity-check matrix of the subfield subcode). □

The following simple result will be used later:

Proposition 6. If C has a basis v1, · · · , vk with vi ∈ Fn
q , then v1, · · · , vk is also a

basis for CFq
.

Proof. (HW). □

Remark 7. There is no straightforward general formula for dq in terms of n, k, d,m
and q.
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For cyclic codes we may say a bit more:

Proposition 8. If C is a [n, k, d] cyclic code over Fqm then CFq
is also cyclic.

Let β be a primitive n-root of unity in Fqm ; if C has generator g(x) =
∏

l∈L(x −
βl), then the generator of CFq

is
∏

k(x − βk) where k runs through the union of
cyclotomic cosets, modulo n and with respect to q, containing L.

Proof. HW. □

Example 9. Consider the cyclic code C ⊂ (F25)
8
with generator

g(x) = x4+(2β+4)x3+(3β+2)x2+(β+1)x+2 = (x−β)(x−β2)(x−β3)(x−β4)

used before.
The cyclotomic cosets modulo 8 with respect to 5 are : (0), (1, 5), (2), (3, 7), (4), (6).
So the generator for CF5

is

(x− β)(x− β5)(x− β2)(x− β3)(x− β7)(x− β4) = x6 + 4x5 + 3x4 + x2 + 4x+ 3

Suppose C is a [2m − 1, k, d] Reed-Solomon code over F2m = F2[β] with β a
primitive element. It is a cyclic code with generator polynomial

g(x) =

n−k∏
i=1

(x− βi).

Then CF2
is also a cyclic code whose generator polynomial is the product of the

minimal polynomials over F2 of the βi (1 ≤ i ≤ n− k).
Although CF2

needs not be a Reed-Solomon code, Peterson’s decoding algorithm
works effectively for the subfield subcode.

Example 10. Let F16 = F2[β] with β satisfying β4 = β + 1 and k = 9. C is the
Reed Solomon [15, 9, 7] code over F16

{(u(βj))0≤j<15 : u(x) ∈ F16[x] with degree < 9}

has generator polynomial

g(x) =

6∏
i=1

(x− βi) = x6 + β10x5 + β14x4 + β4x3 + β6x2 + β9x+ β6.

The cyclotomic cosets containing {1, 2, 3, 4, 5, 6} are

(1, 2, 4, 8), (3, 6, 12, 9), (5, 10)

and so, if S denotes the union of these sets, CF2 has generator polynomial

g2(x) =
∏
i∈S

(x− βi) = x10 + x8 + x5 + x4 + x2 + x+ 1

and CF2
is a [15, 5, d] cyclic code with d ≥ 7.

Let

r(x) = x2 + x7 + x8 + x9 + x10 + x11
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be a received message. This may be decoded by the error-trapping algorithm for
cyclic codes but also by Peterson’s algorithm: the syndrome of r(x)) with respect to
the parity-check matrix of C is (β14, β13, β6, β11, β5, β12); the locator polynomial is

Q1(x) = x3 + β14x2 + β4x+ β7 = (x− 1)(x− β10)(x− β12).

Assuming the original codeword c(x) belongs to CF2 we may easily decode as

c(x) = 1 + x2 + x7 + x8 + x9 + x11 + x12.

The confirmation that c(x) ∈ C, as well as the details of the computations, are left
as an exercise (HW).

1.1.2. Trace Codes. Another construction of a code over Fq from a code C over
Fqm is by means of the trace function

Tr : Fqm → Fq, T r(x) = x+ xq + · · ·+ xqm−1

.

This definition was considered before, in the case of q prime, but it is direcly
applicable to the general case, with the same properties.
Because, given a field Fqm , there is a trace function for each subfield, a more precise
notation includes the reference to the two fields (TrFqm ,Fq in the case above) but
we will not use this notation, unless necessary.
The definition of the trace map for any extension of finite fields is based on the gen-
eralization of the Frobenius automorphism. The verification that this generalization
has the same properties is left as an exercise.

Example 11. Consider the fields

F26 = F2[α], α
6 = α5 + 1, F22 = F2[β], β

2 = β + 1.

In this case we may define

Tr : F26 → F22 , T r(x) = x+ x4 + x16.

1, α, α2 is a basis of F26 over F22 , and we find that

α3 = β + βα+ β2α2.

So, for example,

Tr(α) = α+ α4 + α16 = α+ 1 + (β2α) + (β + βα) = β2.

The details are left as an exercise.

Extending Tr to Fn
qm coordinatewise we obtain the trace code of C

Tr(C) = {(Tr(ci)) : (ci) ∈ C}.

The properties of the trace map imply that Tr(C) is a linear code of length n. If
Fqm = Fq[β], and G is a generator matrix for C,

Tr(C) is generated by the vectors Tr(βic) where c is a row of G and 0 ≤ i < m.

Example 12. The trace code of the hexacode is generated by Tr(βjvi) where the
vi are a basis of the hexacode and j ∈ {0, 1, 2}; for example

Tr(1, 0, 0, 1, β, β) = (0, 0, 0, 0, 1, 1), T r(β, 0, 0, β, β2, β2) = (1, 0, 0, 1, 1, 1).
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It turns out (HW) that a generator matrix is
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1


ie, the trace code of the hexacode is the dual of its subfield subcode.

Example 13. Let C be the [8, 4, 5] cyclic code over F52 with generator matrix

G =

[
2 β + 1 3β + 2 2β + 4 1 0 0 0

· · ·

]
seen in a example above. We have

Tr(1) = 2, T r(2) = 4, · · · , T r(β) = β + β5 = 0,

and so

Tr(2 β + 1 3β + 2 2β + 4 1 0 0 0) = (4 2 4 3 2 0 0 0)

Computing Tr(c) and Tr(βc) for all the rows c in a basis of C, we find that
Tr(C) is a [8, 6, 2] code.

1.1.3. Delsarte’s Theorem and related results. Subfield codes and trace codes are
intimately related:

Theorem 14 (Delsarte). If C is a linear code over Fqm then(
CFq

)⊥
= Tr

(
C⊥) .

Proof. Suppose v ∈ C⊥ and x ∈ CFq ; then, because x ∈ C, we have < x, v >∑
i xivi = 0, and so

xTr(v) =
∑
i

xiTr(vi) =
∑
i

Tr(xivi) = Tr(< x, v >) = 0.

This shows that Tr
(
C⊥) ⊂ (

CFq

)⊥
.

On the other hand

Tr
(
C⊥) ⊃ (

CFq

)⊥ ⇔ (
Tr

(
C⊥))⊥ ⊂ CFq

.

Given u ∈
(
Tr

(
C⊥))⊥, certainly u ∈ Fn

q , so we must only prove that u ∈ C or,

equivalently, < u, v >= 0 for all v ∈ C⊥. To prove this, we must remeber that,
because the trace map is not constantly zero (it is in fact surjective), given a nonzero
λ ∈ Fqm , there exists some α such that Tr(αλ) ̸= 0 (if Tr(z) ̸= 0, take α = zλ−1).
Let v ∈ C⊥ and α ∈ Fqm ; αv ∈ C⊥ so

0 =< u, Tr(αv) >=
∑
i

uiTr(αvi) =
∑
i

Tr(uiαvi) = Tr(< αuv >).

But if λ =< u, v > ̸= 0, there exists some α such that Tr(αλ) ̸= 0, a contradiction.
□



7

We have already seen that passing to a subfield subcode may determine a loss of
dimension and consequently of information rate. The next theorem identifies the
cases where this does not happen.

Theorem 15. Let C be a [n, k] linear code over Fqm . Then the following are
equivalent:

1) C has a basis {v1, · · · , vk} with vi ∈ Fn
q , for all i ≤ k.

2) dimFq

(
CFq

)
= dimFqm

(C);
3) Tr(C) = CFq

;
4) Cq = C, where Cq = {(cqi )i≤n : (ci)i≤n ∈ C}, ie, the code is invariant

under the application (coordinatewise) of the Frobenius automorphism.

Proof. The proof that 1) and 2) are equivalent is left as an exercise.

Let’s see that 1) =⇒ 4): we use the simplified notation uq = (uq
1, · · · , uq

n); let

{v1, · · · , vk} be a basis of C with vj ∈ Fn
q , for all j ≤ k; if c =

∑k
j=1 αjvj then

cq =

 k∑
j=1

αjvj

q

=
k∑

j=1

αq
jvj

because the coordinates of the vi are fixed by Frobenius automorphism; this implies
that cq ∈ C and that Cq is a subcode of C. But the extension of the Frobenius
automorphism to vectors c→ cq is injective and so dim(Cq) = dim(C) and we must
have equality.

Next we prove that 4) =⇒ 3): One of the inclusions is true in general: by

Delsarte’s Theorem, Tr(C) =
(
C⊥

Fq

)⊥
, and so (HW) Tr(C) ⊃ CFq

is true in

general.

But if Cq ⊂ C then for any c ∈ C, cq
j ∈ C and so

Tr(c) =

m−1∑
j=0

cq
j

∈ C ∩ Fn
q = CFq

.

Finally, we verify that 3) =⇒ 2). Let kq = dimFq

(
CFq

)
; as noticed before, we

need only show that kq ≥ k. If Tr(C) = CFq
,

kq = n− dimFq

(
CFq

)⊥
= n− dimFq

(
C⊥)

Fq
,

but

dimFq

(
C⊥)

Fq
≤ dimFqm

C⊥ = n− k

and so kq ≥ k.
□

We observed that for a code with properties 1) − 4), passing to the subfield
subcode does not reduce the information rate. This advantage comes with a price:
the minimal distance does not increase:

Corollary 16. If C is a [n, k, d] code over Fqm satisfying the conditions in the
previous theorem then
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i) (CFq )
⊥
=

(
C⊥)

Fq
.

ii) Any vector v ∈ C of weight d is a multiple of a u ∈ CFq
. In particular,

dq = d.

Proof. The proof of i) is left as an exercise (HW). Let v ∈ C have minimal weight d.
Then w(Tr(v)) ≤ d because Tr(0) = 0. But, by Proposition 3, either w(Tr(v)) = d
and v and Tr(v) have the same nonzero entries, or Tr(v) = 0. By the same reason-
ing used in the second part of Delsarte’s theorem, we may assume that Tr(v) ̸= 0.
Let vi be a nonzero coordinate of v. Then

w(viTr(v)− Tr(vi)v) < d

and so v = (Tr(vi))
−1

viTr(v) is a multiple of Tr(v). □

1.2. Alternant Codes. The prime subfield subcodes of generalized Reed-Solomon
codes are usually called alternant codes: recall that given two sets {y1, · · · , yn},
{}α1, · · · , αn} of non-zero elements of Fqm , with the αi distinct,

Cy,α = {(y1f(α1), · · · , ynf(αn)) : f ∈ Fqm [x] deg(f) < n− r},
is a generalized Reed-Solomon code.
It has a parity-check matrix of the form

H =


h1 h2 · · · hn

h1α1 h2α2 · · · hnαn

h1α
2
1 h2α

2
2 · · · hnα

2
n

· · · · · · · · · · · ·
h1α

r−1
1 h2α

r−1
2 · · · hnα

r−1
n

 .

Definition 17. The alternant code Ah,α is defined by

Ah,α = Cy,α ∩ Fn
q .

So Ah,α consists of all vectors v ∈ Fn
q satisfying Hv = 0.

We recall that

Proposition 18. Ah,α is a [n, k, d] code with

n−mr ≤ k ≤ n− r, d ≥ r + 1.

Alternant codes constitute a large class of codes with nice properties:

Theorem 19. Let q be a fixed prime. Given integers n, L and δ, if m is a divisor
of n− L satisfying

δ−1∑
i=1

(
n

i

)
(q − 1)i < (qm − 1)

n−L
m ,

there exists an alternant [n, k, d] code Ah,α, with k ≥ L and d ≥ δ.

Before the proof of the theorem, we justify that it implies the existence of asymp-
totically good families of alternant codes. Recall that

Definition 20. A family Cn of codes is asymptotically good if it contains a
subset Cni

with parameters [ni, ki, di] satisfying:
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i) limi→+∞ ni = +∞;
ii) lim infi→+∞

ki

ni
> 0;

iii) lim infi→+∞
di

ni
> 0.

A family is asymptotically bad if it does not contain such a subfamily.

The next exercise, together with the theorem, shows that there exists asymptot-
ically good families of alternant codes:

Exercise 21. Fix positive constants ε and µ, such that ε + µ < 1 and a prime q.
Show that there exist sequences

ni, Li, δi and mi

satisfying the condition in the theorem, and such that

mi | (ni − Li),
Li

ni
≥ ε,

δi
ni
≥ µ.

Proof. Let a ∈ Fn
q . We estimate the number of generalized Reed-Solomon codes

Cv,α, over Fqm , and for a fixed choice of α, with length n and dimension k0 (to be
chosen later) that contain a: a ∈ Cv,α if there exists a polynomial f(x) with degree
less than k0 satisfying

f(αi) =
ai
vi
;

we may define f by choosing the vi for 1 ≤ i ≤ k0; the remaining vi are then
determined by that condition. So there are (qm − 1)k0 choices of v.
This means that there are at most (qm−1)k0 alternant codes Ah,α that are subcodes
of those Cv,α and so contain a. Moreover, the dimension k of Ah,α will satisfy

k ≥ n−m(n− k0);

so if we choose k0 = n− n−L
m we get the desired lower bound on k.

We now let a take all possible values of vectors with weight less than δ, and conclude
that the number of alternant codes with length n, dimension k ≥ L and minimal
distance d < δ, that are subcodes of some Cv,α over Fqm is bounded above by

(qm − 1)n−
n−L
m

δ−1∑
i=1

(
n

i

)
(q − 1)i.

But the total number of generalized Reed-Solomon codes (always with fixed n,
k0 and α) is (qm − 1)n, ie, the number of possible v. So, if the inequality in the
theorem is satisfied, there is some alternant code with minimal distance d ≥ δ. □
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1.3. Decoding of alternant codes: the GCD algorithm. The extended Eu-
clidean algorithm applied to polynomials provides an efficient decoding algorithm
for alternant codes, that may also be applied to the original Reed-Solomon codes.
We review briefly the properties of the Euclidean algorithm in this special case.

Let F denote any field and f(x), g(x) ∈ F[x] two polynomials. Recall the contents
of Lemma 9 and 10 from Notes VII:

1 - The division algorithm defines the sequence

r−1(x) = f(x), r0(x) = g(x), rk(x) = rk−2(x)− qk(x)rk−1(x);

so rk is the remainder of division of rk−2 by rk−1.
2 - the monic multiple of the last non-zero rk is the greatest common divisor

of f(x) and g(x);
3 - the sequences

a−1(x) = 1, a0(x) = 0, ak(x) = ak−2(x)− qk(x)ak−1(x),

and

b−1(x) = 0, b0(x) = 1, bk(x) = bk−2(x)− qk(x)bk−1(x),

satisfy
rk(x) = ak(x)f(x) + bk(x)g(x).

4 - Moreover, for k ≥ 1,

deg ak(x) =

k∑
i=2

deg qi(x), deg bk(x) =

k∑
i=1

deg qi(x),

and

deg rk(x) = deg f(x)−
k+1∑
i=1

deg qi(x).

5 -
ak(x)bk+1(x)− ak+1(x)bk(x) = (−1)k+1;

in particular ak(x) and bk(x) are co-prime;
6 -

rk(x)bk+1(x)−rk+1(x)bk(x) = (−1)k+1f(x); rk+1(x)ak(x)−rk(x)ak+1(x) = (−1)k+1g(x).

Let Ah,α be an alternant code with parity-check matrix (over Fqm)

H =


h1 h2 · · · hn

h1α1 h2α2 · · · hnαn

h1α
2
1 h2α

2
2 · · · hnα

2
n

· · · · · · · · · · · ·
h1α

r−1
1 h2α

r−1
2 · · · hnα

r−1
n

 .

We assume r is even and that t ≤ r/2 errors occur in the transmission of a codeword.
Suppose the error e has non-zero entries ei1 , · · · , eit in the positions αi1 , · · · , αit .
The syndrome of e is (s0, · · · , sr−1) = eHT , where

sl =

t∑
j=1

hijeijα
l
ij .

The syndrome polynomial is S(x) =
∑r−1

l=0 slx
l.
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Definition 22. The error locator polynomial associated with e is

σ(x) =

t∏
j=1

(1− αijx).

The roots of σ(x) are the inverses of the locations αij of the non-zero error coordi-
nates.

We have also

Definition 23. The error evaluator polynomial is

ω(x) =

t∑
j=1

hijeij
∏
u ̸=j

(1− αiux) =

t∑
j=1

hijeij
σ(x)

1− αijx)
.

The name is justified by the following computation (HW):

ω(α−1
ij

) = hijeij
∏
u̸=j

(1− αiuα
−1
ij

),

ie,

eij =
ω(α−1

ij
)

hij

∏
u ̸=j(1− αiuα

−1
ij

)
.

Of course, these polynomials depend on unknown data. However, we will see
that it is possible to determine them in a indirect way. The starting point is

Lemma 24.

xr | (ω(x)− σ(x)S(x)).

Proof. (HW). □

This implies that there exists θ(x) such that

ω(x) = θ(x)xr + σ(x)S(x),

and we are lead to apply the Euclidean algorithm to xr and S(x) to get ω(x)
from one of the remainders rk(x).

Let rk(x) = ak(x)x
r + bk(x)S(x) be the first remainder satisfying deg(rk(x)) <

r/2; the properties on the degrees of the bi(x) stated above imply (HW) that then
deg(bk(x)) ≤ r/2.
We have then {

ω(x) = θ(x)xr + σ(x)S(x)
rk(x) = ak(x)x

r + bk(x)S(x)

and so

bk(x)ω(x)− rk(x)σ(x) = (bk(x)θ(x)− ak(x)σ(x))x
r.

But the degree on the left side is strictly less than r and so

bk(x)ω(x) = rk(x)σ(x), bk(x)θ(x) = ak(x)σ(x).

As ak(x) and bk(x) are co-prime, the second equality implies (HW) that bk |
σ(x).
But ω(x) and σ(x) are also co-prime, as they have no roots in common in any
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extension of Fqm . So, by the same reasoning, the first equality implies σ(x) | bk(x).
So we finally have (HW)

σ(x) = bk(0)
−1bk(x).

The first equality above gives

ω(x) = bk(0)
−1rk(x).

The details of the following example are left as a possible homework (HW)

Example 25. Consider the [8, 4, 5] Reed-Solomon code over F9 = F3[β], where β
satisfies β2 = β + 1, with parity-check matrix

H =


1 β β2 β3 β4 β5 β6 β7

1 β2 β4 β6 1 β2 β4 β6

1 β3 β6 β β4 β7 β2 β5

1 β4 1 β4 1 β4 1 β4


Notice that, with the notation used in the discussion of the algorithm,

hj = αj = βj−1

and r = 4.
Suppose that the following output is received after a transmission of a codeword
from the alternant code over F3 determined by this parity-check matrix

u = (2, 0, 1, 0, 0, 1, 2, 0);

its syndrome is (β2, β, β6, 1); applying the extended Euclidean algorithm to x4 and
S(x) = x3+β6x2+βx+β2 we find that the first rk(x) with degree less than r/2 = 2,
and the corresponding ak(x) and bk(x), are

r2(x) = β7, a2(x) = β6x+ β4, b2(x) = β2x2 + x+ β5,

and so

σ(x) = β5x2 + β3x+ 1, ω(x) = β2.

Finding the zeros of σ(x) we get σ(x) = (1−βx)(1−β4x), ie, the errors are in the
second and fifth positions. Computing

(0, a, 0, 0, b, 0, 0, 0)HT = (β2, β, β6, 1),

with a, b ∈ F3, we find that the error pattern is e = (0, 1, 0, 0, 2, 0, 0, 0). It would
also be possible to use the evaluator polynomial to compute, following the notation
used in the discussion of the algorithm,

e2 = β2
(
β(1− β4β7)

)−1
= 1, e5 = β2

(
β4(1− ββ4)

)−1
= 2.

1.4. Concatenation. The next construction is based not on one but two codes
and is the basis of some of the best block codes known.
Let A be a [N,K,D] code over Fqm and B a [n,m, d] code over Fq. Identifying
Fqm = Fq[β], we have a canonical mapping

ϕ : Fqm → Fm
q , ϕ(

m−1∑
i=0

xiβ
i) = (xi)0≤i<m.
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This mapping may be extended coordinatewise (with the same denomination) to a
mapping

ϕ : (Fqm)
N → (Fq)

mN
.

On the other hand, given a basis v0, · · · , vm−1 of B we have the isomorphism

τ : Fm
q → B, τ((xi)) =

m−1∑
i=

xivi.

We thus have a bijective Fq-linear map

τ ◦ ϕ : (Fqm)
N → BN ,

where BN denotes the direct product of N copies of B.

Definition 26. Under the above conditions, the image A[B] = τ ◦ ϕ(A) is called
the concatenation of A with B. A is called the outer code and B the inner
code.

Example 27. Let

A = {(0, 0), (1, β), (β, 1 + β), (1 + β, 1)},

a [2, 1, 2] code over F2[β], and

B = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

a [3, 2, 2] code over F2.
With ϕ : F2[β]→ B defined by

ϕ(0) = (0, 0, 0), ϕ(1) = (1, 1, 0), ϕ(β) = (1, 0, 1), ϕ(1 + β) = (0, 1, 1),

the concatenation of A with B is

A[B] = {(0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 1), (1, 1, 0, 0, 1, 1), (0, 1, 1, 1, 1, 0)},

which is a [6, 2, 4] code.

Proposition 28. A[B] has length nN , dimension mK and minimal distance at
least dD.

Proof. (HW). □

1.4.1. Encoding. From the definition, we see that A[B] receives an input vector
v ∈ FmK

q and encodes it as u ∈ FnN
q :

- v is broken into blocks u1, · · · , uK of length m;
- each ui is then identified with an element of Fqm by ϕ−1 resulting in a
vector from FK

qm , which is then encoded by A;
- the image of this outer encoding is then transformed by ϕ in a vector from
FNm
q which is in its turn broken into N blocks of length m;

- each one of these blocks is encoded by B into a length n codeword, pro-
ducing a concatenated string of length nN .
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This may be summarized in the diagram

v ∈ FmK
q −→ (u1, · · · , uK) ∈

(
Fm
q

)Kyϕ−1

(τ1, · · · , τN ) ∈ (Fqm)
N ←−

A
(α1, · · · , αK) ∈ (Fqm)

K

ϕ ↓
(a1, · · · , aN ) ∈

(
Fm
q

)N −→
B

(b1, · · · , bN ) ∈
(
Fn
q

)N
The computational details of the following example are left as an exercise (HW):

Example 29. We construct the concatenated code A[B] where A is the [5, 3, 3]
Reed-Solomon code over F16 = F2[α] (whit α satisfying α4 = α3 +α2 +α+1) with
generator matrix

GA =

1 1 1 1 1
1 α α2 α3 α4

1 α2 α4 α α3

 ,

and B is the binary [7, 4, 3] Hamming code with generator matrix

GB =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

We start by seeing an example of encoding:

( 0 0 1 0 1 1 0 1 0 1 1 0 )→ (0010 1101 0110)

−−→
ϕ−1

(α2 1 + α+ α3 α+ α2)

−→
A

(1 + α3 α+ α3 α+ α3 1 + α+ α3 α+ α2)

−→
ϕ

(1001 0101 0101 1101 0110)

−→
B

(1001100 0101010 0101010 1101001 0110011)

1.4.2. Concatenated decoding. The structure of concatenated codes allows a decod-
ing procedure that follows the reverse path:

- a message of length nN is broken into blocks of length n, each one of which
is decoded, under B, into a length m vector;

- applying ϕ−1, a vector from FN
qm is obtained and decoded by A into a vector

from FK
qm ;

- this is transformed by ϕ into a message from FmK
q .
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It should be noted that this decoding strategy may allow to correct more errors
than established by the minimal distance but it may also fail to decode correctly
error patterns with weight below (d−1)/2, depending on the way that the errors are
distributed. It turns out, however, that in many cases this failure may be overcome.

We use the same code as above to exemplify and discuss the concatenated de-
coding procedure: let

r = (1110101 1111110 0111001 0110011 1100110)

be the output, already written in block form.
The parity-check matrix

HB =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .

gives the vector of syndromes

(101 001 101 000 000)

leading to the corrected codeword

c = (1010101 1111111 0011001 0110011 1100110).

c is the encoding of (1010 1111 0011 0110 1100)

−−→
ϕ−1

(1 + α2 α4 α2 + α3 α+ α2 1 + α).

which we now decode using Peterson’s algorithm. Computing the syndrom we
obtain the matrix

D(r) = [α+ α3 α+ α3]

and identify the locator polynomial Q1(x) = 1 + x showing that we have an error
in the first coordinate.
We could correct the error by syndrome decoding; instead, we compute the poly-
nomial

Q0(x) = 1+α3 +(α2 +α3)x+(α+α)x2 +(1+α)x3 and find that the input for
A is

−Q0(x)

Q1(x)
= 1 + α3 + (1 + α2)x+ (1 + α)x2,

which corresponds to the original input u ∈ F12
2

u = ( 1 0 0 1 1 0 1 0 1 1 0 0 ),

which was encoded to

c = (1111111 1111111 0011001 0110011 1100110).

We find that there were 2 errors in the first block and 1 error in the second and
third blocks; the decoding for the Hamming code corrected these last two errors
but gave a wrong answer in the correction of the first block; however the decoding
for A fixed this problem.
It is clear that concatenated decoding would have succeeded in correcting an error
pattern with weight up to 11, if all but one of the blocks had at most one error,
with the remaining ones concentrated in the remaining block.
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On the other hand, suppose, for simplicity, that the zero codeword is sent and

r = (1100000 1000010 0000000 0000000 0000000)

is received. The syndromes are then

(110 001 000 000 000)

leading to the (wrong) decoding

r = (1110000 1000011 0000000 0000000 0000000),

which would be the result of encoding the outer output (1 + α+ α2 1 0 0 0).

Application of Peterson’s algorithm would lead to a locator polynomial with no
roots of the form αj for 0 ≤ j < 5, and thus to a failure in decoding. This happened
because A has minimal distance 3 while the error pattern resulting from the inner
decoding has weight 2.
However, we know that there are errors in the first two blocks. If we take those to
be erasures we could correct them. In fact, in our case things are even simpler: A is
a MDS code and so any three coordinates are an information set, ie, they determine
the remaining coordinates.

We end with an example where inner decoding fails to decode (correctly or not)
the output.

Example 30. We take as outer code A the hexacode, a [6, 3, 4] code over F4 = F2[β]
where β2 = β + 1; it has generator matrix

GA =

 1 0 0 1 β β
0 1 0 β 1 β
0 0 1 β β 1

 .

As inner code B we use the binary code with generator

GB =

[
1 0 0 1 1
0 1 1 0 1

]
.

The concatenation is thus a [30, 6, 12] binary code. The ϕ mapping is in this case

ϕ(0) = (00), ϕ(1) = (10), ϕ(β) = (01), ϕ(β2) = (11).

Suppose the received message is

r = ( 01110 01010 01101 11110 00000 11111 )

The inner decoding gives

( 11110 ? 01101 11110 00000 11110 );

in the second block, the syndrome has two different coset leaders, both with weight
2, that would lead either to 11110 or to 00000 as decoded vector; at this stage, there
is no reason to choose one or the other and we will follow both paths: (τ ◦ ϕ)−1

produces, in each case, the F6
4 vectors

(β2 β2 β β2 0β2) or (β2 0β β2 0β2).
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In the first case the syndrome is (β2 1 1) which has unique coset leader (β2 0 0 0 0 0)
leading to the codeword (with respect to the outer code)

(0β2 β β2 0β2)

and so to the original message (001101110011).
However, in the second case the syndrome is (β2 β 0) which has two coset leaders

(0 0 0β2 β 0), (0β 0 0 0β2).

We are naturally led to choose the first decoding.

The crucial observation that explains what is happening is that r has two code-
words at the same distance in B6 but not in its subcode A[B].

1.4.3. Burst error correction. The simplest nontrivial case of concatenation may
be the one where the inner code is a trivial [m,m, 1] code over Fq and the outer
code is for instance a Reed-Solomon code over Fqm . Recall that this last one is a
MDS code, ie, it satisfies Singleton upper bound d = n−k+1. It should be noticed
that in this special case, illustrated in the example below, we have n = m and the
decoding by B is trivial, since all vectors are codewords.

This concatenation is a [nm, km, d] code particularly useful for burst correction:
suppose a nm length message r is received; this is broken into a sequence of m
length messages mapped by ϕ−1 into a n length message to be decoded. Suppose
r contains a b-burst; the burst affects at most a = ⌊b/m⌋ + 2 of the n blocks.
This means that the concatenated code corrects b-bursts for b ≤ (t − 2)m where
t = ⌊d−1

2 ⌋, even if it corrects only up to t random errors.

The details of the following example are again left as an exercise (HW):

Example 31. Let C be the concatenation of the Reed-Solomon [15, 9, 7] code over
F16 = F2[β] with β4 = β + 1, and the [4, 4, 1] code over F2. The concatenation is
defined by

ϕ(x0 + x1β + x2β
2 + x3β

3) = (x0, x1, x2, x3).

Let r be the received message (presented in ”broken” form)

(1000 0100 1001 0110 1011 1000 1100 1010 1010 0011 1110 1010 1101 0001 0100),

mapped by ϕ−1 to

(1, β, β14, β5, β13, 1, β4, β8, β8, β6, β10, β8, β7, β3, β).

The syndrome gives origin to the matrix
0 β12 β4 β6

β12 β4 β6 β13

β4 β6 β13 β4


and from it the locator polynomial

Q1(x) = β12 + β7x+ β8x2 + x3 = (x− 1)(x− β13)(x− β14).
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The coset leader associated with the given syndrome is then

e(x) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β13, β3)

and ϕ−1(r) is decoded into

(0, β, β14, β5, β13, 1, β4, β8, β8, β6, β10, β8, β7, β12, β14),

corresponding to

(0000 0100 1001 0110 1011 1000 1100 1010 1010 0011 1110 1010 1101 1111 1001).

The error is thus a 9 burst.

1.4.4. Interleaving. We take the opportunity to refer briefly another code construc-
tion of a more combinatorial nature, which is also frequently applied to burst cor-
rection.
Let C be a [n, k], b-burst error correcting, code over F and fix t > 1.
The interleaving to depth t of C, denoted I(C, t), is a [nt, kt] code constructed in

the following way: each t-tuple (x1, x1, · · · , xt) ∈
(
Fk

)t
is encoded by C as the rows

of the matrix

→


c11 c12 · · · c1n
c21 c22 · · · c2n

...
ct1 ct2 · · · ctn

 ,

so, for each i ≤ t, (ci1 ci2 · · · cin) = xiG ∈ C. The entries of the matrix are
then read by columns, creating the codeword of I(C, t)

( c11 c21 · · · ct1 c12 c22 · · · ct2 · · · · · · c1n c2n · · · ctn )

Proposition 32. I(C, t) is tb-burst error correcting.

Proof. HW. □

1.5. Good Concatenated Codes. In this section we present a family of codes,
constructed by concatenation, with asimptotically good parameters, the Justensen
codes. We’ll consider only the binary version.
The starting point for the definition of this family of codes is a simple idea that
leads, pottentialy, to good codes.

1.5.1. Good binary codes with R = 1/2. Fix m > 1 and let Cα be the [2, 1, 2] code
over F2m

Cα = {(a, αa) : a ∈ F2m},
where α ∈ F2m is to be chosen. We notice that any non-zero element (a, αa)
determines the constant α.
Given a presentation of the field as F2m = F2[β], we may obtain a [2m,m, d] binary
code, using the vector space isomorphism

ϕ : Fqm → Fm
q , ϕ(

m−1∑
i=0

xiβ
i) = (xi)0≤i<m;
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the result can be seen as concatenation of Cα with the trivial binary code with
length m, ie, Fm

2 , and so we will denote the binary code obtained in this way as
Cα[Fm

2 ].
Let ε < 0.5. We will bound the number of codes Cα[Fm

2 ] containing a non-zero
codeword with weight less than 2mε: assuming the worst case scenario, that all
possible non-zero binary words with length 2m and weight less than 2mε occur as
codewords in distinct codes, we see that there would be at most

∑
1≤i<2mε

(
2m
i

)
choices of α that lead to a code with minimal distance d < 2mε.
We have the following

Lemma 33. If ε < 0.5, ∑
0≤i<nε

(
n

i

)
≤ 2nH2(ε).

Proof. (HW): notice that, for any r > 0,

2−rnε
∑

1≤i<nε

(
n

i

)
≤

∑
1≤i<nε

2−ri

(
n

i

)
,

which, extending the sum to 0 ≤ i ≤ n, is bounded above by (1 + 2−r)n.
Choose r = log2

(
1−ε
ε

)
. □

If we take 0 < ε < 0.5 satisfying H2(ε) < 1/4 we have 22mH2(ε) < 2m − 1 and
so conclude that there is some α ∈ F2m such that the code Cα[Fm

2 ] has minimal
distance d ≥ 2mε. This shows that there is a family Cm of [2m,m, dm] binary codes
such that lim infm

dm

2m ≥ ε > 0.

This is a good family of codes, in asymptotic terms, although the individual
codes in the family might be overshadowed by other codes with the same length
and dimension.
But the main drawback of this nice idea is that it is non-constructive: we don’t
know how to choose a sequence of values of m for which there is an accessible way
of determining the desired α. The way out of this difficulty found by Justensen is
at the same time ingenious and simple: choose all the α ∈ F2m .

1.5.2. Justensen codes. The construction of Justensen codes is by concatenation,
using as external code a [N,K,D] Reed-Solomon code over F2m , with N = 2m− 1.
The dimension K is chosen later. Recall that the code is

{(f(x1), f(x2), · · · , f(xN )) : f ∈ F2m [x]; deg(f) < K},
where the xi enumerate all non-zero elements of the field.
Each entry f(xi) is then replaced by the block (ui, vi) = (ϕ(f(xi)), ϕ(xif(xi))) ∈
F2m
2 , where ϕ is the isomorphism between F2m and Fm

2 determined by some fixed
choice of basis.
This construction results in a [2m(2m − 1),mK, dm] binary code with rate

Rm =
K

2(2m − 1)
.

To attain a good estimate on the minimal distance dm and foremost on its asymp-
totic behaviour with m, we fix R < 0.5, independent of m, and choose K to be
the minimum integer such that Rm ≥ R, ie, we choose K to be the integer in the
interval [2(2m − 1)R, 2(2m − 1)R+ 1[.
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In each codeword there are at least D = N − K + 1 non-zero blocks (ui, vi) and
these are all distinct.

The choice of K gives D > (2m−1)(1−2R). And, given 0 < ε < 0.5, the number
of blocks with weight less than 2mε in a nonzero codeword c is bounded above by
22mH2(ε).
This implies that the weight of c satisfies

w(c) ≥
(
(2m − 1)(1− 2R)− 22mH2(ε)

)
2mε.

Choosing ε by H2(ε) = 1/2− 1
log2(2m) , we have that ε is bounded away from zero,

if we take m > 2. On the other hand, this choice implies (HW) that there is a
positive constant C such that, for sufficiently large m,

w(c) ≥ C2m(2m − 1),

ie, dm

2m(2m−1) > C.

So Justensen codes constitute a good family of codes.

Remark 34. For a concrete description of such a family, it is useful to know that
there exist sequences of m for which the construction of the field extension is known:
for example, taking m = 2× 3j, the polynomial p(x) = xm + xm/2 +1 is irreducible
over F2.

On the other hand, the definition of the Reed-Solomon code is usually done
putting xi = λi−1, for a primitive root of the extension field. This may lead to
complicated computations, dependent on m. An alternative to this choice is the
following: if F2m = F2[β], writing each 1 ≤ t ≤ N in binary form

t =

m−1∑
i=0

ri(t)2
i,

we may define

xi =

m−1∑
i=0

ri(t)β
i.

Justensen codes have, for largem, information rates below 0.5, but by puncturing
adequately it is possible to define good families of codes with informations rates
above 0.5.

1.6. Supplementary Results and Problems.

Exercise 35. Let A be the Reed-Solomon code over F32 defined by

C = {(f(1), f(λ), · · · , f(λ7)) : f(x) ∈ P4 ⊂ F32 [x]}

where λ is a primitive 8-root of unity satisfying λ2 = λ+1, and P4 denotes as usual
the vector space of polynomials with degree less than 4.

a) Determine the dimension and minimal distance of the trace code Tr(A) ⊂
F8
3.
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b) Let B be the [4, 2, 3] code over F3 with generator matrix

G =

[
1 0 1 1
0 1 2 1

]
.

Decode the following output from the concatenated code A[B], using syn-
drome decoding for B and Peterson’s algorithm or the GCD algorithm for
A:

(2001 2201 2110 1002 1001 1011 0010 1011).

c) Prove that the concatenated decoding algorithm used in b) corrects all errors
with weight w < 6, but that there are errors with weight 6 that are not
corrected. Prove also that the algorithm successfully decodes any burst with
length l < 8.

Exercise 36. Consider the Reed-Solomon code A over F2[β], where β3 = β + 1,

C = {(f(1), f(β), · · · , f(β6)) : f(x) ∈ P3[x]}.
a) Find the dimension of the subfield subcode AF2

.
b) The code C is the concatenation of A with the inner code B that has gen-

erator matrix

GB =

1 0 0 1 1 1
0 1 0 1 1 0
0 0 1 1 0 1

 .

Apply the algorithm for decoding of concatenated codes to decode the output

r = (000000 010110 000100 100010 101111 010110 101101).


