1 Introdução à Combinatória Enumerativa: O Princípio de Inclusão-Exclusão

Dados conjuntos finitos X, Y tem-se

$$|X \cup Y| = |X| + |Y| - |X \cap Y|$$

Do mesmo modo

$$|X \cup Y \cup Z| = |X| + |Y| + |Z| - |X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|$$

uma vez que os elementos que pertencem a $X \cap Y \cap Z$ são somados primeiro três vezes e depois subtraídos de novo três vezes, pelo que é preciso voltar a somá-los.

Exemplo 1.1 A dedução, feita atrás, da fórmula para o número de funções $f:[k] \to [n]$ sobrejectivas, com n=3, pode ser reinterpretada à luz destas observações: se, para cada $i \in [3]$, designarmos por X_i o conjunto das funções $f:[k] \to [3]$ que não tomam o valor i, ou seja,

$$X_i = \{ f : [k] \to [3] : \forall x \in [k] \ f(x) \neq i \},\$$

o conjunto das funções $f:[k] \to [3]$ sobrejectivas tem $3^k - |\bigcup_{i=0}^3 X_i|$ elementos; mas $|X_i| = 2^k$, uma vez que X_i é o conjunto de todas as funções de [k] num conjunto de 2 elementos, que é $[3] \setminus \{i\}$; além disso, para quaisquer $i, j \in [3]$ distintos $|X_i \cap X_j| = 1$ e, neste caso, $X_0 \cap X_1 \cap X_2 = \emptyset$. Portanto, pela observação anterior,

$$|\{f: [k] \to [3] \text{ sobrejectivas }\}| = 3^k - (3 \times 2^k - 3 \times 1 + 0).$$

Para generalizar esta abordagem a este e outros problemas temos que responder à pergunta: dados conjuntos X_1, \dots, X_n como calcular $|\bigcup_{i=1}^n X_i|$? A resposta é dada pelo

Teorema 1.2 (Princípio de Inclusão-Exclusão) Dados conjuntos X_1, X_2, \dots, X designando por S_j a soma do número de elementos das intersecções de j conjuntos, ou seja

$$S_j = \sum_{i_1 < \dots < i_j} |X_{i_1} \cap \dots \cap X_{i_j}|$$

tem-se

$$\left| \bigcup_{i=1}^{n} X_i \right| = \sum_{j=1}^{n} (-1)^{j-1} S_j$$

Demonstração 1.3: A demonstração faz-se mostrando que o lado direito da igualdade conta cada elemento de $\bigcup_{i=1}^n X_i$ exactamente uma vez. Suponhamos que $x \in \bigcup_{i=1}^n X_i$ pertence a exactamente k dos conjuntos. Então $x \in X_{i_1} \cap \cdots \cap X_{i_j}$ se e só se os conjuntos presentes na intersecção pertencerem à família daqueles k conjuntos. Podemos escolher j desses k de $\binom{k}{j}$ maneiras, logo o lado direito da igualdade conta o elemento x

$$\sum_{j=1}^{n} (-1)^{j-1} \binom{k}{j} = \sum_{j=1}^{k} (-1)^{j-1} \binom{k}{j} = -\sum_{j=1}^{k} (-1)^{j} \binom{k}{j}$$

vezes. Por outro lado, sabemos que

$$(1+x)^k = \sum_{j=0}^k {k \choose j} x^j = 1 + \sum_{j=1}^k {k \choose j} x^j$$

 $Fazendo x = -1 \ obtemos$

$$0 = 1 + \sum_{i=1}^{k} (-1)^{i} \binom{k}{j}$$

donde se conclui o resultado.

Nota 1.4: A ideia de calcular quantas vezes um elemento "é contado" numa expressão envolvendo números de elementos de conjuntos, pode ser formalizada do seguinte modo: dado um conjunto X, um subconjunto $Y \subset X$ identifica-se, como vimos já, com uma função

$$f_Y: X \to \{0,1\}$$
 $f_Y(x) = \begin{cases} 1 & se \ x \in Y \\ 0 & se \ x \notin Y \end{cases}$

Essas funções podem ser somadas e multiplicadas, tendo-se aliás, como se verifica facilmente.

$$f_{X \cap Y} = f_X \times f_Y, \qquad f_{X \cup Y} = f_X + f_Y - f_{X \cap Y}$$

A fórmula do Princípio de Inclusão-Exclusão pode então ser interpretada como uma iqualdade entre funções

$$f_{\cup X_i} = \sum_{k=1}^n (-1)^{k-1} \sum_{i_1 < \dots < i_k} f_{X_{i_1}} \times \dots \times f_{X_{i_k}}$$

Exemplo 1.5: Calcular o número de funções sobrejectivas $f:[k] \to [n]$. Se designarmos por X_i , com $1 \le i \le n$, o conjunto de funções cuja imagem não contém o elemento i, o número que queremos é

$$n^k - |\cup_{i=1}^n X_i|$$

Ora, para cada i, $|X_i| = (n-1)^k$, e mais geralmente, dada uma escolha de j elementos de [n]

$$|X_{i_1} \cap \dots \cap X_{i_j}| = (n-j)^k$$

uma vez que as funções presentes em $X_{i_1} \cap \cdots \cap X_{i_j}$ podem tomar quaisquer dos n-j valores não proibidos e só esses. Como podemos escolher j elementos de $\binom{n}{j}$ maneiras temos, pelo Princípio de Inclusão-Exclusão que

$$|\cup_{i=1}^{n} X_i| = \sum_{j=1}^{n} (-1)^{j-1} \binom{n}{j} (n-j)^k$$

e portanto o número de funções sobrejectivas pedido é

$$n^{k} - \sum_{j=1}^{n} (-1)^{j-1} \binom{n}{j} (n-j)^{k} = n^{k} + \sum_{j=1}^{n} (-1)^{j} \binom{n}{j} (n-j)^{k} = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (n-j)^{k}$$

Recorde-se que este número é também igual a n!S(k,n) e portanto obtemos a fórmula anunciada atrás para os números de Stirling de segunda espécie:

$$S(k,n) = \frac{1}{n!} \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (n-j)^{k}$$

Exemplo 1.6: Calcular o número de desarranjos de [n], ou seja o número de permutações $\sigma: [n] \to [n]$ tais que $\sigma(i) \neq i$ para todo o i.

Existem n! permutações. Designando por X_i o conjunto das permutações σ tais que $\sigma(i) = i$, calculamos, tal como no exemplo anterior,

$$n! - |\cup_{i=1}^n X_i|$$

Dados j elementos i_1, \dots, i_j em [n], as permutações em $X_{i_1} \cap \dots \cap X_{i_j}$ fixam aqueles j elementos e reordenam os restantes; temos portanto

$$|X_{i_1} \cap \cdots \cap X_{i_i}| = (n-j)!$$

Logo, pelo Princípio de Inclusão-Exclusão

$$|\cup_{i=1}^{n} X_i| = \sum_{j=1}^{n} (-1)^{j-1} \binom{n}{j} (n-j)!$$

e o número de desarranjos é

$$n! - \sum_{j=1}^{n} (-1)^{j-1} \binom{n}{j} (n-j)! = n! + \sum_{j=1}^{n} (-1)^{j} \binom{n}{j} (n-j)! =$$

$$= \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (n-j)! = n! \sum_{j=0}^{n} \frac{(-1)^{j}}{j!}$$

Exemplo 1.7 A fórmula da função ϕ de Euler pode ser obtida por aplicação deste princípio: se $n = p_1^{t_1} \cdots p_r^{t_r}$, seja, para cada $1 \le i \le r$,

$$X_i = \{x : 1 \le x \le n \ e \ p_i \mid x\};$$

portanto $\phi(n) = n - |\bigcup_{i=1}^r X_i|$. Mas $|X_i| = \frac{n}{p_i}$ e, mais geralmente, para quaisquer i_1, \dots, i_j

$$|X_{i_1} \cap \dots \cap X_{i_j}| = \frac{n}{p_{i_1} \cdots p_{i_j}}.$$

Pelo Princípio de Inclusão -Exclusão

$$\phi(n) = n - \sum_{1 < i < r} \frac{n}{p_i} + \sum_{1 < i < j < r} \frac{n}{p_i p_j} - \dots + (-1)^r \frac{n}{p_1 \dots p_r}$$

Mas é fácil ver que esta expressão é igual a

$$n\prod_{i=1}^r \left(1 - \frac{1}{p_i}\right).$$

Os dois primeiros exemplos são muito simétricos: o número de elementos numa intersecção de j conjuntos só depende de j e não dos conjuntos em particular. Isso não é verdade em geral.

Exemplo 1.8: Quantas palavras de 8 letras se podem escrever, usando apenas vogais, que não contenham a sequência UAU?

Existem 5^8 palavras de 8 letras no alfabeto $\{A, E, I, O, U\}$; contamos aquelas em que aparece a sequência UAU, usando o Princípio de Inclusão e Exclusão: seja X_i ($1 \le i \le 6$) o conjunto das palavras em que UAU aparece a começar na posição i.

Temos $|X_i| = 5^5$ para todo o i; mas a sequência pode ocorrer duas vezes, sem sobreposição (e deixando portanto duas posições livres)

$$|X_1 \cap X_4| = |X_1 \cap X_5| = |X_1 \cap X_6| = |X_2 \cap X_5| = |X_2 \cap X_6| = |X_3 \cap X_6| = 5^2$$

ou com sobreposição (deixando três posições livres)

$$|X_1 \cap X_3| = |X_2 \cap X_4| = |X_3 \cap X_5| = |X_4 \cap X_6| = 5^3$$

Para três ocorrências temos também dois casos:

$$|X_1 \cap X_3 \cap X_6| = |X_1 \cap X_4 \cap X_6| = 1$$

enquanto que

$$|X_1 \cap X_3 \cap X_5| = |X_2 \cap X_4 \cap X_6| = 5$$

Não pode haver mais do que três ocorrências da sequência UAU. Assim a resposta final é

$$5^8 - 6 \times 5^5 + (6 \times 5^2 + 4 \times 5^3) - (2 \times 1 + 2 \times 5)$$

1.1 Generalizações

A fórmula do Princípio de Inclusão e Exclusão pode ser generalizada:

Proposição 1.9: Dados conjuntos X_1, X_2, \dots, X_n , designando por S_k a soma do número de elementos das intersecções de k conjuntos, ou seja

$$S_k = \sum_{i_1 < \dots < i_k} |X_{i_1} \cap \dots \cap X_{i_k}|$$

tem-se que o número de elementos contido em exactamente l dos conjuntos é dado por

$$\sum_{k=l}^{n} (-1)^{k-l} \binom{k}{l} S_k$$

e o número de elementos contido em pelo menos l dos conjuntos \acute{e} dado por

$$\sum_{k=l}^{n} (-1)^{k-l} \binom{k-1}{l-1} S_k$$

A demonstração destas generalizações é deixada como exercício.

Exercícios VII.1

- 1. Quantas palavras de 10 letras não contêm todas as vogais?
- 2. Quantas soluções existem de

$$x_1 + x_2 + x_3 = 100, \qquad 0 \le x_i \le 40$$

3. De quantas maneiras podemos ordenar o conjunto $\{0, 1, 2, \dots, 9\}$ de modo a obter pelo menos uma das sequências

$$1, 2, 3$$
 $3, 4, 5$ $4, 5, 6$?

- 4. De quantas maneiras podemos ordenar o conjunto $\{0, 1, 2, \dots, 9\}$ de modo a que nenhum n seja seguido por n + 1?
- 5. De quantas maneiras podemos distribuir n bolas, todas iguais, a k pessoas, na condição de cada pessoa receber 3, 4 ou 5 bolas?
- 6. De quantas maneiras podemos alinhar 3 bolas brancas, 4 bolas azuis e 5 bolas verdes na condição de as bolas de cada cor não ficarem todas juntas?
- 7. De quantas maneiras podemos escolher 7 cartas num baralho de modo a ficarmos com cartas de todos os naipes?
- 8. Quantos subconjuntos de 10 letras do alfabeto não contêm duas letras consecutivas?
- 9. Quantos inteiros $1 \le n \le 10^6$ não são de nenhuma das formas m^2 , m^3 , sabendo que $15^5 < 10^6 < 16^5$?
- 10. Quantas soluções existem de

$$x_1 + x_2 + x_3 + x_4 = 30$$

com a condição

$$x_i \in \mathbb{Z}, \qquad -10 \le x_i \le 20$$
?

11. Quantos alinhamentos de seis A, oito B e cinco C é que contêm a sequência ABBA?

- 12. Determinar uma fórmula para o número de maneiras de alinhar 40 bolas brancas e 40 bolas pretas, de modo a que não haja mais do 3 bolas brancas seguidas.
- 13. De quantas maneiras podemos sentar n casais numa mesa redonda de modo a que nenhum casal fique lado a lado? E se adicionalmente os homens e as mulheres ficarem intercalados?

1.1.1 Formulação abstracta do Princípio de Inclusão - Exclusão

Uma outra forma de considerar o Princípio de Inclusão - Exclusão, e que é muitas vezes a que ocorre num problema de contagem, passa por definir subconjuntos de um conjunto dado em termos de propriedades: se P for um conjunto de propriedades que os elementos de um conjunto X possuem ou não, podemos definir, para cada $T \subset P$,

$$f(T) = |\{x \in X : x \text{ satisfaz todas as propriedades } t \in T\}|,$$

$$g(T) = |\{x \in X : x \text{ satisfaz exactamente as propriedades } t \in T\}|.$$

Nota 1.10 Uma maneira de exprimir estas condições é associar a cada propriedade $t \in P$ a função $\eta_t : X \to [2]$ tal que

$$\eta_t(x) = \begin{cases} 1 & \text{se } x \text{ satisfaz a propriedade } t \\ 0 & \text{caso contrário} \end{cases}$$

 $Ent\~ao$ os valores f(T) e g(T) definidos acima podem ser dados por

$$f(T) = \sum_{x \in X} \prod_{t \in T} \eta_t(x), \qquad f(T) = \sum_{x \in X} \prod_{t \in T} \eta_t(x) \prod_{t \notin T} (1 - \eta_t(x)).$$

Se designarmos por X_t o subconjunto de X dos elementos que satisfazem a propriedade t, temos que o número de elementos que satisfazem alguma das propriedades é dado por, usando o Princípio de Inclusão - Exclusão,

$$|\bigcup_{t\in P} X_t| = \sum_{T\subset P, T\neq\emptyset} (-1)^{|T|-1} |\bigcap_{t\in T} X_t| = \sum_{T\subset P, T\neq\emptyset} (-1)^{|T|-1} |f(T)|$$

e o número de elementos que não satisfazem nenhuma das propriedades é

$$g(\emptyset) = \sum_{T \subset P} (-1)^{|T|} f(T).$$

Note-se que por outro lado se tem para qualquer $T \subset P$

$$f(T) = \sum_{T \subset S} g(S).$$

Esta interpretação do Princípio de Inclusão - Exclusão leva à seguinte formulação abstracta do mesmo: dado um conjunto finito P, designamos por 2^P o conjunto das partes de P, ou seja,

$$2^P = \{ S \subset P \}.$$

Teorema 1.11 Dadas duas funções f e g com domínio 2^P e valores inteiros, tem-se a equivalência

$$\forall T \subset P \ f(T) = \sum_{S \supset T} g(S) \Leftrightarrow \forall T \subset P \ g(T) = \sum_{S \supset T} (-1)^{|S| - |T|} f(S)$$

Nota 1.12 A hipótese de as funções tomarem valores inteiros é irrelevante. O teorema é válido para funções com contradomínio \mathbb{Q} ou \mathbb{R} ou \mathbb{C} ou outros ainda.

Demonstração 1.13 $A implicação \Rightarrow deduz$ -se de

$$\sum_{S\supset T} (-1)^{|S|-|T|} f(S) = \sum_{S\supset T} (-1)^{|S|-|T|} \sum_{U\supset S} g(U) = \sum_{U\supset T} \left(\sum_{U\supset S\supset T} (-1)^{|S|-|T|} \right) g(U);$$

mas, se $U \setminus T$ tem m elementos, podemos escolher um conjunto S satisfazendo $T \subset S \subset U$ e com |T| + l elementos (onde $0 \le l \le m$) de $\binom{m}{l}$ maneiras e portanto

$$\sum_{U\supset S\supset T} (-1)^{|S|-|T|} = \sum_{l=0}^m \binom{m}{l} (-1)^l = \left\{ \begin{array}{ll} 0 & se \ m>0 \\ 1 & se \ m=0 \end{array} \right.$$

donde se conclui que

$$\sum_{U\supset T} \left(\sum_{U\supset S\supset T} (-1)^{|S|-|T|} \right) g(U) = g(T)$$

como queríamos provar.

A implicação \Leftarrow deduz-se de forma idêntica, notando que a igualdade do lado direito do enunciado implica que

$$\sum_{S \supset T} g(S) = \sum_{S \supset T} \sum_{V \supset S} (-1)^{|V| - |S|} f(V) = \sum_{V \supset T} \left(\sum_{T \subset S \subset V} (-1)^{|V| - |S|} \right) f(V),$$

e calculando a soma interior como anteriormente.

Nota 1.14 Podemos também enunciar uma versão simétrica daquela:

Teorema 1.15 Dadas duas funções f e g com domínio 2^P e valores inteiros, tem-se a equivalência

$$\forall T \subset P \ f(T) = \sum_{S \subset T} g(S) \Leftrightarrow \forall T \subset P \ g(T) = \sum_{S \subset T} (-1)^{|S| - |T|} f(S)$$

A demonstração (que se deixa como exercício) faz-se aplicando a versão original ao par de funções definidas por

$$w(T) = f(P \setminus T), \ z(T) = g(P \setminus T) \ \forall T \subset P.$$