
Combinatória e Teoria de Códigos
Test - 16/06/2020

1. Instructions

You are to work on this examination by yourself. Any hint of col-
laborative work will be considered as evidence of academic dishonesty.
You are not to have any outside contacts concerning this subject, ex-
cept myself.
This being a take-home examination, you are expected to hand back
a legible document, in terms of the presentation of your answers. Re-
sults proven in the course notes may be quoted indicating simply the
file and result number (e.g. Notes I, Theorem 10); if you use theorems
or other results from other sources, you must identify this source and
state them in full, including the proof.
Justify all the steps and include the results of computations.
The questions are written in English but the answers may be written
either in Portuguese or in English.
Important: The grade of each question is displayed after the question
number. A complete answer consists of parts a) and b) of 1.,2.,3. and
4., together with one of 1.c) or 4.c), and one of 2.c) or 3.c). If you
answer both questions in one of these pairs (or in both), the best grade
of the two will be chosen.

About the solutions: The solutions presented here refer to one
of the versions of the Test. Depending on the problem, some versions
may need slightly different approaches.
Although many relevant comments were omited, the solutions include
detailed explanations or examples that were not strictly demanded.
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1. - Let f(x), h(x) ∈ Fq[x], where q is a prime and f(x) is monic
and has degree n.

a) (2.0) Show that hq(x)− h(x) =
∏

a∈Fq
(h(x)− a).

b) (2.0) Prove that if f(x) | (hq(x)− h(x)) then

f(x) =
∏
a∈Fq

gcd(f(x), h(x)− a).

c) (1.5) Consider the matrix A = [aij], where
∑n−1

j=0 aijx
j is the remain-

der from the division of xiq by f(x), for 0 ≤ i < n.
Prove that a polynomial h(x) =

∑n−1
i=0 hix

i satisfies

f(x) | (hq(x)− h(x))

if and only if the vector h = (h0, · · · , hn−1) satisfies hA = h.

Solution: Fermat’s Theorem implies xq−x =
∏

a∈Fq
(x−a): dividing

the lefthand side by the righthand side gives a remainder r(x) with
degree less than q satisfying r(a) = 0 for all a ∈ Fq, ie, r(x) is the zero
polynomial.
Denoting that polynomial by l(x), we have l ◦h(x) = hq(x)−h(x) and
also l ◦ h(x) =

∏
a∈Fq

(h(x)− a).

Each factor ga(x) = gcd(f(x), h(x)−a) certainly divides f(x); they are
also mutually prime: if v(x) divides both ga(x) and gb(x), with a 6= b,
then

v(x) | (h(x)− a) ∧ v(x) | (h(x)− b) =⇒ v(x) | (b− a),

and so v(x) is a nonzero constant, ie, ga(x) and gb(x) are co-prime.
This implies, by a well-known application of the Euclidean algorithm,
that the product

∏
a ga(x) divides f(x).

Again by the Euclidean algorithm,

ga(x) = sa(x)f(x) + ta(x)(h(x)− a),

and so ∏
a

ga(x) = S(x)f(x) + T (x)
∏
a

(h(x)− a),

for a polynomial S(x) and T (x) =
∏

a ta(x); if f(x) | (hq(x)− h(x))⇔
f(x) |

∏
a∈Fq

(h(x)− a), then

f(x) |
∏
a

ga(x).
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By definition

xiq = f(x)vi(x) +
n−1∑
j=0

aijx
j,

and so

hq(x) =

(
n−1∑
i=0

hix
i

)q

=
∑
i=0

n− 1hix
iq =

=
n−1∑
i=0

hi

(
f(x)vi(x) +

n−1∑
j=0

aijx
j

)
= f(x)v(x) +

n−1∑
j=0

(
n−1∑
i=0

hiaij

)
xj,

showing that the second summand is the remainder of the division of
hq(x) by f(x).
If f(x) | (hq(x)− h(x)), as deg(h(x)) < n, this remainder equals h(x),
ie,

h(x) =
n−1∑
j=0

(
n−1∑
i=0

hiaij

)
xj,

which is equivalent to hA = h.
And conversely, this equality implies that hq(x) = f(x)v(x) + h(x), ie,
f(x) | (hq(x)− h(x)).

2. - Let C be the cyclic binary code of length 15, with generator
polynomial

g(x) = 1 + x4 + x6 + x7 + x8.

a) (2.0) Determine the defining set of the code, with respect to the prim-
itive 15-root of unity α satisfying α4 = α + 1, and prove that
the minimal distance of C is 5.

b) (2.5) Decode the output

u = (1 0 0 1 0 1 1 0 0 1 1 0 0 1 0),

under the assumption that the possible error is a burst of length
at most 3. Find the codeword at minimal distance from u.

c) (1.5) Confirm that C is 3-burst error correcting: justify that it is
enough to show that the coset containing b0(x) = 1+x+x2 does
not contain another nonzero burst b(x) of length less or equal
than 3; compare the values of b0(x) and b(x) at appropriate
powers of α.
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Solution: The cyclotomic cosets modulo 15, with respect to 2, are

C0 = (0), C1 = (1, 2, 4, 8), C3 = (3, 6, 9, 12), C5 = (5, 10), C7 = (7, 11, 13, 14);

if g(x) is a generator polynomial for a cyclic code of length 15 is has
to be the product of some of the irreducible factors of x15 − 1; each of
these irreducible factors is of the form pi(x) =

∏
j∈Ci

(x−αj). Compar-

ing degrees, we conclude that g(x) is the product of two of the three
irreducible polynomials of degree 4. A way to identify them is to divide
g(x) by the irreducible factor we know beforehand p1(x) = x4 + x+ 1;
we find that

g(x) = (x4 + x+ 1)(x4 + x3 + x2 + x+ 1),

and so p1(x) is one of the factors. We may identify the cyclotomic
coset associated to the other factor without using a table of powers of
α noting that

p3(x) = (x+ α3)(x+ α6)(x+ α9)(x+ α12) = x4 + Sx3 + Sx2 + Sx+ 1,

where S = (α3 + α6 + α9 + α12), which immediately shows that

p3(x) = x4 + x3 + x2 + x+ 1 :

the coefficient S is either 1 or 0 and it can not be 0, as x4 + 1 is not
irreducible.
So the defining set T is the union C1 ∪C3 and by the BCH bound the
minimal distance of the code is at least 5; as the weight of g(x) is 5 we
conclude that d = 5.
The received output corresponds to the polynomial

u(x) = 1 + x3 + x5 + x6 + x9 + x10 + x13;

following the error-trapping algorithm, we compute the syndromes Sj

of xju(x) and the remainders rj(x) of the division of x15−jSj(x), which
are the candidates to error patterns; we find that

S6 = 1 + x+ x2,

corresponding to the error pattern x9 + x10 + x11, which is the only
burst of length less or equal to 3 that appears in the sequence of rj(x).
This leads to the codeword

c(x) = u(x)− (x9 + x10 + x11) = 1 + x3 + x5 + x6 + x11 + x13.

On the other hand, S0(x) = r0(x) = x3 + x7 is a error pattern with
weight 2 and so the unique codeword at minimal distance from u(x) is

u(x)− (x3 + x7) = 1 + x5 + x6 + x7 + x9 + x10 + x13.
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A code is 3-burst error correcting if and only if each coset contains at
most one burst of length less or equal to 3. Two bursts b(x) and b′(x)
are in the same coset iff b(x) − b′(x) ∈ C. Given that the minimal
distance of C is 5, we only need to consider the possible coexistence
in the same coset of two bursts of weight 3 or one of weight 3 and
the other of weight 2. Because C is cyclic, given a burst of weight 3,
xj + xj+1 + xj+2 and another burst b(x),

xj + xj+1 + xj+2 − b(x) ∈ C ⇔ 1 + x+ x2 − x−jb(x) ∈ C.

So we need only to consider the possibility that b0(x) = 1 + x+ x2 and
another burst b(x) (with weight 2 or 3) are in the same coset.
Now we recall that s(x) = b0(x) − b(x) ∈ C iff s(αi) = 0 for all
i ∈ T = {1, 2, 3, 4, 6, 8, 9, 12}. The case where b(x) has also weight 3 is
easier: then

b0(x)− b(x) = 1 + x+ x2 + xj + xj+1 + xj+2 = (1 + xj)(1 + x+ x2),

where 2 < j < 13 (otherwise the weight would be less than 5); 1+x+x2

has roots α5 and α10 (the elements of the field with order 3); on the
other hand, the roots of 1 + xj are

- 1, α5, α10 if j = 3;
- 1, α3, α6, α9, α12 if j = 5;
- 1 otherwise.

In any case, α is never a root.
If b(x) has weight 2, some more computations are needed. There are
two cases:

- b0(x)− b(x) = 1 + x+ x2 + xj + xj+1, with 2 < j < 14,
- b0(x)− b(x) = 1 + x+ x2 + xj + xj+2, with 2 < j < 13,

and in each one of these cases we must show that the equalities

b0(α)− b(α) = 0 b0(α
3)− b(α3) = 0

can not occur simultaneously.
For these computations we need to know the expressions

αt = a0 + a1α + a2α
2 + a3α

3, ai ∈ F2,

for 0 ≤ t < 15. We have then

1+α+α2+αj+αj+1 = 0⇔ α10+αj(1+α) = 0⇔ α10+αj+4 = 0⇔ j = 6;

on the other hand,

1 + α3 + α6 + α3j(1 + α3) = 0⇔ α8 + α3j+14 = 0⇔ j = 3.

The second case is similar.
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3. - Let A be the Reed-Solomon code over F32 defined by

C = {(f(1), f(λ), · · · , f(λ7)) : f(x) ∈ P4 ⊂ F32 [x]}

where λ is a primitive 8-root of unity satisfying λ2 = λ + 1, and P4

denotes as usual the vector space of polynomials with degree less than
4.

a) (2.0) Determine the dimension and minimal distance of the trace code
Tr(A) ⊂ F8

3.
b) (2.5) Let B be the [4, 2, 3] code over F3 with generator matrix

G =

[
1 0 1 1
0 1 2 1

]
.

Decode the following output from the concatenated code A[B],
using syndrome decoding for B and Peterson’s algorithm for A:

(1211 1102 1010 0100 2110 0000 0111 2022).

c) (1.5) Prove that the concatenated decoding algorithm used in b) cor-
rects all errors with weight w < 6, but that there are errors with
weight 6 that are not corrected. Prove also that the algorithm
succefully decodes any burst with length l < 8.

Solution: To facilitate following the solution, we start by computing
a table for the powers of λ:

j 0 1 2 3 4 5 6 7

λj 1 λ 1 + λ 1 + 2λ 2 2λ 2 + 2λ 2 + λ

A has generator matrix
1 1 1 1 1 1 1 1
1 λ λ2 λ3 λ4 λ5 λ6 λ7

1 λ2 λ4 λ6 1 λ2 λ4 λ6

1 λ3 λ6 λ λ4 λ7 λ2 λ5


The values of the trace function Tr(a) = a+ a3 are Tr(0) = 0 and

j 0 1 2 3 4 5 6 7

Tr(λj) 2 1 0 1 1 2 0 2
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If we compute componentwise the trace of each row of G and of each
row multiplied by λ, we obtain

2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1
2 1 0 1 1 2 0 2
1 0 1 1 2 0 2 2
2 0 1 0 2 0 1 0
1 1 2 2 1 1 2 2
2 1 0 1 1 2 0 2
1 1 2 0 2 2 1 0


Reducing to standard form (which includes eliminating row linear

dependences) we obtain
1 0 0 0 0 2 1 0
0 1 0 0 0 0 2 1
0 0 1 0 0 1 2 2
0 0 0 1 0 2 2 2
0 0 0 0 1 2 0 2


showing that the trace code Tr(A) has dimension 5; the minimal

distance d = 3 may be read directly from this generator matrix or from
the parity-check matrix.

The syndromes of the blocks of the output, with respect to the parity-
check matrix for B

]H =

[
2 1 1 0
2 2 0 1

]
are

21 00 02 12 00 00 20 00

with corresponding coset leaders

0200 0000 0002 0100 0000 0000 0020 0000

we obtain the sequence of codewords for B

1011 1102 1011 0000 2110 0000 0121 2022

which are in turn the encoding of the messages

10 11 10 00 21 00 01 20

The corresponding output of the outercode is

r = (1 λ2 1 0 λ7 0 λ 2)
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The syndrome of r is (λ3 λ7 2 λ2).
According to Peterson’s algorithm we construct the matrix

D(r) =

[
λ3 λ7 2
λ7 2 λ2

]
and compute a vector in the kernel whose entries are the coefficients of
the locator polynomial. It is easy to see that the locator polynomial will
have degree 2, as the first two columns of D(r) are linearly independent.
Solving the system of equations we obtain

Q1(x) = x2 + λ3x+ λ2 = (x− 1)(x− λ2).
The last factorization may be obtained by trial and error, by noting
that 1 + λ2 = −λ3, or even by the formula for the roots of a quadratic
polynomial (which works for fields of charcteristic different from 2).
We see that the errors occur in the first and third coordinates. We
could compute the polynomial Q0(x) or, in alternative, to search for
an error pattern of the form

(λt 0 λs 0 0 0 0 0)

with the given syndrome. This amounts to solve the system
λt + λ2+s = λ3

λt + λ4+s = λ7

λt + λ6+s = 2
λt + λs = λ2

and we obtain t = 1 and s = 0, ie, the codeword is

c = r − (λ 0 1 0 0 0 0 0) = (λ3 λ2 0 0 λ7 0 λ 2

The entries of c are the values f(λj), with 0 ≤ j < 8, where f(x) is a
polynomial with degree less than 4. In this case, it is easy to determine
f(x) because, as

f(λ2) = f(λ3) = f(λ5) = 0,

and deg(f(x)) ≤ 3, we must have

f(x) = a(x− λ2)(x− λ3)(x− λ5)
for some constant a ∈ F9. Computing for example f(1), we find that
a = λ3, and so

f(x) = λ3x3 + λ5x2 + x+ λ.

The corresponding input depends on the generator matrix, ie, on the
choice of basis of P4. If we choose the canonical basis, which corre-
sponds to the generator matrix given above, the input is

(λ 1 λ5 λ3)
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represented by the vector from F8
3

u = (0 1 1 0 0 2 1 2).

To discuss the error-correcting capabilities of the algorithm, we no-
tice that the decoding algorithm for the outer code corrects any 2 errors,
while syndrome decoding for the inner code decodes any single error.
This means that blocks vi ∈ F4

3 containing 1 error will be correctly
decoded in the inner step of the decoding. If less than 3 blocks are
not decoded correcly in the inner step, they will still be decoded in the
outer step.
Suppose that r ∈ F32

3 = (F4
3)

8
contains less than 6 errors; then at most

2 of the blocks may contain an error with weight > 1. So the inner
decoding takes care of possible single errors and the outer step will
correctly decode the two errors that may remain.
If r contains 6 errors, the algorithm may fail to decode correctly: sup-
pose that 3 of the blocks contain 2 errors each, and that syndrome
decoding fails to correct them in the inner step. Then, it may happen
that the outer decoding fails to correct the 3 errors.
It is easy to construct examples where the locator polynomial can not
be constructed or has no zeros, despite the fact that the syndrome is
not zero: suppose for example that the zero codeword is sent and the
received vector is

(1100 1100 1100 0000 0000 0000 0000 0000).

Another example is the following: suppose that the zero codeword is
sent and

(2100 1001 0210 0000 0000 0000 0000 0000)

is received. The inner step of the decoding algorithm we obtain the
syndromes

(20 20 01 00 00 00 00 00)

and consequently the codeword

(2110 1011 0212 0000 0000 0000 0000 0000)

which is the encoding of

(21 10 02 00 00 00 00 00).

So in the outer step of the algorithm we apply Peterson’s algorithm to
the decoding of

(λ7 1 λ5 0 0 0 0 0).
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The syndrome is (1 0 λ3 1), and the locator polynomial is

Q1(x) = x2 + λx+ λ7 = (x− λ3)(x− λ4).
We may decode as above, finding an error pattern

(0 0 0 λt λs 0 0 0)

with the given syndrome, or we may determine the polynomial Q0(x)
which is

Q0(x) = 2x5 + λ2x4 + λx3 + λ2x2 + λ5x+ λ.

The input polynomial obtained is

u(x) = −Q0(x)

Q1(x)
= x3 + λ7x2 + λx+ λ6

which corrsponds to the ternary input

(2 2 0 1 2 1 1 0)

and to the codeword

2110 1011 0212 2110 0212 0000 0000 0000).

So in this example the true errors are not detected and the algorithm
produces a wrong decoding.

If an output is r = c + b where b is a burst of length l < 8, then b
affects at most 3 of the blocks, and the error in at least one of these
blocks has weight 1 and so is corrected in the inner step of the algo-
rithm, while the remaining two blocks correspond to an error of weight
2 for the outer step of the algorithm and are therefore corrected.

4. -

a) (2.0) Compute the free distance of the binary convolutional code C
with generator matrix

[1 +D 1 +D2 1 +D +D2].

b) (2.0) Decode by Viterbi’s algorithm the following output from C, pre-
sented in interleaved form,

( 111 101 101 010 010 100 110 010 100 101 011 ).

c) (1.5) Determine the internal and external degrees of the matrix

G =

1 0 0 1 +D
0 1 0 1 +D2

0 0 1 1 +D +D2

 ,
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and find a canonical generator matrix for the code generated by
G.

Solution: The free distance of C is 7. This may be confirmed
examining the state diagram; the input 1 gives rise to an output

( 111 101 011 ),

which is the unique codeword with minimal weight.
I’m not presenting here the complete solution of 4.b). If needed, I’ll
include later the trellis diagram of the decoding.
The codeword is

( 111 101 100 110 010 100 110 010 100 101 011 ),

corresponding to the input

(1 0 1 1 0 1 1 0 1).

We have
intdeg(G) = 2, extdeg(G) = 5;

G is basic (the gcd of the 3× 3 minors is 1) but not reduced.
We may obtain generator matrices with lower exernal degree, applying
row elementary operations: replacing the last row by the sum of the 3
rows we obtain

G1 =

1 0 0 1 +D
0 1 0 1 +D2

1 1 1 1

 ;

G1 is also basic but not reduced. But adding the first row multiplied
by 1 +D to the second row, we get

G2 =

 1 0 0 1 +D
1 +D 1 0 0

1 1 1 1

 ;

G2 is basic, by the same reason as above, and

intdeg(G2) = extdeg(G2) = 2,

implying that G2 is reduced. So G2 is canonical.


