
Mathematical Relativity, Spring 2016/17
Instituto Superior Técnico

1. Starting from
RαβµνZ

ν = 2∇[α∇β]Zµ,

deduce the components of the Riemann curvature tensor in terms of the
Christoffel symbols.

2. Let M be a Riemannian or Lorentzian manifold, and let s be equal to 1
in the first case and −1 in the second case. Let also η and ξ be k-forms on
M , and θ be a (n− k) for on M . Denote by ǫ the volume form on M . Show
that

θ ∧ η = s(∗θ, η)ǫ,
ξ ∧ ∗η = (ξ, η)ǫ,

∗ ∗ η = s(−1)k(n−k)η,

using bilinearity and the expression for the Hodge dual of a form in a posi-
tively oriented coframe.

3. Let r∗ be the tortoise coordinate

r∗ = r + 2m ln |r − 2m|,

and u and v be the null coordinates

u = t− r∗,

v = t+ r∗

for the Schwarzschild metric

ds2 = −
(

1− 2m

r

)

dt2 +
(

1− 2m

r

)−1

dr2 + r2dS2

Verify that in the coordinates

ũ = tanh
( u

8m

)

,

ṽ = tanh
( v

8m

)

,

the metric can be extended continuously to the event horizon.

4. Draw the Penrose diagram for the Schwarzschild solution with negative
mass. Do timelike geodesics hit the naked singularity at r = 0?
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5. Construct an Oppenheimer-Snyder solution of the Einstein equations with
a positive cosmological constant using a ball of dust taken from a hyperbolic
universe glued to a portion of the Schwarzschild de Sitter spacetime.

6. Consider R3 with the Minkowski metric written in polar coordinates as

g = −dτ 2 + dr2 + r2 dθ2.

a) Using the geodesic Lagrangian obtained from the metric, compute the
Christoffel symbols in these coordinates.

b) Verify that

X :=
1√
3

(

2∂τ +
( τ

2r

)

∂r +

√

1−
( τ

2r

)21

r
∂θ

)

is unit timelike and geodesic.
c) Compute the second fundamental form Bµν using the coordinates cor-

responding to the basis (∂τ , ∂r, ∂θ).
d) Compute the spatial metric hµν = gµν + XµXν using the coordinates

corresponding to the basis (∂τ , ∂r, ∂θ).
e) Verify that (X,E1, E2) is an orthonormal basis, where

E1 = − 1√
3

(

∂τ +
τ

r
∂r +

2

r

√

1−
( τ

2r

)2

∂θ

)

,

and

E2 =

√

1−
( τ

2r

)2

∂r −
τ

2r2
∂θ.

It will follow from the computations below that E1 and E2 are parallel
along X .

f) Express Bµν in the basis (X,E1, E2).
g) Compute the expansion θ, the deformation σµν and the vorticity ωµν

using the coordinates corresponding to the basis (X,E1, E2).
h) Verify that

X ·
(

1

r
√

1− ( τ
2r
)2

)

= 0.

i) Determine the integral curves (τ, r, θ) of X through (0, r0, θ0), parame-
trized in terms of the affine parameter u. Express τ and r in terms of
θ. Check that the lines which form the congruence are given by the
intersection of the hyperboloids

x2 + y2 − τ 2

4
= r20
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with the planes
cos θ0 x+ sin θ0 y = r0.

j) Compute the change of basis matrix A such that

[

∂r
∂θ

]

= A

[

∂x
∂y

]

.

k) Verify that along the line of the congruence through (0, r0, θ0) we have

E1 = − 1√
3

(

∂τ + 2 sin(θ − θ0)∂r + 2 cos(θ − θ0)
1

r
∂θ

)

,

and

E2 = cos(θ − θ0)∂r − sin(θ − θ0)
1

r
∂θ.

Express E1 and E2 in the basis (∂τ , ∂x, ∂y). What is B along the line?
l) Center your attention on the line L corresponding to r0 = 1 and θ0 = 0.

The vector fields Y1 = ∂x and Y2 = ∂θ are Jacobi fields along L. Write
Y1 and Y2 in the basis (X,E1, E2). Check directly that Y1 and Y2 satisfy
the equation

d
du
Y µ = Bµ

νY
ν .

7. Consider R3 with the Minkowski metric written in polar coordinates as

g = −dt2 + dr2 + r2 dθ2.

Let f : R → R be periodic with period 2π and

X = f(θ)(∂t + ∂r).

Consider the frame

V =

(

∂t, X,
1

r
∂θ

)

.

a) Verify that X is null geodesic.
b) Compute the second fundamental form Bµ

ν in the coordinates corres-
ponding to V by calculating ∇∂tX and ∇ 1

r
∂θ
X .

c) Determine the integral curves (t, r, θ) of X through (0, 1, θ0) in terms
of the affine parameter u. Express r in terms of t.

d) The vector field Y = ∂θ is a Jacobi field
(

∂θ = ∂θ0 − u
f ′(θ0)
f(θ0)

∂u

)

. Note

however that Y does not commute with X . Correct the equation
∇XY

µ = Bµ
νY

ν to take this into account and verify the corrected
equation directly.
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e) Write the expression for the metric g in the frame V. Compute the
covector X♭.

f) Compute the second fundamental form Bµν in the coordinates corres-
ponding to V by calculating ∇∂tX♭ and ∇ 1

r
∂θ
X♭. To check your answer,

verify that Bµν = gµγB
γ
ν .

8. Consider the metric

g = −dt2 + a2(t)(dψ2 + f 2(ψ)(dθ2 + sin2 θdϕ2))

defined on M . When M = R × S3, f(ψ) = sinψ; when M = R × R
3,

f(ψ) = ψ; when M = R×H3, f(ψ) = sinhψ.

a) Using the geodesic Lagrangian obtained from the metric, compute the
Christoffel symbols in the coordinates (t, ψ, θ, φ).

b) Verify that the null vector field

X =
1

a
∂t +

1

a2
∂ψ

is geodesic.
c) Compute

∇∂θX and ∇∂ϕX.

Use these to obtain the expansion of the congruence of null geodesics
tangent to X .

d) Let Σ be the sphere t = t0 and ψ = ψ0. Denote by ξr the flow of X .
The 2-dimensional surface ξr(Σ) is parametrized by

(θ, ϕ) 7→ (t(r), ψ(r), θ, ϕ).

Here t(r) is determined by

r =

∫ t

t0

a(s) ds

and ψ(r) satisfies

ψ = ψ0 +

∫ r

0

1

a2(t(s))
ds.

Define
Ã(t, ψ) = a2(t)f 2(ψ)

and
A(r) = Ã(t(r), ψ(r)).
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Note that
dA

dr
= X · Ã.

Use the area element of ξr(Σ), which is

A(r) sin θ dθ ∧ dϕ,

to confirm the result you obtained above for the expansion of the con-
gruence of null geodesics.

9. Use ideas similar to those leading to the proof of Hawking’s singularity
theorem to prove Myers’s Theorem: if (M, g) is a complete Riemannian ma-
nifold such that there exists an ǫ > 0 so that RµνX

µXν ≥ ǫgµνX
µXν , then

M is compact. Can these ideas be used to prove a singularity theorem in
Riemannian geometry?

10. Explain why Hawking’s Singularity Theorem and explain why Penrose’s
Singularity Theorem do not apply to each of the following geodesically com-
plete Lorentzian manifolds:

a) Minkowski’s spacetime;
b) Einstein’s spacetime;
c) de Sitter’s spacetime;
d) Anti-de Sitter spacetime.

11. Check that both Hawking’s Singularity Theorem and Penrose’s Singu-
larity Theorem can be applied to a FLRW flat universe with α > 0 and
Λ > 0.

12. Consider the Riemannian or Lorentzian metric

g = dt2 + hij(t, x)dx
idxj.

Show that

a) The Christoffel symbols are

Γ0
ij = −Kij , Γijk = Γ̄ijk, Γi0j = Ki

j,

where Γ̄ijk are the Christoffel symbols of h and K(t) is the second fun-
damental form of the hypersurface t = constant.
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b) The components of the Riemann tensor are

R
j

0i0 = − ∂

∂t
K
j
i −KilK

lj,

R l
ij0 = −∇̄iK

l
j + ∇̄jK

l
i,

R m
ijl = R̄ m

ijl −KilK
m
j +KjlK

m
i,

where ∇̄ is the Levi-Civita connection of h and R̄ m
ijl are the compo-

nents of the Riemann tensor of h.
c) The components of the Ricci tensor are

R00 = − ∂

∂t
Ki

i −KijK
ij,

R0i = −∇̄iK
j
j + ∇̄jK

j
i,

Rij = R̄ij −
∂

∂t
Kij + 2KilK

l
j −K l

lKij ,

where R̄ij are the components of the Ricci tensor of h.
d) The time derivative of the inverse of h is

∂hij

∂t
= −2Kij .

e) The scalar curvature is

R = R̄− 2
∂

∂t
Ki

i − (Ki
i)
2 −KijK

ij , (1)

where R̄ is the scalar curvature of h.
f) The component G00 of the Einstein tensor is

G00 =
1

2

(

−R̄ + (Ki
i)
2 −KijK

ij
)

. (2)

13. Compute the Komar mass of the Schwarzschild solution.

14. Let h be the spherically symmetric Riemannian metric defined in R3 by

h =
dr2

1− 2m(r)
r

+ r2(dθ2 + sin2 θ dϕ2),

where m is a smooth function in [0,+∞[ such that m(0) = m′(0) = m′′(0) =
0, m(r) < r

2
for all r > 0, there exist ǫ and M in R

+ such that

lim
r→+∞

m(r) =M
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and

m′(r) = O
( 1

r1+ǫ

)

as r → ∞,

and

m′′(r) = O
( 1

r2

)

as r → ∞.

a) Check that in Cartesian coordinates we have

hij = δij +
2m(r)
r3

1− 2m(r)
r

xixj .

b) Check that h has ADM mass M .

c) Knowing that the scalar curvature of h is R = 4m′(r)
r2

, verify that h is
asymptotically flat.

d) Relaxing the assumption on the second derivative of m to m′′(r) =
O(rα) as r → ∞, for what values of α is h is asymptotically flat?

e) Verify the rigidity statement of the Positive Mass Theorem for the
metric h.

f) Assume now that m is constant, so that h defines a Riemannian metric
only in the region where r > 2m. Compute the second fundamental
form of the sphere r = r0 and show that when r0 = 2m the sphere is a
minimal surface. Check the Penrose inequality.

15. Consider the 3-dimensional Riemannian manifold M equal to the graph
of the function f : R3 → R, with the metric induced by the Euclidean metric
of R4. Let c be a constant and S = Sc = {(p, c) = (x, y, z, c) ∈M : f(p) = c}
be a 2-dimensional surface such that ∇f(p) 6= 0 for all (p, c) ∈ M . Suppose
(u, v) are coordinates on S such that

∂u · ∂u = 1, ∂v · ∂v = 1, ∂u · ∂v = 0.

a) Check that the (unique up to sign) unit normal to S in TM is

X =

(

∇f
|∇f |

, |∇f |
)

√

1 + |∇f |2
.

b) Let ∇̃ denote the Levi-Civita connection of R4. Denote by

v1 = ∇̃∂u(∇f, 0), v2 = ∇̃∂v(∇f, 0),
and by

α1 = v1 · (∇f, 0), α2 = v3 · (∇f, 0).
Calculate ∇̃∂uX and ∇̃∂vX in terms of the vi, αi and ∇f . Simplify your
answer and check directly that the vectors you obtained are orthogonal
to X (which is obvious from X ·X = 1).
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c) Let ∇̄ denote the Levi-Civita connection on M . Compute ∂u · ∇̄∂uX ,
∂v · ∇̄∂uX , ∂u · ∇̄∂vX and ∂v · ∇̄∂vX in terms of ∂u · vi, ∂v · vi and |∇f |.
Write the second fundamental form of S in M .

d) Denote by ∇f the column vector

∇f =





∂xf

∂yf

∂zf



 .

Check that the metric on M is given by

g = I +∇f (∇f)T

in the coordinates (x, y, z), i.e.

ds2 =
[

dx dy dz
]

g





dx

dy

dz



 .

e) Let (u, v, w) be coordinates on M , and l be a parametrization of M ,
such that u and v are as above, and let w be such that it vanishes on
S and

∂w =
∂xf∂x + ∂yf∂y + ∂zf∂z

|∇f |
√

1 + |∇f |2
.

Denote by

Dl = [∂u ∂v ∂w] =





∂ul
1 ∂vl

1 ∂wl
1

∂ul
2 ∂vl

2 ∂wl
2

∂ul
3 ∂vl

3 ∂wl
3



 .

What is the matrix that represents the metric on M in the coordinates
(u, v, w)? What does it reduce to over points that belong to S?

f) Use your answer to e) to justify that on points that belong to S

1

2
L∂wg

∣

∣

∣

∣

TS

=
[

du dv dw
] 1

2
∂w[(Dl)

TDl]





du

dv

dw





∣

∣

∣

∣

∣

∣

TS

.

g) Recalling that Γ̄kij = ωk(∇̄Xi
Xj), use f) to check your answer to c).

16. Consider the surfaces Σt obtained from the boundary ∂K ≡ Σ0 of a
compact convex set K contained in R

3 by flowing a distance t along the unit
normal. Let A(t) be the area of Σt and V (t) be the volume bounded by Σt.
As we saw in class,

Ȧ(0) =

∫

∂K

trκ,

where κ is the second fundamental form of Σ.
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a) Prove that Ä(0) = 8π. (Suggestion: use equalities (1) and (2) above,
and the Gauss-Bonnet Theorem).

b) Deduce that

V (t) =
4π

3
t3 +

Ȧ(0)

2
t2 + A(0)t + V (0).

c) Use the isoperimetric inequality, A3(t) ≥ 36πV 2(t), to prove Min-
kowski’s inequality

Ȧ(0) ≥
√

16πA(0).


