Mathematical Relativity, Spring 2016/17
Instituto Superior Técnico

1. Starting from
Ropuw 2" =2V, NgZ,,
deduce the components of the Riemann curvature tensor in terms of the

Christoffel symbols.

2. Let M be a Riemannian or Lorentzian manifold, and let s be equal to 1
in the first case and —1 in the second case. Let also n and £ be k-forms on
M, and 60 be a (n — k) for on M. Denote by € the volume form on M. Show
that

ONn = s(x0,n)e,
§ N (& e,
xxn = s(—

)k(n k

using bilinearity and the expression for the Hodge dual of a form in a posi-
tively oriented coframe.

3. Let r* be the tortoise coordinate
r*=r+2mln|r —2m|,
and v and v be the null coordinates

u = t—r,
= t+7r"

for the Schwarzschild metric
2 2 -1
ds = — (1= =0)a2 4 (1= =2) i 4 r2ds?
r r

Verify that in the coordinates

u
U = tanh(—),
8m
v
i o= tanh(—),
8m
the metric can be extended continuously to the event horizon.

4. Draw the Penrose diagram for the Schwarzschild solution with negative
mass. Do timelike geodesics hit the naked singularity at » = 07
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5. Construct an Oppenheimer-Snyder solution of the Einstein equations with
a positive cosmological constant using a ball of dust taken from a hyperbolic
universe glued to a portion of the Schwarzschild de Sitter spacetime.

6. Consider R? with the Minkowski metric written in polar coordinates as
g = —dr* +dr* + r*do*.

a) Using the geodesic Lagrangian obtained from the metric, compute the
Christoffel symbols in these coordinates.
b) Verify that

X = % (2& + (;—T)ar /1 (%)2%89)

is unit timelike and geodesic.

c) Compute the second fundamental form B, using the coordinates cor-
responding to the basis (0, 0, 0p).

d) Compute the spatial metric h,, = g, + X, X, using the coordinates
corresponding to the basis (9., 0, ).

e) Verify that (X, Ey, E») is an orthonormal basis, where

1 T 2 T2
Bi=——= (04 20+ 2\ 1= () a),
! V3 + r + r or) 7°
and
T\?2 T
1o (D)0 T
2 2r o2 ?

It will follow from the computations below that £y and E, are parallel
along X.

f) Express B, in the basis (X, Ey, E»).
g) Compute the expansion ¢, the deformation o, and the vorticity w,,

using the coordinates corresponding to the basis (X, F1, E»).
h) Verify that

X ! =
- GP
i) Determine the integral curves (7,7,0) of X through (0,7, 6y), parame-
trized in terms of the affine parameter u. Express 7 and r in terms of

0. Check that the lines which form the congruence are given by the
intersection of the hyperboloids
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i)

k)

D

with the planes
cosbyx 4+ sinbtyy = ro.

Compute the change of basis matrix A such that

o]l )

Verify that along the line of the congruence through (0, rg, 6y) we have

Ey=— % <3T + 2sin( — 6y)0, + 2 cos(0 — o) %39),
and 1
Ey = cos(0 — 0)0, — sin(0 — 0y) —0y.
r

Express Fy and Ej in the basis (0,, 0,, 0,). What is B along the line?
Center your attention on the line L corresponding to o = 1 and 6y = 0.
The vector fields Y; = 0, and Y, = 0y are Jacobi fields along L. Write
Y1 and Y3 in the basis (X, F1, Es). Check directly that Y7 and Y5 satisfy
the equation

d%Y“ = B"Y".

7. Consider R?® with the Minkowski metric written in polar coordinates as

g = —dt* +dr* +r*do*

Let f: R — R be periodic with period 27 and

X = f(6)(@, +0,).

Counsider the frame

a)
b)

c)

d)

V - (@,X, 139) .
T

Verify that X is null geodesic.

Compute the second fundamental form B*, in the coordinates corres-
ponding to V by calculating Vy, X and V% 9, X -

Determine the integral curves (¢,7,6) of X through (0,1,6) in terms
of the affine parameter u. Express r in terms of £.

The vector field Y = 9y is a Jacobi field (39 = Oy, — uj;((gg)) 8u). Note

however that Y does not commute with X. Correct the equation
VxYH" = BF)Y" to take this into account and verify the corrected
equation directly.
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e) Write the expression for the metric ¢ in the frame V. Compute the
covector Xj,.

f) Compute the second fundamental form B, in the coordinates corres-
ponding to V by calculating Vg, X, and V 19, Xy. To check your answer,
verify that B, = g,,B"

v

8. Consider the metric
g = —dt* + a*(t)(d® + f2(¢)(d6? + sin® Odp?))

defined on M. When M = R x S3, f(¢)) = sinty; when M = R x R3,
f() =; when M =R x H3, f(¢)) = sinh .

a) Using the geodesic Lagrangian obtained from the metric, compute the
Christoffel symbols in the coordinates (¢,, 6, ¢).
b) Verify that the null vector field

1 1

is geodesic.
c) Compute
Van and Va X.

©

Use these to obtain the expansion of the congruence of null geodesics
tangent to X.

d) Let X be the sphere t = ¢y and 1) = 1)g. Denote by &, the flow of X.
The 2-dimensional surface &.(X) is parametrized by

(0, ) = (t(r), 9(r), 0, ).

Here t(r) is determined by
t
r= / a(s)ds
to

T 1
v="tht / 2(i(5) *

and 1 (r) satisfies

Define

and
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Note that JA
— =X-A
dr

Use the area element of &,.(3), which is
A(r)sinfdf A de,

to confirm the result you obtained above for the expansion of the con-
gruence of null geodesics.

9. Use ideas similar to those leading to the proof of Hawking’s singularity
theorem to prove Myers’s Theorem: if (M, g) is a complete Riemannian ma-
nifold such that there exists an € > 0 so that R,, X*X" > €g,, X" X", then
M is compact. Can these ideas be used to prove a singularity theorem in
Riemannian geometry?

10. Explain why Hawking’s Singularity Theorem and explain why Penrose’s
Singularity Theorem do not apply to each of the following geodesically com-
plete Lorentzian manifolds:

a) Minkowski’s spacetime;
b) Einstein’s spacetime;

c) de Sitter’s spacetime;

d) Anti-de Sitter spacetime.

11. Check that both Hawking’s Singularity Theorem and Penrose’s Singu-
larity Theorem can be applied to a FLRW flat universe with a > 0 and
A>0.

12. Consider the Riemannian or Lorentzian metric
g =dt* + hij(t, r)dz'da’.
Show that
a) The Christoffel symbols are
Ly =—Kj,  Ty=T%  Ly=Kj

where fj- . are the Christoffel symbols of h and K () is the second fun-
damental form of the hypersurface ¢ = constant.
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b) The components of the Riemann tensor are

ROZ‘OJ - = ?_tKJi - KizKl],

ijl

where V is the Levi-Civita connection of h and Riﬂ " are the compo-
nents of the Riemann tensor of h.
c) The components of the Ricci tensor are

0

Ry = — =K', — KK,
i ot T
ROi — —VZ-K]j + v]’K]i,
_ o)
Ry = Ry— 5K+ 2Ky K'; — K' Ky,

where Rij are the components of the Ricci tensor of h.
d) The time derivative of the inverse of h is

Oh' y
= —2K".
ot
e) The scalar curvature is
R=R-— Q%K@ — (K")? — K;;K", (1)

where R is the scalar curvature of h.
f) The component Gy of the Einstein tensor is

Goo = (_R + (Kiz‘)Q - Kinij) : (2)

1
2
13. Compute the Komar mass of the Schwarzschild solution.

14. Let h be the spherically symmetric Riemannian metric defined in R® by

o 2(d6? + sin? 0 d?
_thr( + sin” 0 dy?),

where m is a smooth function in [0, +oo[ such that m(0) = m’(0) = m”(0) =
0, m(r) < 5 for all 7 > 0, there exist € and M in R™ such that

lim m(r) =M

r—-+00
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and ]
m/(r) = O<E) as r — 00,
and .
m"(r) = O<T_2) as r — 00.
a) Check that in Cartesian coordinates we have
2m()
hij = dij + #@x’xﬁ

T

b) Check that h has ADM mass M.

c) Knowing that the scalar curvature of h is R = 4";,2(7’), verify that h is
asymptotically flat.

d) Relaxing the assumption on the second derivative of m to m”(r) =
O(r®) as r — oo, for what values of « is h is asymptotically flat?

e) Verify the rigidity statement of the Positive Mass Theorem for the
metric h.

f) Assume now that m is constant, so that h defines a Riemannian metric
only in the region where r > 2m. Compute the second fundamental
form of the sphere r = ry and show that when ry = 2m the sphere is a
minimal surface. Check the Penrose inequality.

15. Consider the 3-dimensional Riemannian manifold M equal to the graph
of the function f : R — R, with the metric induced by the Euclidean metric
of R%. Let ¢ be a constant and S = S, = {(p,¢) = (z,y,2,¢) € M : f(p) = c}
be a 2-dimensional surface such that V f(p) # 0 for all (p,c) € M. Suppose
(u,v) are coordinates on S such that

Oy - Oy = 1, Oy - 0p =1, 0y - 0, = 0.
a) Check that the (unique up to sign) unit normal to S in T'M is

i
VIHIVIE
b) Let V denote the Levi-Civita connection of RY. Denote by
v =Vo,(Vf.0),  v2=Va,(Vf0),

and by
a1 = Uqp - (Vf, O), Qg = Vg - (Vf, O)
Calculate @&LX and @@X in terms of the v;, o; and V f. Simplify your

answer and check directly that the vectors you obtained are orthogonal
to X (which is obvious from X - X =1).
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c) Let V denote the Levi-Civita connection on M. Compute 9, - Vg, X,
0y Vo, X, 0, Vo, X and 9, - Vy, X in terms of 9, - v;, d, - v; and |V f|.
Write the second fundamental form of S in M.

d) Denote by Vf the column vector

O f
Vf= ayf
0. f

Check that the metric on M is given by
g=1+Vf(Vf)
in the coordinates (z,y, z), i.e.

dx
ds2:[dx dy dz}g dy
dz

e) Let (u,v,w) be coordinates on M, and [ be a parametrization of M,
such that v and v are as above, and let w be such that it vanishes on

S and
 Op O+ 0y fO, + 0. 10,
’ IVFIVT+IV P
Denote by

Ot 0,1t 0,11
DI = 1[0, 0, O] = | 0% 0,0* 0,0*
02 0,13 0,13
What is the matrix that represents the metric on M in the coordinates

(u,v,w)? What does it reduce to over points that belong to S?
f) Use your answer to e) to justify that on points that belong to S

1 1 du
§Lawg =[du dv dw | §0w[(Dl)TDl] dv
TS dw

TS
g) Recalling that T'¥, = w#(Vx,X;), use f) to check your answer to c).

16. Consider the surfaces ¥; obtained from the boundary 0K = ¥ of a
compact convex set K contained in R? by flowing a distance ¢ along the unit
normal. Let A(t) be the area of ¥; and V(¢) be the volume bounded by ;.

As we saw in class,
A(0) :/ tr K,
oK

where k is the second fundamental form of .
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a) Prove that A(0) = 8. (Suggestion: use equalities (1) and (2) above,
and the Gauss-Bonnet Theorem).

b) Deduce that

A(0)

4
= 2T 2002 4 A>0)E+ V(0).

V(t) 3 5

c) Use the isoperimetric inequality, A3(¢t) > 367V?(t), to prove Min-

kowski’s inequality _
A(0) > /167A(0).



