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Abstract

In this work we present a numerical algorithm for the determination of the eigen-
values and eigenfunctions associated to the Dirichlet problem for the Laplacian, in
a bounded or in an exterior domain. The determination of higher eigenfrequencies
is a well known numerical problem, that has been addressed with other numerical
methods. Here we propose to use the method of fundamental solutions. Since the
MFS produces highly ill conditioned matrices, a particular technique was derived to
overcome the difficulty of determining accurately those eigenfrequencies. Extensive
numerical simulations will be presented.
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Introduction

The determination of the eigenvalues and eigenfunctions associated to the Laplace
operator in a bounded domainΩ is a well known problem with applications in acous-
tics (e.g. Courant and Hilbert, 1953; Cox, 2003). For simple shapes, such as rectangles
or circles in 2D, this leads to straightforward computations, without the need of a nu-
merical algorithm. However, when the shape is non trivial, that computation requires
the use of a numerical method for PDEs. A standard finite differences method can pro-
duce good results when dealing with a particular type of shapes defined on rectangular
grids, while for other type of shapes the finite element method or the boundary element
method are more appropriated (e.g. Mey, 1976). These classical methods require extra
computational effort; in one case, the construction of the mesh and the associated rigid
matrix, and in the other, the integration of weakly singular kernels. Here we propose a
meshless method for solving the eigenvalue problem using the method of fundamental
solutions (MFS). The MFS has been mainly applied to boundary problems in PDEs,
starting in the 1960s (e.g. Kupradze, 1964; Arantes, 1968). An account of the develop-
ment can be found in Golberg, (1996). The application of the MFS to the calculation
of the eigenvalues has been introduced by Karageorghis, (2001), and applied for sim-
ple shapes. In the work by Karageorghis, (2001) it is presented a comparison with



the boundary element method used by Mey, (1976), and the results obtained for sim-
ple shapes (circles, squares), show a better performance for the MFS. The application
of other meshless methods to the determination of eigenfunctions and eigenmodes has
also been subject to recent research, mainly using radial basis functions (Chen, Chang,
Chen and Liu, 2002).
In this work we consider the application of the MFS to general shapes. In that case
the choice of the source points in the MFS becames more important to retrieve higher
eigenfrequencies. We are able to obtain good results with a particular algorithm as-
sociating the source points to the shape. Having determined an approximation of the
eigenvalue, we apply an algorithm based on the MFS to obtain the associated eigen-
modes.

Helmholtz equation

Let Ω⊂R2 be a bounded connected domain with regular boundary∂Ω. For simplicity
we will consider the 2D - Dirichlet eigenvalue problem for the Laplace operator. This
is equivalent to obtain the resonance frequenciesκ that verify the Helmholtz equation{

∆u+κ2u = 0 in Ω,
u = 0 on∂Ω,

(1)

for a non null functionu. As an application, this corresponds to recover the resonance
frequenciesκ > 0 associated with a particular shape of a drumΩ.
A fundamental solutionΦκ of the Helmholtz equation verifies(∆+κ2)Φ =−δ, where
δ is the Dirac delta distribution. In the 2D case, we take

Φκ(x) =
i
4

H(1)
0 (κ |x|) (2)

whereH(1)
0 is the first Ḧankel function. A density result in Alves(2000) states that ifκ

is not an eigenfrequency then

L2(∂Ω) = span
{

Φκ(x−y)|x∈∂Ω : y∈ Γ̂
}
, (3)

whereΓ̂ is an admissible source set, for instance, the boundary of a bounded open set
Ω̂ ⊃ Ω̄, consideringΓ̂ surrounding∂Ω. This allows to justify the approximation of a
L2 function, with complex values, defined on∂Ω, using a sequence of functions

um(x) =
m

∑
j=1

αm, jΦκ(x−ym, j) (4)

that converges tou|Γ in L2(∂Ω). This is a partial justification to the convergence of
the Method of Fundamental Solution (MFS) based on density results. It is similar to
Bogomolny’s approach in Bogomolny (1985), but it avoids the use of boundary layer
potentials. As pointed out in Alves (2000) or Bogomolny (1985), the convergence of
the MFS, in a general case, is not completely related to the discretization of a single
layer potential, although there is a straightforward relation. A single layer potential
defined onΓ̂ is an analytic function inΩ, and therefore such an approach would only
be appropriate for analytic functions. Sinceu|Γ ≡ 0 is an analytic function, it makes



sense to consider the approach of the MFS as being related to the discretization of the
single layer potential, forx /∈ Γ̂,

Sκϕ(x) =
∫

Γ̂
Φκ(x−y)ϕ(y)dsy ≈ um(x) =

m

∑
j=1

αm, jΦκ(x−ym, j). (5)

Theorem:
If κ is not a resonance frequency of the interior Dirichlet problem thendim(Ker(Sκ)) =
0.

Proof. If κ is not an eigenfrequency thenSκϕ = 0 on∂Ω impliesSκϕ = 0 in Ω, by the
well posedness of the interior Dirichlet problem. Using the analyticity ofSκϕ, this im-
pliesSκϕ = 0 in Ω̂ and the continuity of the traces implies(Sκϕ)+ = (Sκϕ)− = 0 onΓ̂.
Therefore, by the well posedness of the exterior Dirichlet problem, with the Sommer-
feld radiation condition (verified bySκϕ), this impliesSκϕ = 0 in R2. In conclusion,
Sκϕ = 0 on∂Ω impliesϕ = 0, and therefore dim(Ker(Sκ)) = 0. �
Thus, using this result, we search forκ such that dim(Ker(Sκ)) 6= 0.

Determination of Eigenfrequencies

From the previous considerations we may sketch a procedure of finding the eigenva-
lues by checking the frequenciesκ for which dim(Ker(Sκ)) 6= 0.
Definining m collocation pointsxi ∈ ∂Ω andm source pointsym, j ∈ Γ̂,we obtain the
system

m

∑
j=1

αm, jΦκ(xi −ym, j) = 0, (xi ∈ ∂Ω). (6)

Therefore a straighforward procedure is to find the valuesκ for which them×mmatrix

A(κ) =
[
Φκ(xi −y j)

][
α j

]
m×m (7)

has a null determinant. However, an arbitrary choice of source points may lead to worst
results than the expected with the MFS applied to simple shapes. We will choose the
pointsx1, ....,xm∈ ∂Ω andy1, ....,ym∈ Γ̂ in a particular way. Given them pointsxi on
∂Ω, we takem point sources

yi = xi + ñi

whereñi is approximately normal to the boundary∂Ω onxi . To obtain the vector̃ni we
just considerτ− = xi −xi−1, τ+ = xi −xi+1 and calculaten−, n+ which are normal to
τ− andτ+ (respectively) and pointing outwardsΩ. Then we takẽni = 1

2(n−+n+). By
some experimental criteria, we will usually take|ñi |= β(≈ 1/3). Source points taken
too far from the boundary only presented better results in some particular cases, using
simple shapes.

The components of the matrixA(κ) are complex numbers, so the determinant is also
a complex number. We consider the real functiong(κ) = |Det[A(κ)]| . It is clear that
the functiong will be very small in any case, since the MFS is highly ill conditioned
and the determinant is quite small. To avoid machine precision problems the code was
built in Mathematica.
If κ is an eigenfrequency,κ is a point of minimum whereg(κ) = 0 and therefore



the derivative changes sign. We will make use of the rough approximationg′(w) ≈
g(w)−g(w−ε)

ε for a smallε > 0. To approximate the eigenfrequencies, where a clear
change on the sign of the derivativeg′ is attained, we used the simple bissection
method, which revealed to be quite accurate in the search of high eigenfrequencies,
which are closer to each other.

Once we have an eigenfrequency determined, we may get the eigenfunctions just by
considering extra collocation points inside the domain. Depending on the multiplicity
of the eigenvalue, we will add one or more collocation points to make the linear system
well determined.

Determination of Eigenmodes

To obtain an eigenfunction associated with a certain resonance frequencyω we use a
collocation method onn+1 points, withx1, · · · ,xn on∂Ω and a pointxn+1 ∈Ω. Then,
the approximation of the eigenfunction is given by

ũ(x) =
n+1

∑
k=1

αkΦω(x−yk). (8)

To exclude the solution ˜u(x)≡ 0, the coefficientsαk are determinated by the resolution
of the system {

ũ(xi) = 0 i = 1, . . . ,n
ũ(xn+1) = 1 ,

(9)

When we taken = m this resumes to add one line and one column to the matrixA(κ)
defined in (7).

Simulation 1: Dirichlet boundary condition.

We consider a domainΩ with a non trivial boundary given by the parametrization

t 7→
(

cos(t)− cos(t)sin(2t)
2

,sin(t)+
cos(4t)

6

)
.

In Fig. we present 4 plots with the eigenfunctions associated to the 21th,· · · , 24th
eigenvalues. In top of each picture it is written the associated eigenfrequency.
In Fig. we show the nodal domains, i.e. the components where the eigenmode keeps
the same sign.

Simulation 2: Dirichlet/Neumann boundary conditions

To show the versatility of the MFS applied to the identification of eigenfrequencies
and eigenmodes we will also present an example with a non simply connect domain
Ω = ΩA\B̄(0,1), whereΩA is the domain with boundary parameterized by

t 7→ (3cos(t),2(sin(t)+cos(2t))+2) .

In ∂ΩA we impose a null Dirichlet boundary condition and in∂B(0,1) we impose a
null Neumann boundary condition.



Figure 1: Plots of the 21th,· · · ,24th eigenmodes associated toΩ

Figure 2: Plots of the 21th· · ·24th nodal domains associated toΩ



In this example we used 120 collocation and source points for the exterior boundary,
and 60 for interior boundary. Note that in the case of a non simply connected domain,
we must consider source points in all connected components ofΩC.

Figure 3: Eigenmode for the 6th eigenfrequency: plot and nodal domains.

Conclusions

In this brief account we presented the MFS method with an algorithm for the choice of
source points that has already been applied to the determination of eigenfrequencies
and eigenmodes for hundreds of non trivial domains. The single example for a particu-
lar situation of mixed Dirichlet/Neumann illustrates the good results already obtained
for other type of boundary conditions and non simply connected domains.
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