OSCILLATIONS OF DIFFERENCE EQUATIONS WITH SEVERAL DEVIATING ARGUMENTS

by G. E. Chatzarakis

Department of Electrical and Electronic Engineering Educators School of Pedagogical and Technological Education (ASPETE) N. Heraklion, 14121, Athens, GREECE Email: geaxatz@otenet.gr

ABSTRACT

Sufficient conditions for the oscillation of all solutions to the retarded difference equation

$$\Delta x(n) + \sum_{i=1}^{m} p_i(n) x(\tau_i(n)) = 0, \quad n \ge 0,$$

and the (dual) advanced difference equation

$$\nabla x(n) - \sum_{i=1}^{m} p_i(n) x(\sigma_i(n)) = 0, \quad n \ge 1,$$

where $(p_i(n))$, $1 \leq i \leq m$ are sequences of nonnegative real numbers, $(\tau_i(n))$, $1 \leq i \leq m$ are sequences of integers such that

 $\tau_i(n) \le n-1 \quad \forall n \ge 0, \quad \text{and} \quad \lim_{n \to \infty} \tau_i(n) = \infty, \quad 1 \le i \le m,$

 $(\sigma_i(n)), 1 \leq i \leq m$ are sequences of integers such that

$$\sigma_i(n) \ge n+1 \quad \forall n \ge 1, \quad 1 \le i \le m,$$

 Δ denotes the forward difference operator $\Delta x(n) = x(n+1) - x(n)$ and ∇ denotes the backward difference operator $\nabla x(n) = x(n) - x(n-1)$, are established. Examples illustrating the results are also given.