
A NOTE ON THE EQUIVARIANT DOLD-THOM THEOREM

PEDRO F. DOS SANTOS

Abstract. In this note we prove a version of the classical Dold-Thom theorem

for the RO(G)-graded equivariant homology functors HG
∗ (−; M), where G is

a finite group, M is a discrete Z[G]-module, and M is the Mackey functor
associated to M . In the case where M = Z with the trivial G-action, our

result says that, for a G-CW-complex X, and for a finite dimensional G-

representation V , there is a natural isomorphism

[SV ,Z0(X)]G ∼= HG
V (X; Z);

where Z0(X) denotes the free abelian group on X.

1. Introduction

It is a classical result of Dold and Thom that for a CW-complex X there is a
natural isomorphism

Hn(X; Z) ∼= πn(Z0(X)),

where Z0(X) denotes the free abelian group on X. More generally, for a discrete
abelian group M one can consider the topological abelian group M ⊗ X — see
Definition 2.1 below. In [11] it is proved that

πn(M ⊗X) ∼= H̃n(X;M).

In [8, Thm.4.5] Lima-Filho proved an equivariant version of the Dold-Thom
Theorem. It says that if X is a G-CW-complex and G is a finite group then

(1) HG
n (X; Z) ∼= πn(Z0(X)G),

where HG
n (X; Z) denotes the Bredon homology of X with coefficients in the Mackey

functor Z. For the definition of Mackey functor and Bredon homology see [10].
In this paper G will always denote a finite group.
Our goal in this note is to generalize Lima-Filho’s result [8, Thm.4.5] in the

following two directions.
(1) We replace Z by the Mackey functor M associated to a discrete Z[G]-

module M as follows: the value of M on G/H is MH and the value on the
projection G/K → G/H, for K ≤ H ≤ G, is the inclusion of MH in MK .
The functor Z corresponds to the case M = Z with the trivial action.

(2) We replace Bredon homology with the corresponding RO(G)-graded ho-
mology theory [10]. For a finite dimensional G-representation V , the value
of this homology theory in dimension V is denoted by H̃G

V (−;M). The
space M ⊗ X has a natural G-action. We replace the homotopy group
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in (1) by the set of equivariant homotopy classes [SV ,M ⊗ X]G, where
SV = V ∪ {∞}. The set [SV ,M ⊗X]G is also denoted by πG

V (M ⊗X).
Our main result is the following.

Theorem 1.1. Let X be a based G-CW-complex and let V be a finite dimensional
G-representation, then M ⊗X is an equivariant infinite loop space and there is a
natural equivalence

(2) πG
V (M ⊗X) ∼= H̃G

V (X;M).

As a corollary to this theorem we see that M ⊗ SV is a K(M,V ) space. Thus
we have identified a simple model for the equivariant Eilenberg-Mac Lane spectrum
HM .

Observe that, if Sn is equipped with the trivial G-action, the right hand side of
(1) can also be described as the set of equivariant homotopy classes [Sn,Z0(X)]G.
Thus (1) is a particular case of (2) with M = Z and V a trivial G-representation
of dimension n.

The paper is organized as follows. In section 2 we define the functor M ⊗− and
prove that Theorem 1.1 holds in the case where V = Rn. In section 3 we show
that if R is a discrete commutative G-ring then R ⊗ − is an FSP and that if M
is a discrete R[G]-module then M ⊗ − is a module over R ⊗ −. Using these facts
we define a G-spectrum M ⊗S and identify it as the Eilenberg-Mac Lane spectrum
HM . This model for HM is used in section 4 to prove Theorem 1.1. In section 5
we describe briefly an application of Theorem 1.1 to the study of algebraic cycles
on real projective varieties.

Acknowledgement. The author would like to thank H. Blaine Lawson, Jr., Daniel
Dugger and Paulo Lima-Filho for fruitful conversations during the elaboration of
this work and Gustavo Granja for many suggestions and corrections.

2. Equivariant Dold-Thom for Bredon homology with M coefficients

In this paper GT denotes the category of based compactly generated G-spaces
and based G-maps. Following [9] we consider the category TG which has the same
objects as GT and whose morphisms are non-equivariant based maps. Note that
TG is enriched over GT: its morphisms are G-spaces (G acts by conjugation) and
composition is given by G-maps. A functor F : C → D, between GT-enriched
categories, is GT-enriched if F : C(X, Y ) → D(F (X), F (Y )) is a map of G-spaces
for all X, Y .

We start by defining functors M⊗− in the categories of G-sets, simplicial G-sets
and G-spaces.

Definition 2.1. Let M be a discrete Z[G]-module.
(a) Given a based G-set X (with base point ∗) we let M⊗X denote the Z[G]-module⊕

x∈X−{∗} M (the action of g ∈ G is given by (g · m)x = g · mg−1·x, where
mx denotes the xth coordinate of m ∈

⊕
x∈X−{∗} M). The correspondence

X 7→ M ⊗X defines a covariant functor from based G-sets to Z[G]-modules.
(b) Given a simplicial set X•, the correspondence n 7→ M ⊗ Xn defines a G-

simplicial abelian group which we denote by M ⊗X•.
(c) Given X a based G-space, we endow the Z[G]-module M ⊗X with a topology

as follows. The group M ⊗ X can be equivalently defined as the quotient∐
n≥0 Mn ×Xn/ ∼, where ∼ is the equivalence relation generated by:
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(i) (r, φ∗x) ∼ (φ∗r, x), for each based map1 φ : {0, . . . , n} → {0, . . . ,m},
n, m ∈ N, where φ∗x = x ◦ φ and (φ∗r)i =

∑
k∈φ−1(i) rk .

(ii) ((r, r′), (x, ∗)) ∼ (r, x), for each r ∈ Mn, r′ ∈ M,x ∈ Xn with ∗ denoting
the base point of X.

We give the discrete topology to M and endow M ⊗ X with the quotient
topology corresponding to the relation ∼. The correspondence X 7→ M ⊗ X
defines a GT-enriched functor from TG to the category of topological Z[G]-
modules.

Notation 2.2. (a) Given m ∈ Mn and x ∈ Xn, the image of (m,x) in M ⊗ X
will be denoted

∑
i mixi.

(b) If f : X → Y is a map of based G-spaces, the induced homomorphism M⊗X →
M ⊗ Y will be denoted M ⊗ f .

(c) If m ∈ M and f : X → Y , the map X → M ⊗Y defined by x 7→ mf(x), x ∈ X,
will be denoted m⊗ f .

(d) In [8], Z ⊗ X is denoted AG(X), for a based space X and, for any space X,
Z⊗X+, is denoted Z0(X).

(e) In [11] M ⊗X is denoted B(M,X).

Remark 2.3. (a) The space M ∧X – where M is considered as a based G-space
with the discrete topology having 0 as the base point – includes in M ⊗X as
the image of the natural map M ×X → M ⊗X. This inclusion is denoted ιX
and will be used throughout.

(b) If X has the trivial action then (M ⊗ X)H = MH ⊗ X, for all H ≤ G. In
particular, it follows from [11] that M⊗Sp is an equivariant Eilenberg-Mac Lane
space K(M,p).

(c) For a pointed simplicial set X• the G-simplicial group M ⊗ X• can be alter-
natively defined as the quotient

∐
n Mn ×Xn

• / ∼, where ∼ is the equivalence
relation generated by (i) and (ii), in Definition 2.1(c). Thus, since the real-
ization functor | − | commutes with colimits and finite products, if X is the
realization of X• then M ⊗X is G-homeomorphic to |M ⊗X•|.

Our goal in this section is to prove that, for a discrete Z[G]-module M ,

(3) πG
n (M ⊗ (X/A)) ∼= HG

n (X, A;M).

In other words, we want to prove the Dold-Thom Theorem for Bredon homology
with coefficients in the Mackey functor M .

The following simple observation, due to Lima-Filho will be used throughout.

Lemma 2.4. Let S be a based finite G-set.

(a) There is a G-homeomorphism F (S, M⊗X)
ϕ−→ M⊗(X∧S), where F (S, M⊗X)

denotes the space of based maps with the G-action given by conjugation.
(b) The homeomorphism ϕ of (a) is natural with respect to the variable S: let

h : S → T be a G-map between finite G-sets and let h∗ : F (T,M ⊗ X) →
F (S, M ⊗ X) be the map induced by h. Then the map ĥ : M ⊗ (X ∧ T ) →
M ⊗ (X ∧ S) that corresponds to h∗ under ϕ is given by

ĥ(m(x ∧ t)) =
∑

h(s)=t

m(x ∧ s);

10 is the base point
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and the map ȟ : F (S, M ⊗X) → F (T,M ⊗X) that corresponds to Z⊗ (id∧h)
under ϕ is given by

ȟ(f)(t) =
∑

h(s)=t

f(s).

Proof. (a) There is a map RS,X : (M ⊗X) ∧ S → M ⊗ (X ∧ S) defined by

RS,X

((∑
i

mixi

)
∧ s

)
=
∑

i

mi(xi ∧ s).

The map ϕ is defined by

ϕ(f) =
∑
s∈S

RS,X(f(s) ∧ s).

It is easy to check that ϕ is a G-homeomorphism.
(b) Straightforward from the definition of ϕ.

�

Our approach to proving (3) is to show that the functor (X, A) 7→ πG
∗ (M⊗ (X/A))

satisfies the axioms for an equivariant homology theory with M coefficients. Just as
in the case of Z coefficients, the main step in this proof is to show that the functor
X 7→ M ⊗X transforms G-cofiber sequences into G-fiber sequences.

Proposition 2.5. For a G-CW-pair (X, A) the projection M ⊗X → M ⊗ (X/A)
is naturally G-homotopy equivalent to an equivariant Serre fibration.

Proof. Let (X•, A•) be the singular complex of (X, A). Then (X, A) is naturally
G-equivalent to |(X•, A•)| and, by continuity of M⊗−, (M⊗X, M⊗A) is naturally
G-equivalent to (M⊗|X•|,M⊗|A•|). By Remark 2.3, the pair (M⊗|X•|,M⊗|A•|)
is naturally G-homeomorphic to |(M ⊗X•,M ⊗A•)|. It is easy to see that, for any
H ≤ G, the natural map

{M ⊗X•}H/{M ⊗A•}H → {M ⊗ (X•/A•)}H ,

is an isomorphism (let [x] denote the class of x ∈ X• in X•/A• and use the fact that
every nonzero element of M⊗(X•/A•) is of the form

∑
i mi⊗[xi] with xi ∈ X•−A•).

Therefore the projection {M ⊗ X•}H → {M ⊗ (X•/A•)}H is a fibration for it is
a surjection of simplicial abelian groups (see [4, III.2.10]). Since the functors | − |
and −H commute, it follows that the projection |M ⊗X•|H → |M ⊗ (X•/A•)|H is
a Serre fibration, for any H ≤ G. �

Remark 2.6. It is possible to show that the projection M ⊗X → M ⊗ (X/A) is a
locally trivial (G, α,M ⊗A)-bundle, where α : G → Aut(M ⊗A) is induced by the
action of G on M ⊗ A (cf. [8, Thm. 2.7]). We will not prove this result here as it
will not be needed.

Corollary 2.7. For a G-CW pair (X, A) there is a natural equivalence

πG
n (M ⊗ (X/A)) ∼= HG

n (X, A;M).

Proof. Consider the functors hk(X, A) def= πG
k (M ⊗ (X/A)), k ≥ 0, defined on the

category of G-CW-pairs2. We will show that h∗ satisfies the axioms of an ordinary
G-homology theory with coefficients M :

2For A = ∅ we set X/A = X+.
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G-homotopy axiom. A pair of G-homotopic maps f0, f1 : (X, A) → (Y, B) induces
equivariant abelian group homomorphisms M ⊗ f0,M ⊗ f1 : M ⊗ (X/A) → M ⊗
(Y/B) which are G-homotopic: if f : (X, A) × I → (Y,B) is a homotopy, then
t 7→ M ⊗ ft is a G-homotopy from M ⊗ f0 to M ⊗ f1, hence M ⊗ f0, M ⊗ f1 induce
the same map on h∗(X, A).
Excision axiom. If f : (X, A) → (Y, B) is a relative homeomorphism of G-pairs
then M ⊗ f : M ⊗ (X/A) → M ⊗ (Y/B) is a G-homeomorphism which induces an
isomorphism h∗(X, A) → h∗(Y, B)
Exact sequences. By Proposition 2.5 there is a natural transformation δ : hk(X, A) →
hk−1(A, ∅) which fits in an exact sequence

· · · → hk(A) → hk(X) → hk(X, A) → hk−1(A) → · · ·

Dimension axiom. For X = G/H we have

hk(X) = πG
k (M⊗(G/H+)) ∼= [Sk, F (G/H+,M)]G ∼= [Sk∧G/H+,M ]G ∼= [Sk,M ]H ,

where we used Lemma 2.4. It follows that hk(G/H) = 0 for k > 0 and h0(G/H) ∼=
MH . �

3. The G-spectrum M ⊗ S

In this section we use the functor M ⊗ − to produce a spectrum M ⊗ S which
we identify as the Eilenberg-Mac Lane spectrum HM in Proposition 3.7. In order
to define M ⊗ S we will use the fact that, for a discrete commutative G-ring R, the
functor R⊗− is a functor with smash products (FSP).

Definition 3.1 ([9]). A commutative TG-FSP is a GT-enriched functor F : TG →
TG with natural transformations µX,Y : F (X) ∧ F (Y ) → F (X ∧ Y ) and ηX : X →
F (X) such that the composite

F (X) ' S0 ∧ F (X)
ηS0∧idF (X)−−−−−−−→ F (S0) ∧ F (X)

µS0,X−−−−→ F (S0 ∧X) ' F (X),

is the identity and
(i) Unit Property: µX∧Y ◦ (ηX ∧ ηY ) = ηX∧Y .
(ii) Associativity: µX,Y ∧Z ◦ (idF (X) ∧µY,Z) = µX∧Y,Z ◦ (µX,Y ∧ idF (Z)).
(iii) Commutativity: µY,X ◦ τF (X),F (Y ) = F (τX,Y ) ◦ µX,Y , where τ is the permu-

tation isomorphism.
A (left) module over F is a GT-enriched functor E : TG → TG with continuous

natural maps σX,Y : F (X) ∧ E(Y ) → E(X ∧ Y ), such that the composite

E(X) ' S0 ∧ E(X)
ηS0∧idE(X)−−−−−−−→ F (S0) ∧ E(X)

σS0,X−−−−→ E(S0 ∧X) ' E(X),

is the identity and σX,Y ∧Z ◦ (idF (X) ∧σY,Z) = σX∧Y,Z ◦ (µX,Y ∧ idE(Z)).

Proposition 3.2. Let R be a discrete commutative G-ring and let M be a discrete
R[G]-module. Then the functor R ⊗− is a commutative TG-FSP and M ⊗− is a
module over R⊗−.

Proof. Let 1 denote the identity element of R. We define ηX : X → R ⊗ X by
ηX(x) = 1x. Considering X ∧ Y included in R⊗X ∧R⊗ Y via ηX ∧ ηY we define
µX,Y : (R⊗X)∧ (R⊗ Y ) → R⊗ (X ∧ Y ) as the R-bilinear extension of ηX∧Y ; i.e.
µX,Y

(
(
∑

r′ixi) ∧
(∑

r′′j yj

))
=
∑

i,j r′ir
′′
j (xi ∧ yj).
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By construction, the composite

R⊗X ' S0 ∧ (R⊗X)
ηS0∧idR⊗X−−−−−−−→ R⊗ S0 ∧R⊗X

µS0,X−−−−→ R⊗ (S0 ∧X) ' R⊗X

is the identity map. Moreover, the transformations η and µ satisfy:
(i) Unit Property: follows by construction of µX,Y .
(ii) Associativity: follows because both maps are R-trilinear extensions of ηX∧Y ∧Z .
(iii) Commutativity: follows easily from the definition of µY,X as an R-bilinear

extension of ηY ∧X (where the commutativity of R was used implicitly).
Hence we conclude that R⊗− is a commutative TG-FSP.

Given a discrete R[G]-module M we define σX,Y : (R ⊗X) ∧ (M ⊗ Y ) → M ⊗
(X ∧ Y ) by the formula σX,Y ((

∑
rixi) ∧ (

∑
mjyj)) =

∑
i,j rimj(xi ∧ yj). As in

the case where M = R it follows that the composite

M⊗X ' S0∧(M⊗X)
ηS0∧idM⊗X−−−−−−−−→ R⊗S0∧M⊗X

σS0,X−−−−→ M⊗(S0∧X) ' M⊗X

is the identity map. The equality σX,Y ∧Z ◦ (idR⊗X ∧σY,Z) = σX∧Y,Z ◦ (µX,Y ∧
idM⊗Z) follows as in (ii) above. �

We can now define the G-spectrum M⊗S and proceed to identify its equivariant
homotopy type. The problem of identifying the equivariant homotopy type of
the M ⊗ S in the case where M = Z was first addressed by Lima-Filho in [8].
Unfortunately, a small computational error led him to incorrectly identify it as the
Eilenberg-Mac Lane spectrum of the Burnside ring Mackey functor.

Definition 3.3. Let X be a G-CW-complex. The correspondence V 7→ M⊗ ΣV X
where V runs over an indexing set A of a complete G-universe U , defines a G-
prespectrum, whose structural maps are the following composites

SW ∧ (M⊗ΣV X)
ηSW ∧idM⊗ΣV X−−−−−−−−−−→ (R⊗SW )∧ (M⊗ΣV X)

σSW ,ΣV X−−−−−−→ M⊗ΣW+V X.

This G-prespectrum will be denoted by M ⊗ S∞X. The associated G-spectrum
will be denoted M ⊗ (Σ∞X), except if X = S0 in which case it will be denoted
M ⊗ S.

Remark 3.4. Note that, for a discrete commutative G-ring R, R ⊗ S is an equi-
variant E∞-ring spectrum as it is obtained from a commutative FSP (see [9]).

Before we can proceed we need to recall a few more facts from equivariant ho-
motopy theory.

Definition 3.5 ([5]). Let X, Y be G-spaces, let f : X → Y be a G-map and let
V be a finite dimensional G-representation. For each subgroup H of G, let V (H)
denote an H-invariant complement of V H .

(i) f is a |V ∗|-equivalence if, for every subgroup H of G, fH : XH → Y H is a
|V H |-equivalence.

(ii) f is a V -equivalence if it is a |0∗|-equivalence and for every subgroup H of G,
f∗ : πH

V (H)+qX → πH
V (H)+qY is an isomorphism for 0 ≤ q < |V H | and is an

epimorphism for q = |V H |.
(iii) X is |V ∗|-connected if XH is |V H |-connected, for every subgroup H of G.
(iv) X is V -connected if, πH

V (H)+qX = 0 for 0 ≤ q ≤ |V H |, for every subgroup H

of G.
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Lemma 3.6 ([5]). Let X, Y be G-spaces, V be a finite dimensional G-representation,
and f : X → Y be a G-map. Then

(i) X is V -connected if and only if it is |V ∗|-connected.
(ii) f is a V -equivalence if and only if it is a |V ∗|-equivalence.

Proposition 3.7. For a finite group G, the G-spectrum M ⊗ S is an Eilenberg-
Mac Lane spectrum HM .

Proof. In Lemma 3.8 we prove that, for any representation V of G and for n > 0,

πG
V +n(M ⊗ SV ) = 0.

The proof of Lemma 3.9(a) implies that M ⊗SV is (|V ∗| − 1)-connected hence, for
n < 0, we have

πG
n (M ⊗ S) = colim

V
[SV +n,M ⊗ SV ]G = 0.

Hence πG
n (M⊗S) = 0, for n 6= 0. Since this holds for every finite group G it follows

that πn(M ⊗ S) = 0 for n 6= 0. It remains to show that π0(M ⊗ S) = M .
We start by observing that the inclusion Ψ : M ↪→ (M ⊗ S)(0) determines a

map of coefficient systems Ψ∗ : M → π0(M ⊗ S). Thus, for each H ≤ G, there is a
commutative diagram

M
Ψe
∗ // π0(M ⊗ S)

MH
?�

OO

ΨH
∗// πH

0 (M ⊗ S).

OO

Since Ψe
∗ is an isomorphism, the maps ΨH

∗ are injective. In Lemma 3.9 we show that
ΨH
∗ is also surjective. It follows that Ψ∗ is an isomorphism of coefficient systems.

Since M is completely determined by the groups M(G/H) and the restriction maps
(see the proof of [6, Prop.V.9.10] for M = Z), it follows that π0(M ⊗ S) = M as
Mackey functors. �

Lemma 3.8. Let V be a finite dimensional G-representation. Then for all k > 0,

πG
V +k(M ⊗ SV ) = 0.

Proof. In the case of M = Z this is proved in [8]. The proof for a general M is
exactly the same. We include the details for completeness.

Let (Xp)p≤d denote the skeleta of a G-CW decomposition of SV . Consider the
tower

F (SV ,M ⊗X0)G

��
F (SV ,M ⊗X1)G

��

// F (SV ,M ⊗ (X1/X0))G

...

��
F (SV ,M ⊗Xd)G // F (SV ,M ⊗ (Xd/Xd−1))G.
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The E1 term of the spectral sequence associated to the homotopy groups of this
tower is given by

E1
p,q = πG

V +p+q (M ⊗ (Xp/Xp−1)) ,

and the sequence converges to πG
V +p+q(M⊗SV ) in the range (p, q) where p+q > 0.

Denoting the set of p-cells of X by Λp, we have

E1
p,q = πG

V +p+q

M ⊗

 ∨
α∈Λp

Sp ∧G/Hα+


∼= πG

V +p+q

⊕
α∈Λp

M ⊗ (Sp ∧G/Hα+)


∼=
⊕

α∈Λp

πG
V +p+qM ⊗ (Sp ∧G/Hα+).

Now let k > 0 and let α ∈ Λp be a cell of type Hα. We have,

πG
V +k(M ⊗ (Sp ∧G/Hα+)) ∼= πG

V +k(F (G/Hα+,M ⊗ Sp)) ∼= πHα

V +k(M ⊗ Sp).

Write V as V Hα ⊕ V (Hα). Then, since M ⊗ Sp is an Eilenberg-Mac Lane space
K(M,p),

(4) [SV +k,M ⊗ Sp]Hα
∼= H̃

p−|V Hα |−k
Hα

(SV (Hα);M).

Note that k > 0 and p ≤ |V Hα | because the cell α is contained in
⋃

g∈G{gSV Hα
g−1}.

Hence the right-hand group in (4) is zero. We conclude that E1
p,q = 0, if p + q = k,

which implies that πG
V +k(M ⊗ SV ) = 0. �

Lemma 3.9. The inclusion

M
Ψ−→ colim

V
ΩV (M ⊗ SV )

induces a surjective map MG → colimV πG
V (M ⊗ SV ).

Proof. For each m ∈ M , Ψ(m) is represented in the colimit above by maps of the
form m⊗ id (see 2.2(c)), where id : SV → SV is the identity. The lemma will follow
if we show that
(a) The inclusion iV : M ∧ SV → M ⊗ SV is surjective on πG

V

(b) Any G-equivariant map SV → M ∧SV is G-homotopic in colimV ΩV (M ⊗SV )
to Ψ(m), for some m ∈ M

Proof of (a). It suffices to prove that iV is a |V ∗|-equivalence — see Lemma 3.6.
Fix H ≤ G, set n(H) = |V H | and write V as V H ⊕ V (H). The inclusion

(M ∧ SV )H ⊂ (M ⊗ SV )H factors as follows

(M ∧ SV )H = MH ∧ SV H

⊂ (M ⊗ SV H

)H ⊂ (M ⊗ SV )H .

Since the first inclusion is clearly an n(H)-equivalence, we need only show that
the same is true of the second inclusion. By Corollary 2.7, this translates into a
statement about the map induced in Bredon homology with M coefficients by the
inclusion SV H ⊂ SV . For k < n(H), we have

πH
k (M ⊗ SV ) ∼= H̃H

k (SV ;M) ∼= H̃k−n(H)(SV (H);M) = 0.
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For k = n(H), we have to show that the map

HH
k (SV H

;M) → HH
k (SV ;M)

is onto. Now observe that SV ∼= SV H ∗S(V (H)) — where ∗ denotes the unreduced
join and S(V (H)) is the unit sphere. Thus

SV /SV H ∼= SV H+1 ∧ S(V (H))+,

and this gives H̃H
n(H)(S

V /SV H

;M) = 0. The Bredon homology exact sequence of

the pair (V, V H) shows that H̃H
n(H)(S

V H

;M) → H̃H
n(H)(S

V ;M) is onto, as required.

Proof of (b). We start by considering the case where M = Z. It suffices to show that
given an element [f ] ∈ {S0, S0}G, there is a G-representation V and an integer k
such that the map 1⊗f is G-homotopic in Z⊗SV to the map k⊗id (the proof of (a)
shows that SV ⊂ Z⊗ SV is surjective on πG

V ). Recall that {S0, S0}G is isomorphic
to the Burnside ring A(G). We will use the ring isomorphism I : A(G) → {S0, S0}G

constructed in [12, §II.8]. In particular we will use the additive basis {I(G/H) :
H ≤ G} for {S0, S0}G. We will show that 1⊗I(G/H) is G-homotopic to |G/H|⊗id.
Since I(G/G) = id we can assume H < G and |G| > 1. The proof proceeds by
induction on |G|. Now, the element I(G/H) can be represented by a composite:

(5) SV τ(G/H)−−−−−→ SV ∧G/H+
pr−→ SV ,

where V is a large enough G-representation and pr is the projection — see [12,
§II.8]. It follows that 1⊗ I(G/H) factors as

SV 1⊗τ(G/H)−−−−−−−→ Z⊗ (SV ∧G/H+)
Z⊗pr−−−→ Z⊗ SV .

By Lemma 2.4(a), there is an isomorphism ϕ∗ : [SV , Z ⊗ SV ]H ∼= [SV , Z ⊗ (SV ∧
G/H+)]G and so, assuming V is large enough, it follows by the induction hypothesis
that 1⊗ τ(G/H) = ϕ∗(k ⊗ id), for some integer k. From Lemma 2.4(b), it follows
that (Z⊗ pr) ◦ (1⊗ τ(G/H)) = k|G/H| ⊗ id. This completes the proof of the case
M = Z. Since non-equivariantly I(G/H) = |G/H| id, we have k = 1.

We now consider the case of a general M . Decomposing M into G-orbits the
problem can be reduced to proving the following assertion: given an inclusion
ζ : G/H+ → M and [f ] ∈ {S0, G/H+}G there is a large enough representation V
such that the composite

(6) SV f−→ G/H+ ∧ SV ζ∧id−−−→ M ∧ SV ιSV−−→ M ⊗ SV

is G-homotopic to m ⊗ id, for some m ∈ MG. We note that the composite (6)
factors as follows

SV f−→ G/H+ ∧ SV
ηG/H+∧SV

−−−−−−−→ Z⊗ (G/H+ ∧ SV )
ζ]−→ M ⊗ SV ,

where ζ] is the group homomorphism induced by ιG/H+∧SV ◦ (ζ ∧ id). From the
equivalence ϕ∗ : [SV , Z⊗SV ]H → [SV , Z⊗ (SV ∧G/H+)]G of Lemma 2.4 and from
the case M = Z, we see that ηG/H+∧SV ◦ f is homotopic to ϕ∗(k ⊗ id), for some
integer k. A simple computation shows that setting m =

∑
r∈ζ(G/H) r, we have

ζ] ◦ (ϕ∗(k ⊗ id)) = km⊗ id. This completes the proof. �
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4. The RO(G)-graded version of the Dold-Thom Theorem

Recall that, since M is a Mackey functor, the homology theory HG
∗ (−;M) ex-

tends to an RO(G)-graded theory which is represented by HM — see [10]. Having
identified M ⊗ S as an Eilenberg-Mac Lane G-spectrum HM it follows that for a
finite dimensional G-representation V and a based G-CW-complex X, we have

H̃G
V (X;M) ∼= πV ((M ⊗ S) ∧X).

We will show that actually,

H̃G
V (X;M) ∼= πG

V (M ⊗X).

Definition 4.1. For a G-CW-complex X and V ∈ U there is a map

RX,SV : (M ⊗ SV ) ∧X → M ⊗ (SV ∧X)(∑
i

mixi

)
∧ y 7→

∑
i

mi(xi ∧ y).

It is clear that the maps RX,SV assemble into a map of G-spectra

(M ⊗ S) ∧X → M ⊗ Σ∞X

(see Definition 3.3) which we denote by RΣ∞X . The zero component of this map
of spectra will be denoted by R0

Σ∞X .

Proposition 4.2. Let X be a based G-CW-complex. The inclusion

ΨX : M ⊗X → colim
V

ΩV {M ⊗ (SV ∧X)} = (M ⊗ Σ∞X)(0)

and the map
R0

Σ∞X : ((M ⊗ S) ∧X)(0) → (M ⊗ Σ∞X)(0)
are G-homotopy equivalences.

Proof. From what was proved so far we know that

πG
n (M ⊗X) ∼= H̃G

n (X;M) ∼= πG
n (colim

V
ΩV {(M ⊗ SV ) ∧X}).

Consider the functors HG
∗ from pointed G-CW-complexes to abelian groups,

defined by

HG
n (X) def= colim

V
[SV +n,M ⊗ (SV ∧X)]G = πG

n ((M ⊗ Σ∞X)(0)).

Using Proposition 2.5 and the fact that colimits preserve exact sequences, one
can easily show that HG

∗ (−) defines an equivariant homology theory. Also Ψ−
induces a transformation of equivariant cohomology theories which, for each X, is
defined by

ΨX∗ : πG
∗ (M ⊗X) → πG

∗ (M ⊗ Σ∞X)(0) = HG
n (X).

Hence it suffices to show that ΨX∗ is an isomorphism for X = G/H+, H ≤ G. By
Propositions 3.7 and 2.4, we have

HG
n (G/H+) ∼= colim

V
[SV +n,M ⊗ SV ]H ∼=

{
MH n = 0
0 n 6= 0,

and it is easy to check that this isomorphism is ΨG/H+∗. This completes the proof
of the first assertion.



A NOTE ON THE EQUIVARIANT DOLD-THOM THEOREM 11

The proof of the statement concerning R0
Σ∞X is similar. We observe that R0

Σ∞−

induces a map on Bredon homotopy groups which is is a self-transformation of the
equivariant homology theory H̃G

∗ (−;M). Hence it suffices to show that R0
Σ∞G/H+

is an equivariant homotopy equivalence, for each H ≤ G. Consider the composite

{M ⊗ S} ∧G/H+

RΣ∞G/H+−−−−−−−→ M ⊗ {S ∧G/H+}
ϕ−1

−−→ F (G/H+,M ⊗ S),

where ϕ is the equivalence induced by the space level equivalence of Lemma 2.4.
We claim that ϕ−1 ◦RΣ∞G/H+ is the G-map f̃ determined by the H-map f : {M ⊗
S}∧G/H+ → M ⊗ S which collapses the complement of {M ⊗ S}∧ eH to the base
point. Indeed, on the space level, we have

ϕ−1
(
RG/H+,SV

(
(mx) ∧ g1H

))
(g2H) =

{
mx if g1H = g2H

0 otherwise

= f̃
(
(mx) ∧ g1H

)
(g2H).

Thus, ϕ−1◦RΣ∞G/H+ is the inverse of the Wirthmüller isomorphism (see [6, Lemma
II.6.10 and Thm II.6.2] or [12, Prop. II.6.12]). We conclude that, for any based
G-CW-complex X, R0

Σ∞X induces an isomorphism on Bredon homotopy groups,
and hence it is an equivariant homotopy equivalence. �

Theorem 1.1 Let X be a based G-CW-complex and let V be a finite dimensional
G-representation, then M ⊗X is an equivariant infinite loop space and there is a
natural equivalence

πG
V (M ⊗X) ∼= H̃G

V (X;M).

Proof. This is an immediate consequence of the Proposition above. �

Definition 4.3. Let V ∈ RO(G). A K(M,V ) space is a classifying space for the
functor H̃V

G (−;M).

Corollary 4.4. Let V be a finite dimensional representation of G. The space
M ⊗ SV is a K(M,V )-space.

5. Application: Lawson homology for real varieties

An algebraic p-cycle on a complex projective variety X is a finite formal sum
σ =

∑
i niVi where the ni‘s are integers and the Vi‘s are (irreducible) subvarieties of

dimension p in X. The group of p-cycles Zp(X) can be equipped with a Hausdorff
topology making it a topological group. The homotopy groups of Zp(X) form a
set of invariants called the Lawson homology of X [2], [7]. In [3] it is shown that
there is a natural map sp : Zp(X) → Ω2pZ0(X). Passing to homotopy groups and
applying the classical Dold-Thom theorem we get a map

πkZp(X) → πk+2pZ0(X) ∼= Hk+2p(X; Z).

Thus Lawson homology maps to singular homology. This map is very useful in
computations.

If X is a real projective variety (i.e. defined by real equations) then the Galois
group Z/2 = Gal(C/R) acts on Zp(X). In [1] we define a version of Lawson homol-
ogy for real projective varieties as Z/2-equivariant homotopy groups of Zp(X). One
can show the map sp is actually an equivariant map sp : Zp(X) → ΩCpZ0(X), where
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Cp is considered as a Z/2-representation under the action of complex conjugation.
Passing to homotopy groups and applying Theorem 1.1 we get a map

π
Z/2
V Zp(X) → π

Z/2
V +CpZ0(X) ∼= H

Z/2
V +Cp(X; Z),

so that real Lawson homology maps to equivariant homology with Z coefficients.
This map is very useful in the computation of real Lawson homology for real vari-
eties such as products of projective spaces, grassmanianns and certain quadrics.

In the case of projective space Pn one can use Theorem 1.1 to show [1] that there
is a Z/2-homotopy equivalence

Zp(Pn) ∼= K(Z, 0)×K(Z, C)× · · · ×K(Z, Cn−p).
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