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Resumo: Varias abordagengém sido propostas nagtimos anos para o estudo de problemas
de Criptografia. Visto que o modelo da Criptografia Computaciérmstante complexo e por
isso bastante diil de utilizar, \arias abstradies €m sido propostas ndsgtimos anos sendo|a
mais bem sucedida a proposta por Dolev-Yao. No entanto, apesar desta abstaaditar
tratamento dos problemas,necesario verificar se estas abstrées §o correctas, i.e., se ps
protocolos cuja corre@p foi provada, segundo estas absti@s; &0 correctos aquando da sua
implementago.
Nesta disserta@p, comecamos por considerabgita de indistinguibilidade proposta por Abadi
e Rogaway e mostraremos que dois problemas emanam deste resultado: prénéimossvel
tratar protocolos que tenham ciclos de chaves de enciiptaegundo, a supo&ig de que o Si
tema criptogafico consegue ocultar o tamanho da mensagem encriptiacha SUpos#Eo muit
forte. Nesta dissertap resolvemos ambos os problemas. Para resolver o primeiro enriguece-
mos o modelo computacional utilizando primitivas criptfgras mais poderosas; para resolver

o segundo consideramos uma classebdehs mais geral.
A segunda contribueip desta dissertag € a apresent@ap de umaalgebra de processos se-
melhante ao calculo pi com comunié@acsegura, certificados, mas sem uso iekpl de crip
tografia. Nesta linguagem, propriedades de seguranca podem facilmente ser estudadas usan-
do equivaéncia de tracos do sistema e equavalia observacional. Apresentamos ainda uma
implementago queé simultaneamente correcta e completa face ao modelo da criptografia com-
putacional.
Porltimo, apresentamos ainda nesta diss@dagna outralgebra de processos, taamb simi-
lar ao @lculo pi, que nos permite expressar e estudar propriedades de protocolos de seguranca
guantica.
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Formal Methods for the Analysis of Security Protocols

Abstract: As Computational Cryptography is hard to deal manually, several abstractions have
been proposed to analyse security protocols, being one of the most successful the Dolev-Yao
abstraction. However, one should investigate how reliable are such abstractions, hence the need
to relate these two approaches.

In this dissertation we start by considering the original Abadi-Rogaway logic of formal encryp-
tion and its soundness result, observing then that this result has two weaknesses. The firstis that it
cannot tolerate key-cycles, and the second is that the assumption of length-concealing encryption
scheme is too strong. We fix both these problems, the former strengthening the computational
model, and the latter by considering a more general class of logics.

The second contribution of this dissertation is the proposal of a language that is variant of the
pi-calculus with secure communications, mobile names, and high-level certificates, but with no
explicit cryptography. Within this language, security properties can be conveniently studied
using trace properties and observational equivalence in the presence of active adversaries. We
provide a concrete implementation that is both sound and complete with respect to computational
cryptography.
Finally, and arguably one step ahead of reality, we introduce a language also similar to the pi-
calculus, that enable us to express and study security properties of quantum cryptographic pro-
tocols.

Keywords: Cryptography, Key-Cycles, Process Calculi, Quantum Security, Security, Sound
Abstractions of Formal Cryptography.
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Chapter 1

Introduction

Cryptography (both classical and quantum), and more generally security, has been a topic of
the uttermost interest in the last three decades. Despite the interesting research problems within
this field, this increasing interest cannot be separated from the emergence of the Internet, large
computer networksg-commerce and-government, which demanded the design of better and
safer cryptographic protocols.

In the early researches, cryptographic protocols were just devoted to the communication of
secret messageMi/OV96, Sti9Y, but nowadays they are expected to perform several other
tasks such as digital signatur@&3A7¢§, message authenticaticN$7§, secret sharingRab81
Sha79, secret key-exchangdMea9s, contract signing CKS01], electronic cashBra99 and
electronic voting[FO097.

When specifying and designing cryptographic protocols, one always supposes that the pro-
tocol will run in an adversarial environment and, when trying to analyse the security of such
protocols, one may have several different runs at the same time, possibly interleaving with one
another. Proving security of such large security protocols easily turns into a task that cannot
be performed by hand, hence several tools have been designed to deal with such complex prob-
lem [BMVO05, MMS97, Pau98 Mea92, Bla01].

The need for such (automated) tools is not only due to the complexity of the protocols. Even
small protocols can be difficult to analyse by hand. If we consider the simple protocol pro-
posed by Needham and Sokder in 1978MNS7¢§, it was not until 1995 that LoweLlow95]
discovered his famous attack on the protocol and suggested a fix using the CSP-model checker
FDR [Low96]. This was the advent of the use of automated tools, model-checkers and theo-
rem provers, for studying security protocols. The proof of security for this (corrected) protocol
(called NSL) was done assuming that cryptography is perfect, that is, that one can only decrypt
a message if in possession of the correct decryption key. With this “perfect cryptography” as-
sumption, the protocol and the model of the adversary are simple enough to be easily analysed
by standard model-checkers and theorem provers. This is one of the most common refinements
when analysing security protocols but there are others, e.g., bound the maximum number of
instances of the protocol running at the same time.

One question that remained unanswered was the following: What happens when cryptogra-
phy is not perfect (which is the case in real life where we can always guess a key with small

1



Chapter 1. Introduction

probability)? How secure is NSL when using this “imperfect cryptography”? After some posi-
tive results regarding cryptographic soundness of such abstractions, WarWseBE[ showed

that the attack discovered by Lowe against the NS protocol, could also be performed against the
corrected version if a somewhat weak, but standard, encryption scheme is used (the EI-Gamal
encryption schemeHIg8Y]). This result turned the attention of the research community for the
need of soundness results for formal cryptography, with respect to computational cryptography,
i.e., itis important to characterise when protocols proved correct using perfect cryptography are
correct when implemented with computational cryptography.

1.1 Background

In the area of cryptographic protocols, two models are noteworthy for their natural definitions
and rigorous proofs. The first of these models, @wmnputational Mode[GM84, [Yao8Y, is
derived from complexity theory. Its definitions are phrased in terms of the asymptotic behaviour
of Turing machines, and its main proof technique is reduction. The second modeSatitmlic

Model (or, Formal Model, or Dolev-Yao modgDY83, NS7{, is so-named because of its gen-

esis in the field of formal methods. Its definitions are phrased in terms of process algebras and
state machines (particularly non-deterministic ones) and it uses many different proof methods
(including automated ones). There are many differences between the two models , but two in
particular are key: their representations of messages and the power they give to the adversary.

¢ In the computational model, messages are families of probability distributions over bit-
strings (indexed by the security parameter). The adversary is modelled as an algorithm of
realistic computational power: probabilistic polynomial-time, PPT.

e The formal model imposes a more complex structure. Messages are expressions built
according to a particular grammar. The atomic messages are symbols representing keys,
random values, texts, and so on. More complex messages can be built from simpler ones
by application of (symbolic) functions, e.g., pairing and encryption. The adversary is given
only limited power to manipulate these expressions, such as separating a concatenation or
decrypting an encryption (if it knows the decrypting key). These possible operations are
specified via a set of equations.

While the former is a more concrete approach (based on complexity theory) with limits in the
computational power of the adversary, concrete cryptographic algorithms that work on bitstrings,
computational indistinguishability as the “equivalence notion”, and precise (and accepted) def-
initions of security goals (which provides a common ground for discussion), the latter requires
a higher-level of abstraction but in exchange provides automatic tools, and is easier to handle.
Examples of such tools range from logi@sIB1, Syv9], SM93 IGM95, BAN96, [SCO() 1K03,
CVBO04, CVB05, DDM 05, [CMP0Y, to theorem proversHau97ihPau97aPau98Bla0€] and
model checkersllow96, MMS97, Bla01, BMVO05, BAF05], process algebrasAlz99, AG97,

AG98|, and strand spaceBHG9§ FHG9Y. The major drawback of such abstractions is that, as
seen above, it is possible to prove the correctness of protocols that are susceptible to attacks in a
concrete implementation.
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Despite these differences, certain intuitions can be translated between the two models in the
expected way. In particular, under carefully chosen conditimnkstinguishability of messages
can be mapped directly from one model to the other.

1.1.1 The Abadi-Rogaway Logics of Formal Encryption

Relation between these two models was first demonstrated by Abadi and RogaR@y, [

ARO0Z2] in a particular setting and under strong assumptions. In their formulation of the for-
mal model (where messages are constructed from basic terms, blocks and keys, via pairing and
encryption) two expressions are said to be indistinguishable to the adversary (alsdfaralled
mally equivalentif their only differences lie in the encryption terms that cannot be decrypted by
the formal adversary. In the computational model, on the other hand, messages are families of
probability distributions on bit-strings. Equivalence of computational messages is captured by
the standard notion of computational indistinguishability (i.e., indistinguishability by an efficient
algorithm [GM84)).

Relating the two models.

Once a computational encryption scheme is fixed, an intuitive function translates expressions
between the two models. This function (caliederpretation) maps blocks to fixed bitstrings,

keys to bitstrings generated by the key-generation algorithm, pairs to the pairing of the interpre-
tations, and encryptions to the bitstring that result from running the encryption algorithm on the
interpretation of the encrypted message.

This interpretation maps each formal expression to an ensemble (indexed by the security
parameter) of probability distributions over bit-strings. Given an encryption scheme, and there-
fore a particular interpretation function, one can then ask whether all pairs of equivalent formal
messages map to indistinguishable ensembles of probability distributions. If so, it is said that
soundnessiolds and it implies that the formal model is a faithful abstraction of the computa-
tional model: security in the formal model implies security in the computational model as well.

If the converse holds, that is, if every pair of indistinguishable probability distributions corre-
sponds to interpretations of equivalent formal messages, we sayotialeteneskolds. In this

case, we have that the formal model is not over conservative, that is, it encompasses only the
subtleties of the computational model.

In their seminal work, Abadi and Rogaway demonstrated (in the symmetric-key encryption
setting) that soundness holds when the security level of the computational encryption algorithm
is ‘type-0’ (a scheme is type-O0 if it does not leak any information about the size of the encrypted
plaintext, and given two ciphertexts one cannot say if they correspond to the encryption of the
same message, nor if they correspond to the encryption of messages using the same key). This
result was later translated to the public-key setting by Micciancio and WarirgdMDA k], who
found that soundness is guaranteed by encryption schemes that satisfy ‘chosen-ciphertext se-
curity’ [RS97,ISah99 (CCA-2 in the notation of BDPR9§})). The power of chosen-ciphertext
security has been confirmed by subsequent extengitem®4 CHO€]. These results, however—
in both the symmetric and asymmetric settings—share two significant weaknesses.
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Weaknesses of previous soundness results.

Firstly, the result of Abadi and Rogaway fails to hold in the presenckegfcycles An ex-
pression has a (symmetric) key cycle if one can find symmetric k&ysKs. .. K, such that

K; is encrypted in the expression und€y,; and K, is encrypted byi;. (In the asymmetric

setting, the public keyx; encrypts the private kef(;ll, and K, encryptsK 1) The formal

model makes no distinction between those messages that have key-cycles and those that do not.
Further, the interpretation function is well-defined over key-cycles, and so, formal key-cycles are
computationally meaningful. However, neither the soundness result of Abadi and Rogaway nor
subsequent soundness results (described in SezZihpmre known to hold for such messages.

(In fact, the stronger of these resulBHWO03 ICHO€] assumes that no private or symmetric keys

are encrypted at all!)

Thus, the question of key-cycles is both interesting in its own right and has implications in
a larger context. The standard security definitions for computational encryption, such as CCA-2
security, do not obviously imply security in the presence of key-cy®R39¢. The formal
model, on the other hand, assumes that key-cycles do not weaken encryption in any way. There-
fore, the issue of key-cycles may represent an actual ‘gap’ between the formal and computational
models, and thus may shed light on their general relationship.

The majority of the results relating the two models show the formal model to be sound with
respect to standard definitions of the computational model—with some notable exceptions. Some
gaps have been positively identified. (For example, Canetti and Hed@€ and Backes
and PfitzmannBPOQY have demonstrated that the formal definition of secrecy is strictly weaker
than the computational definition.) However, these gaps were ‘closed’ by forcing changes onto
the formal model. Should the resolution of the problem of key-cycles again cause changes to
the formal model, or could it this time be more naturally resolved through modifications to the
computational model?

The second weakness of the original Abadi-Rogaway result also identifies a possible gap be-
tween the two models, but one that has already been previously studied. In particular, the original
soundness results of Abadi and Rogaway assumes that formal encryption conceals all aspects of
the plaintext. That is, their result requires that symmetric encryption hides (among other things)
the length of the plaintext. Unfortunately, this cannot be achieved for many contexts, and this
can thus be considered a ‘gap’ between the two models. This particular gap has already been
considered by Micciancio and WarinsctMWO04kb], Laud [Lau04, and Micciancio and Pan-
jwani [MPQOE] who resolve the gap by weakening the formal model. These results, however, are
highly specific to particular classes of computational encryption schemes. It is unclear if or how
these results can be generalised to consider other encryption schemes that might leak other kinds
of information. Rephrasing, can every encryption scheme provide soundresséweakened
version of the formal model, or do some ‘gaps’ remain?

1.1.2 Process Algebras for Security

Process Algebras were introduced as simple models to deal with concurrent sySK88S [
Hoa8(). In these models, computation is defined as the communication/interaction between
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processes. The tradition on using process calculus to reason about properties of systems led
easily to its use for studying cryptographic protocols.

Pi calculus MPW9Z] was used since its early stages to model mobile processes and dynamic
channels. Pi calculus’ channels are very simple but at the same time a very powerful tool as they
can be created and passed among principals. In particular, it is possible to model private and
secure networks just using private channels. The extrusion rules of the pi-calculus ensure that as
long as a channel is not given to the adversary, he will never be able to access it.

But how can one implement those channels? Private channels are usually implemented using
cryptography and this cannot be expressed in the pi calculus. A first approach to include cryp-
tographic primitives in a process algebra was the development of spi calABES[ AG97,

AG98]. Spi calculus is an extension of pi calculus that has in-built cryptographic primitives.
This extension allows the explicit representation of cryptography in protocols. With that, we can
express security properties as equivalences, e.g., secré&cisahown by proving that a process

that sendd/ is equivalent to one that sents. Modelling an adversary is also very easy in this
setting: we just allow any context to be an adversary. By doing this, we do not need to specify
the capabilities of an adversary; we just allow him to do everything. Two protocols are then said
to be equivalent if their observational behaviour is equivalent. This trend was very successful.
The caveat is that, in spite of the strong (symbolic) guarantees provided by such methods, no
cryptographic guarantees are given for the protocols proved correct. Real implementations use
probabilistic encryption and guessing a key is something that is always possible in real life, but
excluded in the spi calculus.

Another extension is the applied pi calcul/sHO1]. The applied pi is another extension
of the pi calculus that includes not only cryptographic primitives but arbitrary operations and
equations.

Type systems for process calculus have also been applied to the study of s&&ioa®@ [
HVYO00, BDNNO1, GJ03/GJ04 BBD"05,,CGG05/ABO5, Lau0. This method allows a static-
analysis of infinite-state protocols providing an alternative to finite-state model-checkers.

Another interesting approach is to supplement process calculi with concrete probabilistic or
polynomial-time semantics. Unavoidably, reasoning on processes becomes more difficult. For
example, Lincoln, Mitchell, Mitchell, and ScedrokMMS98] introduce a probabilistic process
algebra for analysing security protocols, such that parallel contexts coincide with probabilistic
polynomial-time adversaries.

In this framework, further extended by Mitchell, Ramanathan, Scedrov, and T®dRSTI0],
MRSTO04 MRSTO€], they develop an equational theory and bisimulation-based proof tech-
niques. A general simulatability theorem is presented by Mateus, Mitchell and Schtivisd3)].

An automated tool for this approach has been proposed recently by BlaBth@g][ By appli-
cation of games, automatically or with assistance from the user, one is able to prove correctness
of protocols specified in an extension of this calculus.

1.1.3 Quantum Security

As for quantum cryptography two seminal works have driven most of the research on this area:
the quantum polynomial time factorisation algorithm proposed by SBloo97; and the quan-
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tum public key agreement protocol BB84, proposed by Bennett and Bra®3&8&dl][ which

was proved to be perfectly secure by Shor and Presk®0(). While Shor’s algorithm raises

the threat of making widely used cryptographic systems completely obsolete by a breakthrough
in quantum hardware, the BB84 protocol shows that quantum communication channels allow
public perfect security.

The fact that we are still far from an implementation of quantum computers (at the present
stage, quantum computers can only work with a few qubits) does not make the field of quan-
tum security useless. In fact, several commercial application of quantum cryptographic devices
already exist. For instance, there already exist encryption devices that combine Quantum Key
Distribution algorithms with AES (Advanced Encryption Standard) to achieve perfect security in
Shannon’s sense, and Quantum Random Number Generators that can be included in any standard
computer through a PCI card.

Being able to analyse quantum cryptographic protocols that include complex interactions of
different cryptographic primitives, and more generally quantum programs, is a step that needs to
be taken in the near future either by adapting current techniques from classical cryptography or
by creating new methods that intrinsically incorporate the quantum phenomena.

1.2 Our Work

This dissertation has three different contributions.

1.2.1 Bridging the Gap Between Formal and Computational Cryptogra-
phy

In Chapter2, we address the two weaknesses of the original Abadi-Rogaway result mentioned
above. First, we consider the problem of key-cycles and show that an actual gap exists, but one
that can be bridged by strengthening the computational model. (We note that this is the first gap
to be closed in this way, rather than by weakening the formal model.) In doing this, however,
we must assume (unlike Abadi and Rogaway) that formal encryptions reveal two things: the
‘length’ of their plaintexts, and whether two different ciphertexts were created using the same
key. With this as motivation, we then turn to generalisations of the Abadi-Rogaway formalism.
In particular, we show (in a general way) how Abadi and Rogaway’s formulation of the formal
model can be expanded to consider encryption schemes (computational or information theoretic)
that leak partial information such as plaintext-length. That is, we investigate the conditions under
which a computational encryption scheme provides soundness and completeness to a (possibly
weakened) version of the formal model.

The Problem of Key Cycles:

We solve the issue of soundness in the presence of key-cycles by using the nokiey of
dependent messa@€DM) security for symmetric encryption. This definition was recently in-
troduced simultaneously by Black, Rogaway and ShrimgBR304, who consider it in their
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own right, and by Camenisch and Lysyanska@a (1], who use it for an implementation of a
credential system that discourages people from transferring credentials. We will, however, use it
to demonstrate two points:

1. Firstly, as predicted by Blackt al, we show that this new notion of KDM security is
strong enough to achieve soundness in the presence of key cycles (for a somehow weaker
version of the original model proposed by Abadi and Rogaway);

2. Secondly, we show that in order to achieve soundness for formal encryption, we need
stronger computational definitions than the ones used by Abadi and Rogaway. In partic-
ular, we show that both soundness and KDM security neither imply nor are implied by
type-0 security.

(In AppendixB we address the problem of key-cycles in the case of asymmetric encryption
and show that also in the case of asymmetric encryption, chosen-ciphertext (CCA-2) se-
curity, which is the strongest known definition of security in the (standard) computational
model, neither implies nor is implied by soundness or (asymmetric) KDM security.)

Thus, the problem of key-cycles was, in fact, a genuine gap between the formal and computa-
tional models at the time of the original Abadi-Rogaway result, but one that can be repaired using
recent advances in the computational model. (We believe this to be the first time that a gap has
been bridged by modifying the computational model rather than the formal one.)

Unfortunately, our results regarding key-cycles serve also to demonstrate another gap between
the formal and computational models—one that must also be closed by weakening the formal
model. In particular, KDM-security allows a ciphertext to reveal two things: the bit-length of the
plaintext, and the identity (but not value) of the key used in the encryption. Therefore, soundness
for key-cycles requires that encryptions in the formal model also reveal these two things.

This fact leads to the other weakness of the original Abadi-Rogaway result: it assumes that
computational encryption can hi@#l aspects of the plaintext. In particular, it demonstrates that
soundness is provided by ‘type-0’ encryption, which hides (among other things) the length of
the plaintext. However, most encryption schemes do not hide this fact, and it can be argued that
‘type-0’ encryption is impossible in general. For this reason, the original Abadi-Rogaway result
must be generalised to consider the kinds of soundness that can be provided by real encryption
schemes.

The Problem of Leakage of Partial Information:

More specifically, we extend the applicability of the Abadi-Rogaway treatment by expanding
their formulation of the formal model. We show how to adjust the formal notion of equivalence
in order to maintain soundness when the underlying computational encryption scheme leaks
partial information. Furthermore, we investigate the circumstances under which an encryption
scheme (or security definition) can be thought of as implemeat{pgssibly weakened) version

of the formal model.
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Also, our treatment will capture both the standard complexity-based encryption schemes of
the computational model and probabilisticformation-theoreticencryption schemes. That is,
we use a general probabilistic framework that includes, as special cases, both the computational
and purely probabilistic encryption schemes (such as One-Time Pad).

We consider not only soundness properties, but also we proachpletenestheorems. In
this context, an encryption scheme provides soundness if, when used in the interpretation func-
tion, equivalent formal messages become indistinguishable probability distributions. On the
other hand, a scheme provides completeness if whenever two formal messages have indistin-
guishable interpretations, they are equivalent. Our generalisation will show how both of these
conditions can be maintained. Key-cycles do not pose a problem for completeness, hence we
will only discuss completeness in relation to leaking of information.

1.2.2 Cryptographically Sound Implementation for Communicating Pro-
cesses

In Chapter3, we develop a first sound and complete implementation of a distributed process
calculus (We refer the reader tAF06¢| for the discussion related to soundness). Our calculus

is a variant of the pi calculus; it provides name mobility, reliable messaging and authentication
primitives, but neither explicit cryptography nor probabilistic behaviours. Taking advantage of
concurrency theory, it supports simple reasoning, based on labelled transitions and observational
equivalence. We precisely define its concrete implementation in a computational setting. We es-
tablish general soundness and completeness results in the presence of active adversaries, for both
trace properties and observational equivalences, essentially showing that high level reasoning
accounts for all low-level adversaries. We illustrate our approach by coding security protocols
and establishing their computational correctness by simple formal reasoning.

We implement high-level functionalities using cryptography, not high-level views of cryp-
tographic primitives. Following recent related works, we could instead have proceeded in two
steps, by first compiling high-level communications to an intermediate calculus with ideal, ex-
plicit cryptography (in the spirit of AFG0Z, AFGO0(), then establishing the computational
soundness of this calculus with regards to computational cryptography. However, this second
step is considerably more delicate than our present goal, inasmuch as one must provide a sound
implementation for an arbitrary usage of ideal cryptography. In contrast, for instance, our lan-
guage keeps all keys implicit, so no high-level program may ever leak a key or create an encryp-
tion cycle. (We considered targeting existing idealised cryptographic frameworks with soundness
theorems, but their reuse turned out to be more complex than a direct implementation.)

Our concrete implementation relies on standard cryptographic primitives, computational se-
curity definitions, and networking assumptions. It also combines typical distributed implemen-
tation mechanisms (abstract machines, marshaling and unmarshaling, multiplexing, and basic
communications protocol.) This puts interesting design constraints on our high-level semantics,
as we need to faithfully reflect their properties and, at the same time, be as abstract as possi-
ble. In particular, our high-level environments should be given precisely the same capabilities as
low-level probabilistic polynomial-time (PPT) adversaries. For example, our language supports
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abstract reliable messaging: message senders and receivers are authenticated, message content
is protected, and messages are delivered at most once. On the other hand, under the conserva-
tive assumption that the adversary controls the network, we cannot guarantee message delivery,
nor implement private channels (such that some communications may be undetected). Hence,
the simple rulece(M).P | ¢(x).QQ — P|Q{M/x}, which models silent communication “in the

ether” for the pi calculus, is too abstract for our purposes. (For instan¢eaiid () are im-
plemented on different machines connected by a public network, and eves # restricted
channel, the adversary can simply block all communications.) Instead, we design high-level
rules for communications between explicit principals, mediated by an adversary, with abstract
labels that enable the environment to perform traffic analysis but not forge messages or observe
their payload. Similarly, process calculi feature non-deterministic infinite computations, and we
need to curb these features to meet our low-level complexity requirements.

1.2.3 A Process Algebra for Reasoning About Quantum Security

In Chapterd we present a process algebra for specifying and reasoning about quantum security
protocols. Since the computational power of the protocol agents must be restricted to quantum
polynomial-time, we introduce the logarithmic cost quantum random access machine (QRAM)
similar to [CR73 Kni96], and incorporate it in the syntax of the algebra. Probabilistic transi-
tion systems give the semantic for the process algebra. Term reduction is stochastic because
guantum computation is probabilistic and, moreover, we consider a uniform scheduler to resolve
non-deterministic choices. With the purpose of defining security properties, we introduce obser-
vational equivalence and quantum computational indistinguishability, and show that the latter is
a congruence relation. A simple corollary of this result asserts that any security property defined
via emulation is compositional. Finally, we illustrate our approach by establishing the concept
of quantum zero-knowledge protocol.

The computational model we adopt to define quantum polynomial terms is based on the log-
arithmic cost random access machi@R[73. A hybrid model, using both classic and quantum
memory, similar toKni96] but with complexity assumptions, is considered and it is shown to be
(polynomial-time) equivalent to a uniform family of quantum circuits (which are, by themselves,
equivalent to quantum Turing machines). Such machines model the computation of each agent,
receive qubits as input, and return qubits as output.

Thanks to the non-cloning theorem, quantum information cannot be copied without prior
knowledge of its state. This observation imposes some design options in the process algebra,
since it is necessary to know which agent possesses a qubit in order to know who can retrieve
each piece of information. In order to deal with this fact, a set of agents is fixed and the qubits
are partitioned among them.

Although several other approaches to quantum process algebras are already present in the
literature (seeGNOY], for instance), ours is quite original, due to the universe of application—
security protocols. In our approach, process terms are divided into local and global. An agent is
modelled by a local process while a protocol is modelled by a global process so, a global process
corresponds to local processes running in parallel. A semantics based on probabilistic transition
systems (which can be easily translated to Markov chains) is provided, and the probabilistic



10 Chapter 1. Introduction

transitions are defined using rules and assuming a uniform scheduler to resolve non-deterministic
choices.

Agent observation is defined as a probability distribution over binary words obtained by mea-
suring on the computational basis (some of) the agent’s qubits. This measurement is done at the
end of a protocol run. This concept is the key ingredient to establish observational equivalence
that, in the context of security protocols, is based on computational indistinguishatsldagl].
Intuitively, two process terms are observational equivalent for an agent if, after making all possi-
ble reductions to each process, it is impossible to distinguish (in quantum polynomial-time) the
gubits of the agent on both processes. Since we internalise quantum polynomial-time machines
in the process algebra language, observational equivalence is easily defined and it is shown to be
a congruence relation.

One of the most successful ways for defining secure concurrent cryptographic tasks is via
process emulatiordG99, [Can0(). This definitional job boils down to the following: a process
realises a cryptographic task if and only if it emulates an ideal process that is known to realise
such task. Based on the notion of observational equivalence, we establish the notion of emulation
for the quantum process calculus and show that it is compositional. Finally, we provide the notion
of quantum zero-knowledge via process emulation.

1.3 Outline of this Dissertation

This dissertation is organised in 4 more chapters and an appendix. It follows a brief outline of
each of them.

1.3.1 Soundness of Formal Cryptography

In Chapter2 we extend the Abadi-Rogaway Logics of Formal Encryption in order to address the
problems of key-cycles and leakage of partial information. In Se@iénwe start by recalling

the original result of Abadi and Rogawe&R02], and the original logic, that is, the definition

of the language and definition of the formal equivalence relation. We proceed then with the
precise definition of the computational model, in particular, we present the security notion used
by Abadi and Rogaway in their result, type-0 security, and afterwards we define the interpretation
of a message.

After this brief introduction we start addressing the problem of (symmetric) key-cycles, Sec-
tion2.2. We start by showing that type-0 is not strong enough to achieve soundness. We present
then the notion of security introduced by Black, Rogaway and ShrimB&5D7 that will
solve the problems of key cycles (KDM-Security). Before showing that, we have to extend the
language of AR02] and define a new notion of equivalence that is finer than the one in the orig-
inal result. We prove then that KDM-Security provides soundness for this new language. We
conclude by showing that type-0 security does not imply, nor is implied by KDM security.

We proceed then to the analysis of encryption schemes that reveal partial information, Sec-
tion2.2. We consider 3 different types of encryption schemes (type-1, encryption schemes that
do not conceal the length of the plaintexts, type-2, encryption schemes that do not conceal the
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fact that two ciphertexts were encrypted with the same key, and type-3, encryption schemes that
do not conceal the length of the plaintexts neither the fact that two ciphertexts were encrypted
with the same key) and for each of them present the changes that we have to perform in the
formal model in order to obtain both soundness and completeness for these examples (without
key cycles, in spite of the KDM security notion could be adapted for these cases). In &dtion

we consider an implementation of One-Time Pad and show both soundness and completeness
results for such implementation.

In Section2.5, we state our general soundness and completeness theorems for logics of for-
mal encryption. We show that for any logic such that there exists a notion of equivalent non-
decryptable terms (callgpkropernesy soundness holds for any encryption scheme that cannot
distinguish the concrete implementations of the terms of each class. We also show that com-
pleteness holds, as long as the scheme may distinguish elements of any two different classes. We
conclude this section by showing that the examples in Se@t®are simple corollaries of these
general theorems.

We conclude this Chapter by referring some related work, Se2t&rand presenting some
conclusions and pointers to future wdtki.

Chaptei2 extendsBan04 ABSOS5,  ABHSO0S and is the result of a collaboration with Gergei
Bana, Jonathan Herzog, and Andre Scedrov. Part of this work was done while the author was a
visiting student at the University of Pennsylvania.

1.3.2 Cryptographically Sound Implementation of Communicating Pro-
cesses

In Chapter3 we present a language, similar to the pi-calculus, with secure communications,
mobile names and high-level certificates (but no high-level cryptography), that has a crypto-
graphically sound implementation, that is, security properties can be studied conveniently using
trace properties and observational equivalence, and those properties may be carried to a concrete
implementation.

We start by describing the low-level target model, Sec8diyas the constraints imposed by
this will drive the design of the high-level language. We then present our high-level language and
semantics, Sectiad2. Sectior3.2defines and illustrates our notion of high-level equivalence, in
particular, we show how to encode strong secrecy and authentication properties in our language,
and how is equivalence related with certificates.

Sectiori3.4develops applications. We show how to model anonymous forwarders and exhibit
an example of an electronic payment protocol. These examples explore the fact of our language
have in-built authentication and signing primitives. In this section, we also show that given any
systemsS, possibly with certificates and names shared among principals, we can always find an
initial systemS® where principals share no information, such that there is a transition$faim
S. This allow us to consider programs where information is already shared without the need to
refer always to initial states.

In Section3.5we describe our concrete implementation. This implementation relies on stan-
dard cryptographic primitives, computational security definitions, and networking assumptions.
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It also combines typical distributed implementation mechanisms (abstract machines, marshaling
and unmarshaling, multiplexing, and basic communications protocol.) In S&tiome state
our completeness theorems.

We conclude this Chapter by discussing related work, Se@ignand presenting our con-
clusions and possible extensions to our frameviagk

Chapter3 extends /AF06kL, AF06¢ and is the result of a collaboration withé@ric Four-
net. Part of this work was done while the author was a research intern at Microsoft Research
Cambridge.

1.3.3 An Extension to Quantum Security

In Chapterd we present an algebra for specifying and reasoning about quantum security proto-
cols. In order to restrict the power of the agents to quantum polynomial-time, we include in the
syntax of our algebra the logarithmic cost quantum random access machine (QRAM).

We start by describing our process algebra, Seddidn In particular, we introduce our
notion of Quantum Polynomial Machines, its execution model. Then, we introduce it in the
language of out process algebra, and define the semantics for such algebra, as well as the notion
of equivalence of processes.

In Sectiord.Z2 we present our emulation theorem . This theorem is immediately derived from
the one inMMSO03]. Since quantum computational indistinguishability is a congruence relation,
we have that all the properties defined via emulation are compositional. We then illustrate its
usage in SecticA.3by defining the notion of Quantum Zero-Knowledge protocols via emulation.

We conclude this Chapter by discussing related work, Se@&ignand conclusions of our
work(3.8

Chapteid extends/AM| and is the result of a collaboration with Paulo Mateus.

1.3.4 Conclusions

Is Chapte5 we revise the contributions of this dissertation. We briefly discuss the contributions
of each chapter and point out future research directions for each of them.

1.3.5 Appendixes

In this work we include three Appendixes. In the first, Apperdixve present the main cryp-
tographic definitions used throughout this dissertation. We also prove some properties that, in
spite of being used in particular lemmas, are interesting enough to be proven separately.

In AppendixB we consider the problem of key-cycles in the case of asymmetric encryption.
This is similar to the case for symmetric encryption and curiously was obtained prior to the
former ABHSOE. The results for symmetric encryption presented in ChaP e a recast of
these.

In AppendixC we present the proofs of our completeness results of Chapter
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1.4 Claim of Contributions

The contributions of this dissertation are divided in three different topics. We would like to stress
those that we think are the main contributions in each topic. As for the relation between formal
and computational cryptography our main contributions are:

solution to the problem of key-cycles that was for a long conjectured to be a gap between
the two models; we not only solved the problem but also showed that new cryptographic
primitives were needed in order to bridge this apparent gap between the models; as a
consequence of this result, since most of the extensions of the Abadi-Rogaway original
result use it as a “black-box”, we also remove the referred restriction from this extensions;

showed that cycles of length 1 are sufficient to differ KDM from CCA2. The question
about longer cycles remained an open question until receBBgf

found new relations among different notions of security of encryption schemes, in partic-
ular, how does KDM relates with the standard security notions;

extension of the applicability of the Abadi-Rogaway result to weaker encryption schemes;
we showed that, for symmetric encryption, and in the presence of passive adversaries,
subtleties of the encryption schemes may be faithfully captured by the formal model;

we provide a unified framework for both computational and information-theoretic encryp-
tion schemes.

As for the cryptographically sound implementations of communicating processes our main con-
tributions are:

a simple calculus for secure distributed communication with two forms of authentication,
expressive enough to program a large class of protocols;

simple reasoning for this language based on labelled transition systems and observational
equivalence;

concrete implementation for such calculus as a collection of PPT Turing machines that rely
on standard cryptographic algorithms, and traditional distributed implementations mecha-
nisms;

the first cryptographic soundness and completeness results for a distributed process calcu-
lus.

As for the study of quantum security, our main contributions are:

process algebra for specifying and reasoning about quantum security protocols;

introduction a hybrid model, that uses both classic and quantum memory, with complexity
assumptions, that is (polynomial-time) equivalent to a uniform family of quantum circuits;
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¢ defined the notion of computational indistinguishability for the process algebra and showed
that it was a congruence relation. As a corollary security properties defined via emulation
are compositional.



Chapter 2

Soundness of Formal Encryption

Relating Symbolic and Computational cryptography has attracted the interest of the research
community in the last few decades. Several different directions have been taken to bridge the
gap between the two models: some extend the existing results by including more primitives;
some by adapting existing results from the passive adversary scenario to the active adversary
scenario; some others by including new primitives from computational cryptography.

This chapter is one more effort to bridge the gap between these two communities. Mainly, we
try to bridge two gaps that exist since the early results of Abadi and Rogaway. The firstis the non-
existence of soundness results in the presence of key-cycles. Key-cycles do not present a problem
from the symbolic point of view. One may even argue that protocols that create messages with
encryption cycles may be avoided and are just result of bad engineering. But, even if we restrict
our protocols to the cases where no cycles are created, no one can ensure us that an adversary is
not able to create cyclic encryptions and that these would not cause problems. Studying this is
part of the work in this chapter. We show that it is possible to close this gap but for that we need
to use new definitions of security.

The second gap that we try to close is to extend the original Abadi and Rogaway result when
the encryption scheme used provides less security guarantees. The encryption scheme used in
their original result is very strong and arguably impossible to realise in many contexts. We
want then to relax such conditions by allowing the use of weaker encryption schemes but still
achieving similar soundness results. We want for instance, to allow encryption schemes that
reveal the length of the encrypted plaintext. We study this particular example and then create a
uniform framework with which we are able to characterise a large family of encryption schemes.

This chapter is organised as follows: in SecZbfy we start by recalling the original result of
Abadi and RogawayAROQZ]. In Section2.2 we address the problem of (symmetric) key-cycles.

In particular we show that type-0 is not strong enough to achieve soundness, and present the
notion of security introduced by Black, Rogaway and ShrimpBR3$07 that will solve the
problems of key cycles (KDM-Security). In Secti@ we proceed with the analysis of en-
cryption schemes that reveal partial information. In Sec@dhwe consider an implementation

of One-Time Pad and show both soundness and completeness results for such implementation.
Section2.5is devoted to our general soundness and completeness theorems for logics of formal
encryption. As a corollary of these results, we have the examples of S2cfiowe conclude

15
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this Chapter by referring some related work, Secfidf) and presenting some conclusions and
pointers to future wor2.7.

As an extension of Sectic®.2, we present in Appendi similar results for the case of
key-cycles in the case of asymmetric encryption.

2.1 The Abadi-Rogaway Soundness Theorem

In this section, we provide the context and background for this chapter. We briefly summarise the
main definitions and results of Abadi and Rogaway'’s original wafR00, AROZ]. In particular,

we start presenting the formal model, then describe the computational model, and then introduce
the notion of soundness. Furthermore, we also introduce the notion of completeness, which can
be viewed as the counter-point to soundness.

2.1.1 The Formal Model

In this model, messages (expressionsare defined at a very high level of abstraction. The
simplest expressions are symbols for atomic keys and bit-strings. More complex expressions
are created from simpler ones via encryption and concatenation, which are defined as abstract,
‘black-box’ constructors.

Definition 2.1 (Symmetric Expressions).Let Keys = { K, K5, K3, ...} be an infinite discrete
set of symbols, called the set of symmetric keys. Bltcks be a finite subset of0, 1}*. We
define theset of expression&xp, by the grammar:

Exp ::= Keys | Blocks | (Exp,Exp) | {EXp}keys

Let Enc ::= {Exp}keys. We will denote byKeyg M) the set of all keys occurring in/. Expres-
sions of the form{ M } i are calledencryption terms

Expressions may represent either a single message sent during an execution of the protocol, or
the entire knowledge available to the adversary. In this second case, the expression contains not
only the messages sent so far, but also any additional knowledge in the adversary’s possession.

We wish to define when two formal expressions are indistinguishable to the adversary. In-
tuitively, this occurs when the only differences between the two messages lie within encryption
terms that the adversary cannot decrypt. In order to rigorously define this notion, we first need
to formalise when an encryption term is ‘undecryptable’ by the adversary, which in turn requires
us to define the set of keys that the adversary can learn from an expression.

An expression might contain keys in the clear. The adversary will learn these keys, and can
then use them to decrypt encryption terms of the expression—which might reveal yet more keys.
By repeating this process, the adversary can learn the set@ferable decryption keys

Definition 2.2 (Subexpressions, Visible Subexpressions, Recoverable Keys, Undecryptable
Terms, B-Keys). We define theset of subexpression$ an expressio/, sub (M), as the small-
est subset of expressions containivigsuch that:
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o (My, M) € sub(M) = M, € sub(M) andM, € sub (M), and
o {M'}k € sub(M) = M' € sub(M).

We say thatV is a subexpression dff, and denote it bW C M, if N € sub (M).
The set ofvisible subexpressionsf a symmetric expression/, vis (M), is the smallest
subset of expressions containiff such that:

o (My, M) € vis(M) = M, € vis (M) andM, € vis (M), and
o {M'}kandK € vis(M) = M’ € vis (M).

Therecoverable keys af (symmetric) expressiall, R-Key$)/ ), are those that an adversary
can recover by looking at an expression. ThaRigkey$M ) = vis (M) N KeygM).

We say that an encryption terfd/’} - € vis (M) isundecryptablén M if K ¢ R-KeysM ).
Among the non-recoverable keys of an expressionthere is an important subset denoted by
B-Keyg M ). The seB-Keyg M) contains those keys which encrypt the outermost undecryptable
terms. Formally, for an expressidd, we defineB-Keyg M) as

B-KeysM) = {K € KeySM) | {M}k € vis(M) but K ¢ R-KeysM)} .
Example 2.1. Let M be the following expression

({0} o, {{E7 a T i), (K2, {({001} i, {56} 1e5) s ), { B} ))-

In this caseKeys M) = {K,, K, K3, K4, K5, K¢, K7}. The set of recoverable keys 01 is
R-KeysM) = { K, K5, K¢}, because an adversary sees the non-encryptednd with that he
can decrypf K} k,, hence recoverings; then, decrypting twice witli(s, K can be revealed.
We also have thaB-Keys M) = { K3, K4}.

The formal model allows expressions to contie@ty cycles

Definition 2.3 (Key-Cycles). An expression)/ contains akey-cycleif it contains encryption
terms{ M, } k,, {Ma}x,, ....{ M, }k, (Where{ )M}k, denotes the encryption of the messade
with the keyK;) andK;,; C M; andK; C M,,. In this case we say that we have a key-cycle of
lengthn.

According to our definition, expressions such{d3/}x } x are not considered cyclic. As
we will see, the original result of Abadi and Rogaway does not apply to expressions with key
cycles—a major weakness that we will correct in this work.

2.1.2 The AR Equivalence of Formal Expressions

A visible encryption term will appear ‘opaque’ to the adversary if and only if it is protected by at
least one non-recoverable decryption key. Thus, we wish to say that two expressions are equiva-
lent if they differ only in the contents of their ‘opaque’ encryption terms. To express this, Abadi
and Rogaway define thgatternof an expression through which equivalence of expressions will

be obtained:
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Definition 2.4 (Pattern (Classical)). We define theset of patternsPat, by the grammar:
Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}keys | O

The pattern of an expressidil, denoted bypattern M), is derived fromM by replacing each
encryption term{ M’} x € vis (M) (WhereK ¢ R-Key$M)) by O
For two patterng” and@, P = Q) is defined the following way:

e If P € BlocksU Keys, thenP = @ iff P and(@ are identical.

e If Pis of the formO, thenP = Q iff () is of the formDO

e If Pis of the form(P,, ), thenP = Q iff @ is of the form(Q, Q)2) whereP, = ; and
Py = Qs.

e If Pis of the form{P'}k, thenP = Q iff Q is of the form{Q’} x whereP’ = Q'.

(Note that we call these ‘classical’ patterns. This is to distinguish them from the more com-
plex patterns that we will consider later.)

One last complication remains before we can define formal equivalence. The first thing
coming to mind is to say that two expressions are equivalent if their patterns are equal. However,
consider two very simple formal expressialis and K5>. Then these formal expressions would
not be equivalent. On the other hand, these two expressions have the same meaning: a randomly
drawn key. Despite being given different names, they both represent samples from the same
distribution. It does not matter if we replace one of them with the other. More generally, we wish
to formalise the notion of equivalence in such a way that renaming the keys yields in equivalent
expression. Therefore, two formal expressions should be equivalent if their patterns differ only
in the names of their keys.

Definition 2.5 (Key-Renaming Function). A bijection o : Keys — Keys is called akey-
renaming function For any expression (or pattert), Mo denotes the expression (or pattern)
obtained from)M by replacing all occurrences of keysin M by o(K).

We are finally able to formalise the symbolic notion of equivalence:

Definition 2.6 (Equivalence of Expressions)We say that two expressioig and N areequiv-
alent denoted byM = N, if there exists a key-renaming functiensuch thatpattern M) =
pattern No).

2.1.3 The Computational Model

The fundamental objects of the computational world are stristgéngs = {0, 1}*, and families

of probability distributions over strings. These families are indexed Bgaurity parameter

n € parameters = N (which can be roughly understood as key-lengths). Two distribution
families { D, },en and {D; },,cn areindistinguishableif no efficient algorithm can determine
from which distribution a value was sampled:

Definition 2.7 (Negligible Function). A function f : N — R is said to benegligible written
f(n) < neg(n), if for any ¢ > 0 there is am, € N such thatf(n) < n~° whenevemn > n..
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Definition 2.8 (Indistinguishability). Two families{ D, },en and{D, },cn, areindistinguish-
able written D, ~ D, if for all PPT adversariea,

|Pr[d «— Dy,; A(1",d) = 1] = Pr [d «— D;; A(1",d) = 1]| < neg (n)

In this model, pairing is an injectivpairing function|[-, ] : strings x strings — strings

such that the length of the result only depends on the length of the paired strings. An encryption
scheme is a triple of algorithm#C, £, D) with key generatioriC, encryption€ and decryption

D. Let plaintexts, ciphertexts, andkeys be nonempty subsets sfrings. The setkoins is

some probability field that stands for coin-tossing, randomness.

Definition 2.9 (Symmetric Encryption Scheme) A computational symmetric encryption scheme
is atriplell = (K, £, D) where

e [ : parameters x coins — keys IS a key-generation algorithm;

e £ : keys x strings x coins — ciphertexts is an encryption function;

e D : keys x strings — plaintexts is such that for alk € keys andw € coins,

D(k,E(k,m,w)) =m forallm € plaintexts,
D(k,E(k,m',w)) =L forallm’' ¢ plaintexts.

All of K, £ andD are computable in polynomial-time in the length of the security parameter.

This definition, note, does not include any notion of security, and this must be defined sep-
arately. In fact, there are several different such definitions. Abadi and Rogaway, in their work,
consider a spectrum of notions of their own devising, from ‘type-0’ to ‘type-7.” Their main result
uses the strongest of these notions, type-0:

Definition 2.10 (Type-0 Security). We say that a computational encryption scheme is type-
0 secure if no probabilistic polynomial-time adversdrycan distinguish the pair of oracles
(E(k,-),E(K',-)) from the pair of oraclesE(k,0),E(k,0)) ask andk’ are randomly generated.
That is, for any probabilistic polynomial-time algorithi,

Pr |k, k' «— KC(17) : ASGDEE () = 1} —Pr [k «— K(17) : A*ROERO (17) = 1] < neg (1)

Intuitively the above formula says the following: The adversary is given one of two pairs of
oracles, eithet&(k,-),E(K',-)) or (E(k,0),E(k,0)) (where the keys were randomly generated
prior to handing the pair to the adversary), but it does not know which. Then, the adversary
can perform any (probabilistic polynomial-time) computation, including several queries to the
oracles. It can even query the oracles with messages that depend on previously given answers
of the oracles. (The keys used by the oracles for encryption do not change while the adversary
gueries the oracles.) After this game, the adversary has to decide with which pair of oracles
it was interacting. The adversary wins the game if he can decide for the correct one with a
probability bigger thar%, or (equivalently) if it can distinguish between the two. If this difference
is negligible, as a function of, we say the encryption scheme is type-0 secure.

As Abadi and Rogaway show, type-0 security is strong enough to preadednesso the
formal model. But to see this, we must first explain how the two models can be related.
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2.1.4 The Interpretation Function, Soundness and Completeness

In order to prove any relationship between the formal and computational worlds, we need to
define theinterpretationof expressions and patterns. Once an encryption scheme is picked, we
can define the interpretation functidn which assigns to each expression or patteria family

of random variable$®, (M)}, . such that eackp, (/) takes values istrings. As in Abadi

and RogawayARO02], this interpretation is defined in an algorithmic way. Intuitively,

Blocks are interpreted asrings,

Each key is interpreted by running the key generation algorithm,

Pairs are translated into computational pairs,

Formal encryptions terms are interpreted by running the encryption algorithm on the inter-
pretation of the plaintext and the interpretation of the key

For an expression/, we will denote by[M]s, the distribution of®, (A1) and by [M]s the
ensemble of [M]s, } e
Then soundness and completeness are defined in the following way:

Definition 2.11 (Soundness (Classical)\We say that an interpretationssund in the classical
senseor that an encryption schempeovides classical soundneskthe interpretationp (result-
ing from the encryption scheme) is such that for any given pairs of expresticarsd NV

The primary result of Abadi and Rogaway given AR02] is that type-0 security provides
classical soundness if the expressiahsand N have no key-cycles.

Soundness has a counterpart, completeness. One can consider soundness to be the property
that formal indistinguishability always becomes computational indistinguishability. One can
think of completeness as the converse: computational indistinguishability is always the result
of formal indistinguishability:

Definition 2.12 (Completeness (Classical)We say that an interpretation complete(in the
classical sense), or that an encryption scherogides (classical) completenessthe interpre-
tation ® (resulting from the encryption scheme) is such that

for any expressions/ and V.
We remark that for the proofs of the soundness and completeness results, it was convenient

for Abadi and Rogaway to introduce the interpretation of any patiér(although this is not
absolutely necessary). Therefore, boxes are interpreted as well, such that

e O is interpreted by running the encryption algorithm on the fixed plaifieastd a ran-
domly generated key.

The precise definition ob, (1) for any pattern\/ is given by the algorithms in Figuiz1. We

note that these algorithms are fully defined for patterns, and because the grammar for patterns
contains the grammar for expressions as a sub-grammar, they are fully defined for expressions as
well.
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algorithm INITIALIZE(1", M)
for K € KeysM) do7(K) «— K(17)
let ko — IC(17)

algorithm CONVERT (M)

if M = K whereK € Keys then
return 7(K)

if M = B whereB € Blocks then
return B

if M = (M, M) then
z +— CONVERT(M,)
y «— CONVERT (M)
return [z, y]

if M ={M,}g then
x «— CONVERT (M)
y — E(7(K), z)
return y

if M = 0O, then
Yy — 5(]{:0, 0)
return y

Figure 2.1:Algorithmic components of the interpretation function

2.2 Soundness in the Presence of Key-Cycles

As we will see later, key-cycles do not cause a problem with completeness, however, as we
discussed in the introduction, one of the weaknesses of the original Abadi-Rogaway'’s result
is that it is not possible to prove soundness for expressions that included key-cycles. We will
address this problem in this section starting by showing that, soundness in the presence of key-
cycles is not possible to prove with the security notion adopted by Abadi and Rogaway. We
suggest a new notion of security, KDM-security as a solution for the problem. In order to prove
soundness, we will also need to extend our formal model, and after that we conclude this section
showing that with this new definition of security it is possible to obtain soundness even in the
presence of key-cycles.

2.2.1 Type-0 Security is Not Enough

In this section we show that type-0 security is not strong enough to ensure soundness in the case
of key-cycles. That is, we demonstrate that it is possible to construct encryption schemes that are
type-0, but fail to provide soundness in the presence of key-cycles.

Theorem 2.1. Type-0 security does not imply soundness. That is, if there exists an encryption
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scheme that is type-0 secure, then there exists another encryption scheme which is also type-0
secure but does not provide soundness.

Proof. This is shown via a simple counter-example. Assuming that there exists a type-0 se-
cure encryption scheme, we will use it to construct another scheme which is also type-0 secure.
However, we will show that this new scheme allows the adversary to distinguish one particular
expressionV/ from another particular expression, even thoughV/ = N.

Let M be{ K} and letN be the expressiofi; } x,. Since these two expressions are equiv-
alent, an encryption scheme that enforces soundness requires that the family of distributions:

{k — K(1");c «— E(k, k) : c}yen
be indistinguishable from the family of distributions:
{k1 «— K(1"); kg «— K(17); ¢ «— E(k1, k2) : c}pen.

However, this is not implied by DefiniticR.1Q LetIl = (K, £, D) be a type-0 secure encryption
scheme. We assume thHatis such that keys and ciphertexts have different formats. Then, using
I1, we construct a second type-0 secure encryption schiéme(K’, £’ D’) as follows:

o LetK' =K,

e Let &’ be the following algorithm:

k ifm==%
E'(k,m) =< E(k, k) if E(k,m) =k
E(k,m) otherwise
e LetD’ be the following algorithm:
k ifc=k
D'(k,c) =< D(k,k) if c =&k, k)
D(k,c) otherwise

The schemél’ acts exactly likd1 unless the encryption algorithéi is called on a paitk, k). It
is easy to see that this scheme is also type-0 secure.

To see this, suppose thHt is not type-0 secure. That is, there exists some adversary
which can distinguish the pair of oraclé§’(k,-),E'(k',-)) from the pair(E'(k,0),E'(k,0)).
There are two possibilities. Suppose that the adversary queried the oraclerdi. Then it
would certainly be able to distinguish the oracle-pairs, but this also means that the adversary can
produce the secret symmetric key to the schémerlhus, the encryption scheniecannot be
secure in any sense, much less type-0. Suppose, on the other hand, the adversary did not query
the oracles ort or &’ but managed to distinguish between the oracle pairs anyway. Then it was
able to do so even though the encryption schéthacted exactly likdI, and soll cannot be
type-0 secure.
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Thus, the new schemid’ must also be type-0 secure. However, it does not guarantee in-
distinguishability for the two distributions above. The first distribution will output always the
encryption key while the second outputs a ciphertext, and these two distributions are easily dis-
tinguished by form alone. m

Remark 1. We note that in the proof, the expressibhcontains a key-cycle of length 1. What

if all key-cycles are of length 2 or more? This question remains open. That is, there is no known
type-0 secure encryption scheme which fails to provide soundness for key-cycles that are of
length two or more.

Because type-0 encryption implies types 1 through 7, The@dnmplies that soundness
with key-cycles cannot be provided by the security definitions devised by Abadi and Rogaway.
In the next section, we show that this soundness property can, however, be matwabmpu-
tational definitions.

2.2.2 KDM-Security

In the last section, we showed that the notions of security fourldR0OD, ARO2] are not strong
enough to enforce soundness in the presence of key-cycles. Howeyeatependent message
(KDM) security, which was introduced by Blaakt al. [BRS0Z (and in a weaker form by
Camenisch and Lysyanskay@L01]), is strong enough to enforce soundness even in this case.
(We note that Camenisch and Lysyanskaya also provided a natural application of KDM security,
a credential system with interesting revocation properties, and so KDM security is of independent
interest as well.)

KDM security both strengthens and weakens type-0 security. Recall that type-0 security
allows the adversary to submit messages to an oracle which does one of two things:

e It could encrypt the message twice, under two different keys, or
e It could encrypt the bit O twice, under the same key.

An encryption scheme is type-0 secure if no adversary can tell which of these is being done. For
KDM security, however, the game is slightly different. To over-simplify:

e The oracle in the KDM-security encrypts once, under only one key.
e Further, it encrypts either the message, string of O’s of equivalent length.

e However, it is willing to encrypt not just messages from the adversary, but also (more
generally)functions of the secret key

The first two of these differences make KDM security weaker than type-0 security. Specifically

type-0 security conceals both the length of the plaintext and whether two ciphertext were created
using the same encryption key or different ones. KDM security does not necessarily conceal
either of these things. The last difference, however, is a significant strengthening. As its name
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suggests, KDM security remains strong even when the messages depend on the secret key—
which, as Theorer@.1shows, is not necessarily true for type-0 security.

To provide the full picture, KDM security is defined in termsvafctorsof keys and functions
over these vectors. Itis also defined in terms of oraRkesl; andFakey, , which work as follows:

e Suppose that for a fixed security parameter N, a vector of keys is giverk = {k; «—
K(1M)}sen- (In each run of the key-generation algorithm independent coins are used.) The
adversary can now query the oracles providing them with a(pait), where; € N and
g : keys™ — {0, 1}* is a constant length, deterministic function:

— The oracleRealg when receiving this input returns—— & (k;, g(k));
— The oracleFakeg when receiving this same input returns— & (k;, 01981,

The challenge facing the adversary is to decide whether it has interacted with Resdjgor
oracleFakey . Formally:

Definition 2.13 (Symmetric-KDM Security). LetIT = (K, &, D) be a symmetric encryption
scheme. Let the two oracléeal; andFakej, be as defined above. We say that the encryption
scheme igsymmetric) KDM-securi for all PPT adversarieA:

Pr[k «— K(17) : AR®R(17) = 1] — Pr [k «— K(17) : A™*&(1") = 1] < neg ()

Remark 2. We note that although all known implementations of KDM-security are in the random-
oracle model, this definition is well-founded even in the standard model. We also note that this
definition is phrased in terms of indistinguishability. One could also imagine analogous defini-
tions phrased in terms of non-malleability, but an exploration of those are beyond the scope of
this dissertation.

We note that KDM-security implies type-3 security:

Definition 2.14 (Type-3 Security).LetIT = (K, £, D) be a symmetric encryption scheme. We
say that the encryption-schemaype-3 securd no PPT adversanj can distinguish the oracles
E(k,-) and&(k, 0l ask is randomly generated, that is, for all PPT adversakies

Pr [k« K(17) : AA®I(17) = 1] — Pr [k: — K17y : AEEOD (1) = 1] < neg ()

In fact, the definition of type-3 encryption is exactly the same as that for KDM-security,
except that the adversary must submit concrete messages to the encryption oracle instead of
functions. But since the functions submitted in KDM security can be constant function that
always produce a single output, the type-3 security ‘game’ is a special case of that for KDM
security.

On the other hand, KDM security does not attempt to conceal the length of the plaintext
(type-1 security) or that two ciphertexts were created with the same key (type-2 security). It will
be impossible, therefore, for KDM security to provide soundness in the classical sense (Defini-
tion'2.11). Nonetheless, a weaker form of soundness can be achieved if the formal model is also
weakened slightly.
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2.2.3 A New Formal Model

In this section, we develop a weaker version of the formal model—one that allows formal en-
cryption to leak partial information about the plaintext and key. One can think of this as a preview
or special case of a later section, where we discuss such weakening in general (S&gtion
this section, however, we focus on the partial leakage allowed (in the computational model) by
KDM security: the length of the plaintext, and whether two different ciphertexts were created
using the same key.

To model the leakage of plaintext length, we first need to add the very concept of ‘length’ to
the formal model:

Definition 2.15 (Formal Length). A formal length-function is a function symbol with fresh
letter ¢ satisfying at least the following identities:

For all blocksB; and By, ¢(B;) = {(By) iff |B;| = | Ba,

For all expressiod/ and key-renaming functiom, ¢(M) = ¢{(Mo),

If E(Ml) = E(Nl), E(MQ) = E(NQ) thené((Ml, MQ)) = E((Nh NQ)), and
If ¢(M) = ¢(N), thenforallK;, (({M}k,) = (({N}k,).

We would like to emphasise that these are the identities that a formal length funatien
mally has to satisfy. There may be more. In fact, if we only assume these properties, there is no
hope to obtain completeness. We also remark, that it follows that for any key-renaming function
o, and expressio, ¢(M) = {(Mo).

Given this, it is straightforward to add the required leakage to the formal model. If patterns
represents those aspects of an expression that can be learned by the adversary, then patterns must
now reveal the plaintext-length and key-names for undecryptable terms:

Definition 2.16 (Pattern (Type-3)). We define theset of patternsPat, by the grammar:
Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}keys | Okeys(Exp)

The type-3 pattern of an expressitdf, denoted byattern,(1/), is derived from\/ by replacing
each encryption terfiM'} x € vis (M) (WhereK ¢ R-Key$M)) by O g o(ar).

Note that the only difference between a type-3 pattern and a classical pattern is that an unde-
cryptable term{ M } - becomesik () (i-€. labelled with the key and length) in type-3 patterns
instead of merely in classical patterns.

Our notion of formal equality must be updated as well. For two patterasd(Q, P =3 )
is defined the following way:

Definition 2.17 (Formal Equivalence (Type-3)).We first introduce the relatior-; between
patterns:

e If P € BlocksU Keys, thenP =3 @ iff P and@ are identical.
o If Pisof the formOg ., thenP =3 Q iff @ is of the formT g ¢, and{(M') = ¢(N')
in the sense of Definitio@.15
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e If Pis of the form(Py, P»), thenP =; Q iff @ is of the form(Q,, Q) whereP, =3 @
andP2 =3 QQ.
e If Pis of the form{P'}, thenP =3 Q iff Q) is of the form{Q’} x whereP’ =; Q'.

With this, we say that expressionsg and N areequivalent in the type-3 sengeritten M =3 N)
if there exists a key-renaming functiersuch thapattern,(1/) =3 pattern,(No). (Since a key-
renaming function replaces all occurrencedoWith o(K'), we note that under, U ¢y Will
becomejg(K),g(MU).)

Lastly, the above change to formal equivalence requires that the notions of soundness and
completeness be similarly altered:

Definition 2.18 (Soundness (Type-3))We say that an interpretationtigpe-3 soungdor that an
encryption schemprovides soundness in the type-3 seifdbe interpretatiorp (resulting from
the encryption scheme) is such that

M g3 N = [[M]]@ ~ [[N]]@
for any pair of expression&/ andN.

Definition 2.19 (Completeness (Type-3))We say that an interpretation tigpe-3 completeor
that an encryption schenm@ovides completeness in the type-3 seristhe interpretationd
(resulting from the encryption scheme) is such that for any pair of expres&icenrsd V,

[[M]]q; ~ [[N]]q> =M =, N.

2.2.4 Soundness for Key-Cycles

Below, we present our two main soundness results: if an encryption scheme is KDM secure, it
also provides type-3 soundness even in the presence of key-cycles.

Theorem 2.2 (Symmetric KDM Security Implies Soundness)LetIl = (K, &, D) be a com-
putational symmetric encryption scheme such 8k, m, w)| = |E(k,m,w’)| for all k €
keys,m € plaintexts and w,w’ € coins. Then, if the length-functioh satisfies only the
equalities listed in Definitio2.15 andII is KDM-secure, theil provides type-3 soundness.

Proof. We first redefine the interpretation of patterns. The only thing we have to change is
the interpretation of a box. Now, the interpretation of a pattégry», for a given security
parameten is given by®, ({0/®(M)} ). That is, the interpretation function used to encrypt a
single 0 under a random key. Now, it encrypts a string of Os of the same requisite length (length
of ¢, (M)), and it encrypts them under the correct kgy).

The proofin this case is a somewhat reduced hybrid argument. In a standard hybrid argument,
like the one Abadi and Rogaway used to prove their soundness result, several patterns are put
between)M and V; then, using security, it is proven that soundness holds between each two
consecutive patterns, and therefore soundness holddg fand N. In our case, we first directly
prove that[M]e is indistinguishable fronfpattern,(A/)]s. Then, since that holds fa¥ too,
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and sincepattern, (M) differs from pattern,(/V') only in the name of keygjpattern,(M)]e is
indistinguishable fronjpattern,(\V)]+, therefore the result follows. KDM security is used when
we show thafM ], and[pattern,(M)]¢ are indistinguishable.

For an arbitrary (formal) keys, let.(K') denote the index ok’. For an expressiof/, a set
of formal (unrecoverable) keys, and a functionr : Keys\ S — keys, we define a function
furse : coins®™) x keys™ — strings (Wheree(M) is the number of encryptions i)
inductively in the following way:

e For M = B € Blocks, let f5 5. : keys™ — strings be defined agp s, (k) = B;
e For M = K € KeysN S, let fx. s, : keys™ — strings be defined agx s, (k) = kuxoys
e ForM = K € KeysN S, let fx.s., : keys™ — strings be defined agx s, (k) = 7(K);

o For M = (M, My), let fon an).sr coins®) x c_oinse(MQ) x keys™ — strings be
defined asf(ar, an),5,- (W s Wiy k) = [fan, s, (War s K), o, 50 (Wi, K

o ForM = {N}g andK € S, let fiyy,,s,- : coins x coins®™) x keys™ — strings be

defined asf{ny, 5.+ (w,wn, k) = E(ky k), [ns-(wn. k), w);

o For M = {N}x andK ¢ S, let fin} .5+ : coins x coins®™) x keys™ — strings be

defined ag”{N}K’S,T(w,wN, k) = g(T(K), fN,SJ(wN, k), w).

We note that this function is constant length because the keys are constant-length (for the
samen) and the length of an encryption only depends on the length of the message and

We first prove thafM]s ~ [pattern,(M)]s. Suppose thatM]e % [pattern(M)]e. This
means that there is an adversarthat distinguishes the two distributions, that is

Pr(z «— [M]s, : A(1",2) = 1) — Pr(z «— [patterny(M)]e, : A(17,2) = 1)

is a non-negligible function of. We will show that this contradicts the fact that the system is
(symmetric) KDM-secure. To this end, we construct an adversary that can distinguish between
the oracleRReal; andFakei . From now on, letS = Keys\ R-Key$M/). Consider the following
algorithm:

algorithm B” (17, M)
for K € R-Key$M) do7(K) «— K(17)
y «— CONVERT2(M, M)
b— A(1",y)
return b

algorithm CONVERT2 M’, M) with M’ C M
if M' = K whereK € R-Key$M) then
return 7(K)
if M = B whereB < Blocks then
return B
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if M’ = (M, M,) then
xr «— CONVERT2(M;, M)
y «— CONVERT2(M,, M)
return [x, y]
if M= {M,}x with K € R-Key$\M) then
x — CONVERT2(M;, M)
y — E(T(K),x)
return y
if M'={M,}x with K ¢ R-Key$M) then
w «— coins®™")

Y — f(L(K>7 thS,T(wa ))
return Yy

This algorithm applies the distinguish&(1”,-) on the distribution[M/]s when F is Realg,
and the distribution ofpattern,(M )]s whenF is Fakeg . So, if A(1", ) can distinguist{ M ] ¢
and [pattern,(M)]s, thenB* (17, ) can distinguishReal; and Fakeg . But we assumed that
Real; andFakeg cannot be distinguished, $8/] ~ [pattern,(M)]s.

In a similar manner, we can show thg¥]e =~ [pattern,(N)]e. Finally, it is easy to see
that [pattern,(M)]e = [pattern(N)]s, because the two patterns differ only by key-renaming.
Hence[M]s ~ [N]e. O

We conclude our consideration of KDM security by demonstrating what Biaak claimed
informally: the notion of KDM security is ‘orthogonal’ to the previous definitions of security.
In particular, we claim that KDM security neither implies nor is implied by type-0 security. The
former is proved directly, Theoreth4, while the latter is a corollary of previous theorems:

Corollary 2.3. Type-0 security does not imply (symmetric) KDM-security. If there exists an
encryption scheme that is type-0 secure, there exists an encryption scheme which is also type-0
secure but not KDM-secure.

Proof. Suppose that there exists a type-0 secure encryption scheme. By Th2drdwre is a
type-0 secure schenhiesuch thall does not satisfy soundness. If all type-0 encryptions schemes
are KDM-secure, theiil is as well. By Theorer2.2, this means thall satisfies soundness—a
contradiction. O

Theorem 2.4. KDM security does not imply type-0 security. That is, there is an encryption
scheme that is KDM-secure, but not type-0 secure.

Proof. This is easily seen by inspecting the KDM-secure encryption scheme given by @&lack
al. in the random oracle modeBRS0Z. Let RO be the random oracle, which implements a
random function from{0, 1}" to {0,1}*°. Let Pad & M and M & Pad (whereM € {0,1}"
andPad € {0,1}) be the bit-wise exclusive-or dff and the firs{ )| bits of Pad. (Note that
|Pad @ M| = |M| exactly.) Lety be the security parameter. Then:

e K produces a random bit-string < {0, 1}".
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e The encryption algorithn&, on input(K, M), selects a random bit-string«— {0, 1}"
and returns the pair, M ® RO(r||K)).

e D,oninput(K,C = (¢1,c2)), returnses & RO (¢1]|K).

This scheme is not type-0 secure because ciphertexts reveal the length of the plaintext. In par-
ticular, if ¢ is a ciphertext for plaintext:, then|c| = |m| + n. Thus, one can easily distinguish
between an oracle that encrypts the input messagad an oracle that always encrypts the 1-bit
stringO. [

2.3 Partial Leakage of Information

In the previous section, we were forced by the definition of KDM security to consider encryption
schemes that (possibly) revealed partial information about the plaintext (in particular its length)
or the key (such as whether two ciphertexts were made using the same one). For the rest of this
discussion, we leave behind the issue of key-cycles and concentrate our attention upon the issues
of such partial leakage. In particular, we will eventually (Sectf) consider fully general
notions of partial leakage. To motive these results, we first present soundness and completeness
theorems for two specific examples. However, we do not prove them here, because they follow
from the general treatment in Sect@rt, where we will return to these examples. In this section,

we will separate the leakage of plaintext-length (type-1 encryption) from the leakage of key-
sharing (type-2 encryption) and consider each separately. (We will also consider information-
theoretic encryption schemes, but these we delay until SeZtdnIn particular, we will show

in this section that soundness can survive such leakage in the computational model if the formal
model is appropriately weakened to match.

2.3.1 Soundness and Completeness for Type-1 Schemes

We start this discussion by considering the case of ‘type-1’ encryption schemes: encryption
schemes which may reveal plaintext-length, but which conceals whether or not two ciphertexts
were created using the same key. (In the terminology of Abadi and Rogaway, type-1 encryption
iS message-concealing and which-key concealing, but may be length-revealing.) An equivalent
way to express this security definition is that no adversary should be able to tell whether two
ciphertexts were created using the same key or different (independent) keys, even if the adversary
is allowed to choose the plaintexts, so long as those plaintexts have the same length:

Definition 2.20 (Type-1 Security).LetIT = (K, £, D) be a symmetric encryption scheme. We
say that the encryption-schemdygpe-1 securd no PPT adversanj can distinguish the pair of
oracles((k,-),E(K,-)) and(E(k, 01, £(k,0!1)) ask andk’ are independently generated, that
is, for all PPT adversaries:

Pr [l{;, K — K7 : Ag(kv),g(k’w)(ln) _ 1] _

Pr |k «— K(17) : ASEODEROD (17) — 1| < neg (n)
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Type-1 security does not provide soundness for the logic of DefiritinFor example, one
can see immediately th§0} x, = {00} k,, but[{0}x, ] % [{00}k, ]+ if the encryption scheme
reveals the length of the plaintext.

To show soundness or completeness, patterns must reflect those aspects of an expression that
an adversary can and cannot see. The idea is similar to the one in Defili§nbut now
“boxes” are indexed with the only properties leaked by type-1 encryption: the formal length of
the plaintext. (Note, however, that the notions of visible-subexpressions, recoverable keys and
formal length remain unchanged.)

Definition 2.21 (Pattern (Type-1)). We define theset of patternsPat, by the grammar:
Pat ::= Keys | Blocks | (Pat,Pat) | {Pat}keys | De(exp)

The type-1 pattern of an expressibh denoted byattern (A7), is derived from\/ by replacing
each term{ M’} € vis (M) (whereK ¢ R-Key$M)) by Oy .

We say that two expressiord and N aretype-1 equivalentand denote it by\/ =, N,
if there exists a key-renaming functiensuch thatpattern (M) =, pattern (No) where=, is
defined in the following way:

e If P € BlocksU Keys, thenP =; Q iff P and( are identical.

e If Pis of the formOy,), thenP =, Q iff Q is of the formO,y), and/(M') = £(N') in
the sense of Definitiog.15

e If Pis of the form(P;, P»), thenP =; @ iff Q is of the form(Q,, Q) whereP, =, @,
andP, =; Q.

e If Pis of the form{ P}k, thenP =, @ iff Q is of the form{Q’} x whereP’ =, Q'.

Again, the symbol3,,, in a pattern reveals that some plaintext is encrypted and its length
is (M.

Example 2.2.Let N be the expression

({0} kg, {100} g, ), (K7, { ({101} ko, { K8} ks ) Y s ) { K5} icr))-
We have thaR-Key$N) = { K5, K7, Kg}, and so, in this cas@attern (V) is

({0} s> Becaon)s (Kz, {(Beon), { Kt ;) s ) {Ks b icr))-

Defining M as in Exampl@.1, pattern (M) is

(({0}K67 DZ({K7}K1))7 ((KQv {(D€(001)7 {KG}KS)}K5)7 {K5}K2))

Now, if we replaceKs — Kg, Ky — K; and K5 — K5 in M, we have that\/ =; N iff

1This notion is well-defined, since renaming a key inside an expresdiaives not affect(M), as we defined
UK;) = 0(K;)foralli, j.
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With these definitions, the following soundness and completeness theorems can be proved.
Since these theorems are simply special cases of the general soundness and completeness theo-
rems in Sectio2.5, the proofs are deferred until later (ExampB$2and2.22).

Theorem 2.5 (Type-1 Soundness).etll be a type-1 secure encryption scheme such that for all
k € keys, m € plaintexts andw,w’ € coins we have€(k, m,w)| = |E(k,m,w’)|. Then, if
the length-function satisfies only the equalities defined in Defiriib§ then for anyM and N
expressions such that B-Kéyg) and B-KeysN) are not cyclic inM and N respectively,

M =, N implies[M]s ~ [N]s.

Otherwise, for arbitrary length-function (that is, one satisfying possible more equations),
if for all pairs of expressiond/ and N, ¢(M) = ((N) implies that the binary length df\/],
is the same as the binary length[df] s, for each security parametey, then for anyM and N
expressions,
M =, N implies[M]¢ ~ [N]e.

In addition to soundness, we also demonstrate completeness. If soundness shows that formal in-
distinguishability implies computational indistinguishability, completeness shows the converse.
Rephrased, completeness implies that fordigtinguishability(as opposed tmdistinguishability)
implies computational distinguishability. For this to be true, the interpretation function must en-
force a handful of ‘atomic’ distinguishability properties:

Theorem 2.6 (Type-1 Completeness).et II be a type-1 secure encryption scheme such that
|IE(k,m,w)| = |E(k,m,w")| for all k& € keys, m € plaintexts andw,w’ € coins. We have
that,

[M]e ~ [N]e impliesM =, N

for all M and N pairs of expressions if and only if the following conditions hold: for any
K,K', K" € Keys B € Blocks M, M', N € Exp,

(i) no pair of[K]s, [Ble, [(M,N)]s, [{M'}x]e are equivalent with respect ts,
(i) if [(K,{M}k)]e =~ [(K",{M'}k/)]e, thenK’ = K", and
(i) if [{M}k]e =~ [{M'}k]o thent(M) = ¢(M’).

Some aspects of this theorem merit further discussion. First, note that the theorem does
not mention key-cycles. Secondly, note that Condition (i) requires that different types of ob-
jects, blocks, keys, pairs and encryption terms should be distinguishable to achieve complete-
ness; this can be ensured by tagging each object with its type, as sugge#&®2h [Thirdly,
Condition (ii) (which we callweak confusion-freengss equivalent to the property of weak
key-authenticity introduced by Horvitz and GliggiG0J in the case of type-0 schemes. This
property essentially means that decrypting with the wrong key should be detectable in a proba-
bilistic sense. Finally, condition (iii) requires that encryption of messages with different length
should be detectable. Definitidh20 allows that encryptions of messages of different length
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may be detected but does not enforce it. That suffices for soundness, but completeness requires
that it should be detectable when ciphertexts contain messages of different lengths. A purely
computational condition that implies condition (iii) is the notiorstrictly length revealing

Definition 2.22 (Strictly Length Revealing Scheme)LetIT = (K, &, D) be a symmetric en-
cryption scheme. We say that the encryption-schensristly length revealingf it is type-1
secure but there exists a PPT adversarsuch that the following function is a non-negligible
function ofn:

Pr [k «— K(17) : AS®I(17) = 1] — Pr [k — K7y s AEETTD () = 1]

We use07!'l to denoted™, wheren # | - |.

2.3.2 Soundness and Completeness for Type-2 Schemes

Having considered the leakage of plaintext-length in the previous section, we turn to the other to
the kinds of leakage seen in KDM-security: whether or not two ciphertext share a key. However,
we now assume that the plaintext conceals the plaintext-length. (‘Type-2’ in the terminology of
Abadi and Rogaway, as well as message-concealing, length-concealing, and which-key reveal-
ing.) For this type of encryption, no adversary should be able to tell whether a ciphertext contains
a (possibly long) plaintext or the single-bit plaintext O:

Definition 2.23 (Type-2 Security).LetII = (K, €, D) be a symmetric encryption scheme. We
say that the encryption-schemeaype-2 securd no PPT adversanj can distinguish the oracles
E(k,-) and&(k,0) ask is randomly generated, that is, for all PPT adversakies

Pr [k« K(1") : AER (1) = 1] = Pr [k «— K(1") : AERO) (1) = 1] < neg(n)

Again, patterns must be re-defined to reflect all the information about an expression which
may be available to the adversary, but only that information:

Definition 2.24 (Pattern (Type-2)). We define theset of patternsPat, by the grammar:
Pat ::= Keys | Blocks | (Pat,Pat) | {Pat}keys | Okeys

The type-2 pattern of an expressibf, denoted byattern,(M), is derived fromM by replacing
each term{ M’} € vis (M) (WhereK ¢ R-Key$M)) by Op.

We say that two expressiond and N aretype-2 equivalentand denote it by\/ =, N,
if there exists a key-renaming functiensuch thatpattern,(M) =, pattern,(No) where=; is
defined in the following way:

e If P € BlocksU Keys, thenP =, Q iff P and@ are identical.
e If Pis of the formOy, thenP =, Q iff () is also of the formid.

2The key-renaming function affects all the occurrences of a k&, including those occurrences as indexes of
o.
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e If Pis of the form(Py, P»), thenP =, Q iff @ is of the form(Q,, Q) whereP;, =5 @
andP2 =9 QQ.
e If Pis of the form{P'}, thenP =, Q iff @ is of the form{Q’} x whereP’ =, @'.

Example 2.3. Let NV be the same expression as in Exanthi&

({0} ks> {100} 1, ), (K7, {({101} kg { Kis F s ) Yoo ), { B Hicr ))-
We have thaR-Key$N) = { K5, K7, Kg}, and so, in this cas@attern,(IV) is

(({O}K87 E]K1)7 ((K77 {(DKm {K8}K5)}K5)7 {K5}K7))'
Defining M as in Exampl&.1, pattern, (M) is

(({0}K67 DK4)7 ((K27 {(DK37 {Kﬁ}Ks)}K5)7 {K5}K2))'

Now, if we replaceks — Ky, Ky — Ky, Ky — K, K3 — Kqgand K5 — K5 in M, we have
that M =, N.

With these definitions, the following soundness and completeness theorems can be proved.
Again, since these theorems are special cases of our general soundness and completeness theo-
rems in Sectio2.5, the proofs are deferred until later (ExampB$3and2.22).

Theorem 2.7 (Type-2 Soundness).et M and N be expressions such that B-K&yt) and B-
Keyg V) are not cyclic inM and N respectively, andI a type-2 secure encryption scheme.
Then,

M =, N implies[M]¢ ~ [N]e.
Theorem 2.8 (Type-2 Completeness).et Il be a type-2 secure encryption scheme. We have
that,

[M]e ~ [N]e impliesM =5 N
for any pairs of expressiond/ and N if and only if the following conditions hold: for any
K,K', K" € Keys B € Blocks M, M’ N, N' € Exp,

(i) no pair of[K]e, [B]e, [(M, N)]s, [{M'} k]e are equivalent with respect ts,
(i) if [(K,{M}x)[e = [(K",{M'}x)]e, thenK’ = K",

(i) if [({M Y. {M"}i)]e ~ [({N}ier, {N'} )]s then K’ = K.
The conditions of the completeness theorem are similar to the ones for the type-1 case ex-

cept for condition (iii). This condition requires that encryption with different keys should be

detectable. Definitio2.23allowsthat encrypting with different keys may be detectable, but it

does notequireit. That suffices for soundness, but such detedasaequired for completeness.

It is easily shown that condition (iii) is implied by the purely computational definitionsifiatly

key revealingencryption scheme:

Definition 2.25 (Strictly Key Revealing Scheme)LetI1 = (K, £, D) be a symmetric encryp-
tion scheme. We say that the encryption-schenstristly key revealingf it is type-2 secure but
there exists a PPT adversakysuch that the following function is a non-negligible functiomof

Pr |k, k' «— KC(17) : ASGDEE) () = 1} — Pr [k «— K(17) : ASRDEED () = 1]
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2.3.3 Soundness and Completeness for Type-3 Schemes

Type-3 encryption schemes (Definiti@nl4, also called message-concealing, which-key reveal-

ing and length-revealing in the terminology of Abadi and Rogaway) can be thought of as leaking
the information leaked by both type-1 and type-2 schemes. Both soundness and completeness
results follow using the notion of patterns from Definitidrd& As with type-1 and type-2 en-
cryption, completeness requires that it is possible to distinguish ciphertexts that were encrypted
with different keys, and to distinguish ciphertexts for which the plaintexts have different lengths.
That is, the encryption scheme must be both strictly key revealmtstrictly length revealing
(Definitions2.25and2.22respectively).

2.4 Information-Theoretic Interpretations: Soundness and Com-
pleteness for One-Time Pad

Besides the computational definition, there are other possible important notions of ‘indistin-
guishability. For example, we could say that two distributions are ‘indistinguishable’ if and only
if they areidentical Such a notion would lead to new (but analogous) notions of soundness and
completeness, and we can explore these new notions using (as a specific encryption scheme) the
One-Time Pad (OTP).

Let strings := {0, 1}* with the following pairing function: For any two stringsy €
strings we can define the pairing afandy as|z,y] := (x,y,0,1},) where(, , ..., ) denotes
the concatenation of the strings separated by the comimagands forn many1’s, and for any
x € {0,1}*, |z| denotes the length of the string. The numbet’sfat the end indicate how long
the second string is in the pair, and theeparates the strings from ths. Let blocks be those
strings that end witld01. The ending is just a tag, it shows that the meaning of the string is a
block.

Key-Generation. In case of the OTP, the length of the encrypting key must match the length
of the plaintext. Thus, we need a separate key-generation for each length. That is, for each
n > 3, KC,, is a random variable over some discrete probability fi€ld ,,, Prc ) such that its
values are equally distributed ovlesys,, := {k | k € strings, |k| = n, k ends with 010}. Let
keys := |J; keys,. Fork € keys, let core(k) denote the string that we get froknby cutting
the tag010.

Encryption. Let the domain of the encryption functioDpome, be those elementg, x) €
keys x strings, for which |k| = |z| + 3, and let€(k, x) := (core(k) @ z,110). The tagl10
informs us that the string is a ciphertext. Notice that this encryption is not probabilistic, hence
E(k,z) is not a random variable. Notice also, that the tag of the plaintext is not dropped, that
part is also encrypted.

Decryption. The decryption functiorD(k, z) is defined whenevek| = |x|, and, naturally
the value ofD(k, x) is the first|/k| — 3 bits of k & «.

Indistinguishability. As we mentioned, let us now call two distributions indistinguishable,
if they are identical, and denote this relation-by.
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As in the case of type-3 encryption, lengths of the messages are revealed. Therefore, we must
again define théengthof an expression.

Definition 2.26. We assume that some length functiorkeys — {4, 5, ...} is given on the keys
symbols. The length of a block is defined/&B) := |B| + 3. We added to match the length of
the tag. We define the length function on any expressidexpby induction:

o I((M,N)):= I(M) +2(N) +1,
o I({M}y) = 1U(M)+3,if (M) =I(K) — 3, and
o I({M}y):=0,if (M) #£I(K) — 3.

The valid expressionsre defined as those expressions in which the length of the encrypted
subexpressions match the length of the encrypting key, and, in which no key is used twice to en-
crypt. (This latter condition is necessary to prevent leaking information because of the properties
of the OTP.)

Definition 2.27. We define thevalid expressions for OTBSExpyrp = {M € Exp | M' C M
impliesi(M’) > 0, and each key encrypts at most oncé\it}.

The interpretation function for the OTP is defined similarly to the other cases, with some mi-
nor changes regarding the tagging of the messages. Also, there is no security parameter in this
encryption scheme, so the interpretation outputs a single random variable for each formal ex-
pression (rather than a family of such variables). We present here the full algorithm:

algorithm INTERPRETATION,p (M)
for K € Key§M) do7(K) «— Ky
return y

algorithm CONVERTop(N)
if N = K whereK € Keys then
return 7(K)
if N = B whereB € Blocks then
return (B, 100)
if N = (Ny,N;)then
return [CONVERTyp(N;), CONVERTp (N,)]
if N ={N;}x then
return (£(7(K), CONVERT op(Ny)), 110)

As in the previous cases, we must again find a suitable equivalence relation for formal expres-
sions. One possibility is to index the boxes again with the encrypting keys. Another possibility
is to label the boxes with the length as well, but in the OTP scheme, the key reveals the length of
the ciphertext. Therefore, we can use the first, that is a simpler possibility. Thus OTP-patterns
are defined as follows:
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Definition 2.28 (Pattern (OTP)). We define theset of patternsPat, by the grammar:
Pat ::= Keys | Blocks | (Pat,Pat) | {Pat}keys | Tkeys

The OTP pattern of a valid expressidn, denoted bypattern,x()), is derived fromM by
replacing each terfiM’} ;c € vis (M) (WhereK ¢ R-Key$M)) by O.

We say that two expression®/ and N are OTP equivalentand denote it byM Zorp
N, if there exists a length-preserving key-renaming functiosuch thatpatternyp(M) =,
patternyp(No) with =, as in Definitior2.24

Then, then following soundness and completeness theorems can be proved. Again, these
theorems are special cases of the general soundness and completeness theorems B55ection
Thus, the proofs will be deferred (Examp44and2.23 respectively).

Theorem 2.9 (OTP Soundness)Let M and N be two valid expressions BXxp,p such that
B-Keyg M) and B-Key§N) are not cyclic inM and N respectively. Then,

M =q1p N implies that] M ] and [ N] 4 are the same probability distributions.
Theorem 2.10 (OTP Completeness)Let M/ and N be two valid expressions Expyp. Then
if [M]s and[N]e have the same probability distributions, we have tha&qrp N.

Note that the completeness theorem for OTP does not contain any side conditions like those
of Theorem®.€ and2.8 This is because here, what would have been condition (i) from Theo-
rem2.€is immediate due to the tagging. The natural condition (ii) also follows from the tagging
since decrypting with the wrong key will result in a meaningless text. Lastly, the natural Condi-
tion (iii) is meaningless in this case since we just encrypt at most once with each key.

2.5 A General Treatment for Symmetric Encryption

In this section, we provide a general treatment of soundness and completeness for the Abadi-
Rogaway type logics of formal encryptions. The following contain the cases discussed in the pre-
vious two sections as special cases. In Subse@triwe present a general probabilistic frame-

work for symmetric encryptions, which includes both the computational and the information-
theoretic encryption schemes. Then, in Subsed@dnZ, we show a general way to handle
partial leaking of encryption in the formal view. This will be done essentially via an equivalence
relation on the set of encryption terms, which is meant to express which encryption terms are in-
distinguishable for an adversary. In that section, we also introduce the important notion that we
call propernes®f this equivalence relation. This is essential, because this is exactly the property
that will make an Abadi-Rogaway type hybrid argument go through. Finally, in the remaining
subsections of this section, we present the interpretation, the general soundness and complete-
ness results as well as discussions of how the theorems for the type-1, type-2 and OTP cases that
we presented before follow from the general theorems.
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2.5.1 A General Treatment for Symmetric Encryptions

We provide a general probabilistic framework for symmetric encryption, which contains both
the computational and the information-theoretic description as special cases. Keys, plaintexts
and ciphertexts are elements of some discretestaghgs. This is ({0, 1}*)> in the case of

a computational treatment, and it{i8, 1}* for the information-theoretic description. The ele-
ments of({0, 1}*)> are sequences i, 1}*, corresponding to a parameterisation by the security
parameter.

A fixed subsetplaintext C strings represents the messages that are allowed to be en-
crypted. Another subséteys C strings is the possible set encrypting keys that corresponds to
the range of the key generation algoritiinIn order to be able to build up longer messages from
shorter ones, we assume that an injegpigging functionis given:[ ., .| : strings x strings —
strings. The range of the pairing function will be callgdirs: pairs := Ran; ;. A symmet-
ric encryption scheme has the following constituents:

Key-generation. Key-generation is represented by a random vari#ble Qx — keys,
over a discrete probability field2c, Pri). In a given scheme, more than one key-generation is
allowed.

Encryption. For a giverk < keys, and a giverr € plaintext, £(k, z) is a random variable
over some discrete probability fie{€s, Pr¢). The values of this random variable arestirings
and are denoted b§(k, x)(w), wheneverw € Q.

Decryption. An encryption must be decryptable, so we assume that for kactkeys, a
functionD : (k,z) — D(k,z) is given satisfyingD; (£(k,z)(w)) = z for allw € Q¢ and
r € plaintext.

The notion ofindistinguishabilityis important both in case of computational and information-
theoretic treatments of cryptography. It expresses when there is only very small probability to
tell two probability distributions apart.

Indistinguishability. We assume that an equivalence relation caihelistinguishabilityis
defined on distributions ovestrings. We will denote this relation by=z. We will also say that
two random variables taking valuesstrings are equivalent (indistinguishable) if (and only if)
their distributions are equivalent; we will usefor denoting this equivalence between random
variables as well. For, we require the followings:

() Random variables with the same distribution are indistinguishable;
(i) Constant random variables are indistinguishable if and only if the constants are the same;

(i) Forrandom variableg' : Q) p — strings andG : Q¢ — strings, if F' =~ G, the following
must hold: If7* denotes the projection onto one of the componentsihgs x strings,
thentio [, To F~nlo[, -] toGfori=1,2;

(iv) If F' : Qp — strings, G’ : )¢ — strings are also indistinguishable random vari-
ables such that’ and F” are independent ar@d andG’ are also independent, then —
[F(wr), F'(wr)] andwe — [G(we), G’ (wg)] are indistinguishable random variables; more-
over, if a, 0 : strings — strings are functions that preserve (i.e. ao F' ~ ao G
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andg o F' =~ [ o G wheneverF' ~ (), thenwp — [(a o F)(wp), (B o F)(wr)] and
wa — [(a o G)(wg), (6 o G)(we)] are indistinguishable random variablegif~ G.

Indistinguishability needs to satisfy some further properties under encryption and decryption that
we will specify under the definition of encryption schemes below.

Example 2.4. The simplest example for indistinguishability is that it holds between two random
variables if and only if their distributions are identical.

Example 2.5. The standard notion of computational indistinguishability ¥ad82 is also a
special case of the general definition. In this cesdngs = ({0,1}*)* = strings™. Ran-

dom variables of computational interest have the farm €2 — strings™ and have inde-
pendent componentsg., for n € N security parameter, denoting th#h component ofF’ by

F, : Qp — strings, itis required thatr;, and F;, are independent random variables fo# 1'.
Indistinguishability then is phrased with the ensemble of probability distributions of the compo-
nents of the random variables.

Definition 2.29. An encryption schemis a quadruplél = ({;}icr, €, D, ~) where{K,}.cs

is a set of key-generations for some index g€ is an encryption,D decrypts ciphertexts
encrypted by, and~ is the indistinguishability defined above. We require that foriaayl, the
probability distribution ofiC; be distinguishable from any constantsitrings, the distributions
of K; and of IC; be distinguishable whenever# j, and also that the distribution ¢k, £’) be
distinguishable from the distribution ¢k, k) if £ andk’ are independently generated:— K,

k' — K for anyi, j € I. The indistinguishability relatior:, besides satisfying the properties
stated before, needs to be such thaf ibndG are random variables taking valuessitrings,
and K; is a key-generation such that the distribution[&f, F] is indistinguishable from the
distribution of [/C;, G|, then:

(i) (we,wiisw) — E(Ki(wis), Fw))(we) and (we, wici, w) — E(Ki(wi,), G(w)) (we) are
indistinguishable random variables;

(i) (wisw) — D(Ki(wk,), F(w)) and (wii,w) — D(K;i(wk,;),G(w)) are also indistin-
guishable random variables.

Here the probability ovefl, x Q2 is the joint probability ofiC; and F', which are here not
necessarily independent. Similarly fGr.

2.5.2 Equivalence of Expressions

In their treatment, Abadi and Rogaway defined equivalence of expressions via replacing encryp-
tion terms encrypted with non-recoverable keys in an expression by a box; two expressions then
were declared equivalent if once these encryption terms were replaced, the olp@iitezds

looked the same up tkey-renaming This method implicitly assumes, that an adversary cannot
distinguish any undecryptable terms. However, if we want to allow leakage of partial informa-
tion, we need to modify the notion of equivalence.
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Before introducing our notion of equivalence of expressions, we postulate an equivalence
notion=k on the set of keys, and another equivalercg,on the set of/alid encryption terms.

The wordvalid, defined precisely below, is meant for those encryption terms (and expressions)
that “make sense”. Then, the equivalence on the set of valid expressions will be defined with the
help of=k and=c.

The reason for postulating equivalence on the set of keys is that we want to allow many
key-generation processes in the probabilistic setting. We therefore have to be able to distinguish
formal keys that were generated by different key-generation processes. Therefore, we assume
that an equivalence relatioak is given on the set of keys such that each equivalence class
contains infinitely many keys. L&®xeys := Keys/ =K.

Definition 2.30 (Key-Renaming Function). A bijection ¢ : Keys — Keys is called key-
renaming functionif o(K) =k K for all K € Keys. For any expressiod/, Mo denotes
the expression obtained fromd by replacing all occurrences of keysin M by o(K).

Definition 2.31. We define thesupportof a key-renaming function, and denote it bgupfo),
as the subset dfeys such that (K') # K.

We say that two key-renaming functiom&ndr arecompatiblef for all keys K € supgdo)N
supd ) we have that (K) = 7(K).

The setExp is often too big to suit our purposes. For example, sometimes we require that
certain messages can be encrypted with certain keys only. We therefore define the set of valid
expressions:

Definition 2.32. A set ofvalid expressions a subseExp,, of Exp such that:

(i) all keys and all blocks are contained&xp,;

(i) if M € Exp,, thensub(M) C Exp,, and any number of pairs of elementssinl /) are
also inExp,,;

(iii) for any key-renaming functioa, M € Exp,, iff Mo € EXp,,.
Given a set of valid expressions, the sevalid encryption termss Enc,, := Encn Exp,,.

Equivalence of valid expressions is meant to incorporate the notion of security into the model:
we want two expressions to be equivalent when they look the same to an adversary. If we think
that the encryption is so secure that no partial information is revealed, then all undecryptable
terms should look the same to an adversary. If partial information, say repetition of the encrypting
key, or length is revealed, then we have to adjust the notion of equivalence accordingly. We
do this by introducing an equivalence relation on the set of valid encryption terms in order to
capture which ciphertexts an adversary can and cannot distinguish; in other words, what partial
information (length, key, etc...) can an adversary retrieve from the ciphertext.

Hence, we will assume that there is an equivalence relatigngiven on the set of valid
encryption terms, with the property that for any, N € Ency, ando key-renaming function,

M =c¢ Nifand only if Mo =c No. Let Qg := Ency / =c.

Since we required that/ =c N € Ency if and only if Mo =c¢ No whenevers is a

key-renaming functiony induces a renaming 08gnc, Which we also denote hy.
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Example 2.6 (Length-Revealing).In Sectiori2.3.1two encryption terms were considered to be
indistinguishable for an adversary if and only if they had the same length. In this case, we define
=c SO that it equates encryption terms with the same length, and hence an eler@gpt will

contain all encryption terms that have a specific length.

Example 2.7 (Which-Key Revealing).In Section2.3.2we considered the situation when an
adversary can recognise that two encryption terms were encrypted with different keys. For this
case, we will need to definec so that two encryption terms are equivalent if and only if they
are encrypted with the same key.

Definition 2.33 (Formal Logic of Symmetric Encryption). A formal logic for symmetric en-
cryption is a tripleA = (Exp,,, =k, =c) wWhereExp,, is a set of valid expressions;k is an
equivalence relation oKeys, and=c is an equivalence relation dinc,; we require the ele-
ments ofQkeys to be infinite sets, and that for amykey renaming function relative tQeys,

(i) if M € Exp, thenM € Exp,, ifand only if Mo € Exp,;
(i) if M, N € Ency, thenM =c N ifandonly if Mo =¢ No;

(i) replacing an encryption term within a valid expression with another equivalent valid en-
cryption term results in a valid expression.

To define the equivalence of expressions, we first assign to each valid expression an element
in the set ofpatterns Pat, defined the following way:

Definition 2.34 (Pattern). We define the set gdatterns Pat, by the grammar:
Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}keys | Jog,

The pattern of a valid expressidd, denoted bypattern A/), is obtained from\/ by replacing
each undecryptable terfiV/'} x T M (K ¢ R-Key$M)) by O, a0y, Wherep({M'} i) €
Qenc denotes the equivalence class contaifing } .

Definition 2.35 (Equivalence of Expressions)We say that two valid expressiodg and N
areequivalent and denote it byl = N, if there exists a key-renaming functiensuch that
pattern( M) = patternf No), where for any patter), Qo denotes the pattern obtained by re-
naming all the keys and the box-indexes (which are equivalence clas@gsrin @ with o.

Example 2.8.In the case when the elements@§,. contain encryption terms encrypted with
the same key, Examp27, there is a one-to-one correspondence betwgp andKeys, and
therefore we can index the boxes with keys instead of the elemeds. i Ok, K € Keys.
Thenif N is the same expression as in Exanidl@ the pattern according to the above definition
is the same as we had in that example. In that exahpbnd NV are equivalent according to the
definition of equivalence above.
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Proper Equivalence of Ciphers

In order to make the soundness and completeness proofs work, we need to have some restrictions
on =c¢; without any restrictions, the proofs will never work. The condition that we found the
most natural for our purposes is what we gathper equivalencedefined below. This condition

will make soundness work. For completeness, besides proper equivalence, we need to assume
something for the relationship efc and=k. We call our assumptiomdependenceand it is

defined in Definitior2.37. Let us start by defining the sgf.,, for eachi € Qgnc, as

Lkey = {K € Keys| there is a valid expressiall such that{M }x € u}.

Definition 2.36 (Proper Equivalence of Ciphers).We say that an equivalence relatigrg; on
Ency, is proper, if for any finite set of keysS, if 1 € Qgnc contains an element of the forfV }
with K ¢ S, we have that:

1. if |ukey] is finite theny also contains an eleme@tsuch thakeygC') NS = 0, andK Z C;
2. if |ukey| = oo theny also contains an eleme@itsuch thakKeygC) N (S U {K}) = 0.

In other words, ifu contains an element encrypted with a k&ynot in .S, thenpu has a
representative in which no key 6fappears, and in whick® may only appear as an encrypting
key, but not as a subexpression, or in the case of a class with infinitely many encrypting keys
there is an element in which no keys frag#w { K'} appear. In fact, we show in Propositiarll
that the cardinality of the set., is equal to either 1 oso.

Example 2.9.If =¢ denotes the equivalence of Exam@é (i.e. two ciphers are equivalent
iff they have the same encrypting key, hernpg.,| = 1), then it is clearly proper, since if
{M}x € u,andK ¢ S, thenC = { K’} works for anyK’ ¢ S; there is such d’, since we
assumed that there are infinitely many keys.= {B}x (B € Blocks) is also a good choice
sinceBlocksis not empty.

Example 2.10.If =¢ denotes the equivalence of Exam@lé€, then it is clearly proper|fixey| =

). If {M}x € u, K ¢ S, thenC = {M'}x is a good choice wheré€' is constructed

by assigning to each key i}, a new keyK” notin S U {K}. We can do this since we
assumed that there are infinitely many keys. Then, since key-renaming does not change the
length, /(M) = ¢(M’), and . contains all encryption terms of the same lendgthec 1 and
properness follows.

The following propositions will be useful for proving our general soundness and complete-
ness results.

Proposition 2.11. Let A = (Exp,,, =k, =c) be such that=c is proper. Then, the equivalence
relation =¢ is such that for any equivalence clagsc Qgnc, tkey has either one, or infinitely
many elements.
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Proof. Let i € Qgne, and assume that there are more than one encrypting key,ifbut | zixey |
finite), that is, there are two different keys and K; such that{ M}, {M,}k, € u for some
valid expressiongd/ and M;. Since=c is proper and M}k, € p, if we considerS = {K}
(K7 # K thusK; ¢ S) thenyu has an element of the forfm/’} k- in which no key ofS appears
and in whichK; may only appear as an encrypting key, but not as a subexpression. In particular
we have that
K ¢ KeygM') andK # K. (2.1)

Since we assumed that each equivalence clagxdp, contains infinitely many elements (recall
Definition2.33), there is a key. # K such thatl =k K, and

L ¢ KeyS{M}x) UKeys{M'}x). (2.2)
Then, definingr to do nothing else but to switch the kefysand iK', we have usingd.2) that
{M}go ={Moc},

and (by 2.1) and R.2))
{M’}KIO' = {M’}K/.

But, since{M } x =c {M'}x/, we have (by definition of formal logic) that
{M}KO' =C {MI}K/O'

that is
{MO'}L =C {M’}KI.

Since{M'}k: € p, it must hold thaf Mo}, € u. Therefore, there are infinitely many encrypt-
ing keys inu since there are infinitely many choices for l

Proposition 2.12. Let A = (Exp,,, =k, =c) be such thats¢ is proper. Ifo is a key-renaming
function (relative to=k), then for anyu € Qgnc, |tikey| = |0 (1) key |-

Proof. If |jiey| = o0, then|o(p)iey| = o0, since for any{M }x € p, {M}xo = {Mo}ok) €
o(u). Sinceo is a bijection, and since anycontains either only one or infinitely many elements,
the claim follows. ]

The meaning of the next proposition is thatst is proper, then given a set of valid ciphers
¢ = {{N;}.,}}, such that none of the encrypting keys areSinand if x,, ....,; are all the
equivalence classes of the element&jrthen it is possible to choose a representative of each
of u;, denoted byC),;, such that no key of S occurs in any 6f,;, none of theL;'s occur as
a subexpression in any,, ., and no key occurs in two of’,  unless the corresponding two
equivalence classes both have only the same, single encrypting key.

Proposition 2.13.LetA = (Exp,,, =k, =c) be such that=c is proper. Let® = {{N;},}", be
a set of valid encryption terms, arfda finite set of keys with; ¢ S (i € {1,...,n}). Letu(€)
denote the set of all equivalence-classes with respeeidof all elements ir€. Then, for each
v € u(€), there is an element, € v such that:
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(i) KeygC,)NS =10
(i) L Z C, forallic {1,..,n}

(i) if v # V', [they| # oo and |y, | # oo, then Key&C,) N KeygC,/) # 0 if and only if
Viey = Viey = 118 } fOr some keyk', and in this case
1. KeygC,) NKeygC,) = {K},
2. C, andC,, are both of the forn{-} x with the saméx, and
3. KZC,,KIZC,.

(iv) if v # v/ and either|vy | = oo or |14, | = oo, then Key&(,) N Key4C,/) = 0.

Proof. Observe, that if;; denotes the equivalence class(of;} ., in Qgnc, thenv € (<) if and
only if v = p; for somei € {1,...n}. Proof goes by induction.

The statement is clearly truenf= 1, since=c is proper.

Suppose now that the result is true for— 1. Let {Ni}.,, {N2}r,,...s {NVn}1,, be valid
expressions, and &t be a set of keys such that ¢ S. Without loss of generality, we can
assume, that the numbering is such that there is &< [ < n, such that(p; )ey| = 1if @ <1
and|(pi)key| = 0o if @ > L.

Case 1: Letus first assume that= n, i.e.,|(ui)key| = 1 forall 1 <1i < n, and that there is an
m € {1,...,n — 1} such that_,, = L,,. Since the statement is assumed to be true.ferl, we
have that for the family of encryption ternd$ = {{N;},,}/~;' and the sef we can choosé€,,
for all i < n — 1 such that conditions’{i (ii’), (iii") and (iv) hold for these , that is,

(i) KeygC,)NnS=0foralll <i<n-1,
(i") L, Z C,, forall 1 <i,j <n—1,and

(i) i 41y 7 117, |(11)iey| # 00 @NG|(11;)iey| # 00, thenKeygC,,,) N KeygC,,,) # 0 if and only
if (1i)key = (14j)xey = {K} fOr some keykK, and in that case
1. KeygC,,) NKeygC,,) = {K},
2. Cy, andC),; are both of the forn{-} x with the samé, and
3. KZC,,KZC,,.

(iv') if p; # p; and eithed (1 )key| = 00 OF [(115)key| = 00, thenKeygC),) N KeygC,,)) = 0.

We can immediately discard (vsince we suppose thiliu;)key| = 1 forall 1 < i < n.
Suppose now that,, = y; for somei < n — 1, then there is nothing to prove;,, = C,, has
already been chosen and so (i), (ii) and (iii) are obviously satisfied by IH.

If there is no such, then consider

Spy = <(Ul KeygC,,) U {L,}) \ {Ln}> us.
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Since=c is proper (usings,_; and{N, }., € u,), thereis aC' € p, such thakeygC) N
Sp—1=0andL, Z C. Letus define”,, = C. Then:

(i) KeygC) N S = () follows from the fact thakeygC) N S, ; = P andS C S,,_1;
(i) L; £ C,, foralll <i,j <nsince:

(@ L; Z Cy, foralll <i,j <n—1by (ii'),

(b) L, Z Cy;, 1 <j <n—1because we assumed thiat= L, andL,, Z C,, by (ii’),

(c) L; Z C,forall L; # L,, suchthatl < i < n — 1 (remember thal,, = L,,) since
L; € S,_1 andKeygC) N S,,_1 = 0, and

(d) L, Z C by the way that” was chosen (hendg,, £ C).

(i) (a) forall1 <i,j7 <n—1itistrue by (iii);

(b) Suppose now that,, # p, andKeygC') N KeygC,,, ) # 0 for somel < k <n — 1.
If we combine these with the fact thateys(C) N S,,_; = 0, we need to have that

KeygC') NKeygCy, ) = {Ln}.

It is now easy to see from the equation above thandC),, are both of the form
{-}1,. For that notice that by (ii.d) just proved aboveg, IZ C' and by (ii.a)L, £
C,,- The only thing left to show is th&, )xey = (ttk)xey = {Ln}. This comes
straightforward from the fact th&at andC,,, are both of the forn{-},, and from the
fact that| (14 )xey| = 1 for all 1 < i < n. Combining these we have

(Nn)key = (Mk)key = {Ln}.

The converse is very simple. Suppose that)ey = (tk)ey = {Ln}. Since
C € u, andC,, € p, we have that both are of the forfn},, and thuskeygC) N

KeysC,,) # 0. The rest follows as above.

(iv) Verified since by hypothesis we suppose tfiaf)w.,| = 1 forall 1 <i < n.

Case 2: Suppose now thdt= n, but there is non € {1,...,n — 1} such that_,, = L,,. Since
the result is true fon — 1, we have that for the family of encryption termis= {{N;} ..}~ and
the setS’ = SU{L,} (note thatZ, ¢ S’ for all i« < n — 1) we can choosé€’,, foralli <n —1
such that conditions{i (ii"), (iii’) and (iV) hold for these , that is,

(i) KeysC,. )N (SU{L,})=0foralll <i<n-—1,
(i) L Z Cy, foralll1 <4,5 <n-—1,and

Gii") 0F i # 15, | (p1)key| # 00 aNd| (115 )ie| # 00, thenKeyg(C,,,) N KeygC,,,) # 0 if and only
if (ti)key = (11j)key = { K} fOr some keykK;
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(V') if 15 7 p; AN @Ithet (1;)uey| = 50 OF |(11;)1ey| = o, thenKeyg C,,) N KeygC,,,) = 0.

Again, if 11, = p1; for somei < n, then there is nothing to prove, l€t,, = C,,, and note that
(i) and (iii) are obviously satisfied, and (iiy( Z C,,;, forall1 < j <n,andL; Z C,, for all
1 < < n —1)follows from () and (i) respectively. Again (iv) is also true since we suppose
that| (i )key| = 1 forall 1 <i < n.

If there is no such, then consider

i=1

Sp1 = (U KeysC,,) U {Li}> uUs.

By properness (using, _; and{N,,}., € u,),andsincd.,, ¢ S,,_; (by ("), assumptiorL,, # L;
for all i < n, and by hypothesis of the propositidn, ¢ S), there is aC' € pu, such that
KeysC)N S,—1 =0, andL, Z C. Let us define”,, = C'. Then:

(i) follows from (i) and from the fact thateygC) N S, = 0;
(i) istrue, since:

(@ L, £ Cy,, foralll <i,j <n—1hy (i),

(b) L, Z C,,, foralll < j <n—1by (),

(c) L; Z Cfor1 <i<n-—1because by properneksygC) N S,,_; = 0, and
(d) L, Z C because of properness.

(iii) follows, because

(@) forall1 <i,j <n—1itistrue by (ii), and

(b) for the other case it holds since by properngeggC')NS,,_; = () and thuKeygC)N
KeygC,,) =0foralll <i<n-—1.

(iv) Verified since by hypothesis we suppose tfiaf)..,| = 1 forall 1 <i <n.

Case 3: Suppose now thdt < n, but there isn € {1,...,n — 1} such that’,, = L,,. Since
the result is assumed to be true for— 1, we have that for the family of encryption terms
¢ = {{N;}.,}’=] and the sef we can choos€,, for all i < n — 1 such that conditions§j
(i), (iii") and (iv) hold for these , that is,

(i) KeygC,,)NS=0foralll <i<n-—1,
(i) L Z Cy, foralll1 <4,5 <n-—1,and

(") 1 15 # 115, | (s # 00 ANG| (1 )iy | # 00, thenKeys(C,.,) N Keys(C,,,) # Oif and only
if (i)key = (1)xey = {K} for some keyk;

(iv') if p; # p; and either (1 )xey| = 00 OF [(115)1ey| = 00, thenKeygC),,) N KeygC,,)) = 0.
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Again, suppose now that, = p; for somei < n — 1, then there is nothing to prove,
C,,. = C,, has already been chosen and so (i), (ii), (iii) and (iv) are obviously satisfied by IH.
If there is no such, then consider

Spo1 = <<U Keys(cuz) U {Lz}> \ {Ln}> Us.

Since=c is proper (using,,_; and{N, } 1., € tin, |(tn)rey| = 00), there is &' € p,, such
thatKeygC') N (S,_1 U{L,}) = 0. Then:

(i) KeysC) NS = ( follows from the fact thaKeysC) N (S,_; U {L,}) = fandS C
(Snfl U {Ln});

(i) L; £ O, forall1 <i,j <nsince:

(@) L; £ Cy,, foralll <i,j <n—1Dby (i),

(b) L, Z Cy;, 1 <j <n—1because we assumed thiat= L,, andL,, £ C,,; by (ii’),

(c) L; Z C,forall L; # L,, suchthatl < i <n — 1 (remember thal,, = L,,) since
L; € S,_1 andKeygC) N S,,_1 = 0, and

(d) L, Z C becaus&eysC) N (S,-1 U{L,}) =0 (henceL,, £ O).

(iii) note that if|(1;)key| # 00 @and|(p;)key| # oo thenl < i, 5 < I < n and thus by HI (jii)
holds.

(iv) (a) forthecasd < j <n—1landl <i<n—1,KeygC,,) NKeygC,,) = () holds by
IH;
(b) it is only left to show that for alll < i < n — 1, KeygC,, ) N KeysC,,) = 0

This is true because by definitidteygC,,,) N (S,—1 U{L,}) = 0 andKeygC,,,) C
(Sn—1U{Lxn}).

Case 4: The proof of the remaining caseé,< n, i.e., |(ti)key| = oo for I < i < n, and
there is nom € {1,...,n — 1} such thatZ,, = L,, is a combination of the proofs of Case 2
and Case 3. Since the result is true for 1, we have that for the family of encryption terms
¢ = {{N;}.,}*=! and the set’ = SU{L,} (note thatl; ¢ S’ for all i < n — 1) we can choose
C,, foralli < n — 1 such that conditionsfi, (i), (iii") and (iV) hold for these , that is,

(i) KeygC,,)N(SU{L,})=0foralll <i<n-—1,
(i) L £ Cy, foralll <4, <n—1,and

(iii") 0 oy # g5, [ (1) ey | 7 00 @Nd| (11 )xey| # 00, thenKeygC,,,) N KeygC,,,) # 0 if and only
if (1i)key = (1)) 1ey = { K} for some keyK’;

(iv') if p; # p; and either (1 )xey| = 00 OF [(115)1ey| = 00, thenKeygC),,) N KeygC,,)) = 0.
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Again, if 1, = p1; for somei < n, then there is nothing to prove, I€},, = C,,, and note that
(i), (iii) and (iv) are obviously satisfied, and (iiL{ Z C,,,, forall1 < j <n,andL; Z C,, for
all 1 <i < n—1)follows from () and (if) respectively.

If there is no such, then consider

Sn_1 = (TD Keyf(cm) U {Lz}> UsS.

=1
By properness (using,,—1 and{N,}., € i, |(ttn)key| = 00), @and sinceL,, & S,,_1 (by (i'),
assumption,, # L; for all i < n, and by hypothesis of the propositidn, ¢ S), there is a
C € u, such thaKeygC) N (S,-1 U{L,}) = 0. Let us define”,, = C. Then:

(i) follows from (i) and from the fact thateygC) N S, 1 = 0;
(i) is true, since:
(@ L; £ Cy,, foralll <4,j <n—1hy (i),
(b) L, £ Cy,, foralll < j <n—1Dby ('),
(c) L; Z Cfor1 <i<n-—1because by properneksygC)n S,,_; = 0, and
(d) L, Z C because by definition @', KeygC) N (S,,_1 U{L,}) = 0.

(iii) note that if| (1 )xey| 7# 00 @NA|(11;)key| # oo thenl < 4,5 < [ < n and thus by HI (iii)
holds.

(iv) (a) forthecasd < j <n—1landl <i<n—1,KeydC, ) NKeygC,,) = 0 holds by
IH;

(b) itis only left to show that for all <i < n —1, KeygC,,,) NKeygC,,) = 0. This is
true because by definitidkeygC,,, ) N (S,—1 U{L,}) = 0 andKeysC,,,) C S,_1.

O

Given set¥ andS as in the conditions of the proposition, 18(¢, S) denote the nonempty
set

. C, € v, and{C, },c¢ andS satisfy conditions
R(E,5) = {{C”}”Gm (i), (i), (iii), and (iv) of Proposition2.13
Another useful property satisfied by all common logics, and that we will need for the com-
pleteness result is the following:

Definition 2.37 (Independent=k and =¢). We say thatek and=¢ are independent, if for any
finite set of keysS, and any finite set of ciphe such that no key it appears in any element
of €, given any key-renaming functiom, there is a key renaming’ for which ¢/(K) = K
wheneverK € S, and forallC' € €, Co =¢ Co’'.

In other words=k and=¢ are independent, if for any finite set of keys and any finite
set of ciphers such that no key irt' appears in any element @f it is possible to alter any
key-renaming functiom such that the altered function leaves all the elements umchanged,
whereas ot it does the same thing as the originalWe will need this property for the general
completeness theorem.
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2.5.3 Interpretation

The idea of the interpretation is to describe messages that are built from blocks of strings and keys
via pairing and encryption. To each valid formal expressiénthe interpretation assigns a ran-
dom variable? (M) taking values irstrings. We do not give one specific interpreting function
though, we will just say that a functioh is an interpretation if it satisfies certain properties. We
assume, that a functianis fixed in advance, which assigns to each formal key a key-generation
algorithm. If &(B) € strings (constant random variable) is given for blocks, then, the rest of

® is determined the following way: First, run the key-generation algorithm assignedfduy

each key inKeygM). Then, using the outputs of these key-generations, translate the formal
expressions according to the following rules: for each key, use the output of the corresponding
key-generation. For blocks, just udéB). For each pair, apply, -] to the interpretations of

the expressions inside the formal pair. For each formal encryption, run the encryption algorithm
using as key the bitstring that was output by the key generation, to encrypt the interpretation of
the formal expression inside the formal encryption. The randomnegéiaf) comes from the

initial key-generation, and from running the encryption algorithm independently for each formal
encryption. We define below this notion of interpretation. We motivate it with the following
example:

Example 2.11.For M = ({0}, K5), { K10} k5 ), the interpretation i® (M) : (Qg x Qg) X
(Q¢(K5) X Q¢(K10)> — StI‘il’lgS, Where<I>(M) (wl, Wa, W3, (,U4) is

[[E(d(K10) (wa), P(0))(wr), p(K5)(ws)], E(D(K5)(ws), d(Kio)(wa))(w2)]-

There are four instances of randomness, two coming from the generation of keys by the key-
generation algorithm (foK’5 and for K;,), and the other two from the two encryptio®} «, )
and({Klo}Ks).

Definition 2.38 (Interpretation of Formal Expressions). Let II = ({K;}ic1,&,D,~) be a
general symmetric encryption scheme with some indeX,s&ith {(Q,, Prx,) }ie; denoting the
probability fields for key generation, and witfle, Prs) denoting the probability field for the
randomness of encryption. LEkp,, be a set of valid expressions. For each valid expresgion
let the probability spac€&?,,, Pry,) be defined recursively as

(Qk,Prg) == ({wo}, 1iu) for K € Keys,

(Qp,Prp) == ({wo}, 11u,)) for B € Blocks;

(Q(M,N)a Pr (M,N)) = (QM X QN, Pr M PYN);

(Q{M}K, Pr {M}K) = (Qg X QM, Pl"g ® Pr M)
Where({wo}, 11.,) is just the trivial probability-space with one elementary evegtonly; the
tensor product stands for the product probability. Suppose that a fungtidteys — {K;}icr
is given assigning abstract keys to key generation algorithms, such(Rat= ¢(K’) if and

only if K =g K'. Let.: {1,..,|KeygM )|} — Keyg M) be a bijection enumerating the keys in
KeygM). Let

(Qkeygar), Prieygar)) =
(0 X - X Qspireysan)) Pr o) @ -+ @ Pr o (keyan)) )-



2.5. A General Treatment for Symmetric Encryption 49

The function(M, M') — (P (M') : Qar x Qeygary — strings) defined wheneved!’ T M,
is calledan interpretation functionif it satisfies the following properties:

Py (B)(wo,w) = Pn(B)(wp,w’) for all M, N valid expressionsB € Blocks, B C M,
B T N, and arbitraryw € Qgeygar), W' € Qkeygn)- LEtP(B) := Oy (B).

(I)M(K)(wo, (wl, ...,w|Key5(M)‘)) = gﬁ(K)(wL—l(K)) for K € KeyL{M), with wj; € Q¢(L(j)).

By (M, M) (o, "), ) = [@ar (M) (o), By (M) (w", )] for all o' € Qupry o' €
Qs andw € QKeyi]\/[) if (M,, M”) C M.

O ({M'} k) ((we, '), w) = E(Puy(K)(wo,w), Ppr(M') (W' w))(we) for all we € Q,
W' e Quryw € QKeys{M) if {M’}K C M.

Let®(M) := &y, (M), and letfM]s denote the distribution cb(M1).

2.5.4 Soundness

An interpretation assigns a random variatiie)/) (and the distributiorfM ] of ®(M)) to a

formal valid expressiod/. On the set of valid expressions the equivaleBcesquates expres-

sions that a formal adversary supposedly cannot distinguish, whereas the equivakmeates
random variables (and distributions) that a probabilistic adversary is not supposed to be able to
distinguish. The question is, how the formal and the probabilistic equivalence are related through
the interpretation. We say that soundness holdg i N implies[M]¢ ~ [N]s, Whereas we

say that completeness holdgif/]¢ ~ [N]s impliesM = N.

The key to a soundness theorem is to have enough boxes in the definition of formal equiva-
lence,i.e. there should be enough elementdga,.. It is clear that in the extreme case, when
the equivalence on encryption termsg, is defined so that two encryption terms are equivalent
iff they are the same, then soundness holds trivially for all interpretations; but this would be
completely impractical, it would assume a formal adversary that can see everything inside every
encryption. Itis also immediate, that if soundness holds with a giugitand a given interpreta-
tion), and=¢ is such that for any to encryption termgandN, M =, N impliesM =¢ N (1.e.
= has more boxes), then, keeping the same interpretation, soundness holds with thg agw
well. Hence, in a concrete situation, the aim is to introduce enough boxes to achieve soundness,
but not too many, to sustain practicality. One way to avoid having too many boxes is to require
completeness: we will see later, that obtaining completeness requires that we do not have too
many boxes.

The following theorem claims the equivalence of two conditions. It is almost trivial that con-
dition (i) implies condition (ii). The claim that (ii) implies (i) can be summarised the following
way: if soundness holds for pairs of valid expressidghand M’ with a special relation between
them (described in (ii)), then soundness holds for all expressions (provided that they do not have
encryption cycles). In other words, # = M’ implies[M]s ~ [M’]s for certain specified
pairsM andM’, thenM = N implies[M]s ~ [N]e for any two pairs of valid expressions
andN.

For the definition ofR(¢, S), see SectioR.5.2
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Theorem 2.14.Let A = (Exp,,, =k, =c) be a formal logic for symmetric encryption suef
is proper and for each\ € Exp,,, B-Keyg/\/) is not cyclic inM. Letll = ({K;}ier, £, D, =)
be a general encryption schendean interpretation oExp,, in I1. Then the following conditions
are equivalent:

(i) Soundness holds fdr: M = N, implies®(M) ~ ®(N).

(i) Forany€ = {{N;}.,}, setof valid encryption terms, arttifinite set of keys witth, ¢ S
(i € {1,...,n}), there is an elemerftC, },¢,(¢) Of R(E, S) such that the followings hold:

if {{Nij}K}i‘:l C €and M € Exp,, are such that

1 {Ni o {Niy} iy s {Ni, } E M,

2. R-KeysM) C S, and

3. K does not occur anywhere else/i,

4. all visible undecryptable encryption termsid are elements of U {C, },cp(¢)

then, if we denote by/’ the expression obtained by replacing i each{N;, } x with
Cu(ni,yx)» We have thafM]e ~ [M]o.

Proof. The proof of this theorem is motivated by the soundness pro#ZR0P]. The idea of the
proof is the following: Starting from two acyclic expressiahg = M = N = N,, we create
expressiond/, ..., M, and Ny, ..., Ny such thatM; ., is obtained from\/; via a replacement of
encryption terms as described in condition (ii). Acyclicity ensures that the encrypting key of the
replaced encryption terms will not occur anywhere else. SimilarlyMar, and NV;. We do this
so thatM, and Ny will differ only in key renaming. Then, by condition (iiJA;11]s ~ [M;]e,
and[N;i1]e = [N:]e- But, [M,]e = [Ny ]s, and therefore the theorem follows.

Now in more detail. Condition (ii) follows from (i) easily: For any sef, v, 1)}
provided by Propositio/2.13 the encrypting key o), (N3, } ) is not contained inS ]hence it
is not recoverable key ab/. Therefore, while computlng the pattern df’, C) (N, b o) will
be replaced by the boX,, (v, ), Which is the same box as the one that replgc€s} « in M
when the pattern aof/ is computed. Henc&/ = M’, and therefore, since soundness is assumed,
andB-Keyg ') is not cyclic inM’, we have

[M]e = [M']e.

In order to prove that (i) follows from (ii), consider two equivalent valid expressidgnand
N suchthat\/ = N. Then, by definition, there exists a bijectieron Keys (preserving=k such
thatpattern M) = pattern No). This means that the “boxes” occurringpattern M/ ) must oc-
cur in pattern No) and vice-versa. Also, the subexpressionpaittern /) and ofpattern No)
outside the boxes must agree as well. Hence,

R-Key$M) = R-Key$No) = R-Key$N)o.

Let Ly, Lo, ..., Ly (L; # L; if i # j) denote the keys iB-Keyg\/), and letL], L), ..., L;,
(L; # L if i # j) denote the keys iB-Keys N )o. B-KeygM) andB-Keyg V) (and therefore
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B-Keyg N o) as well) are not cyclic by hypothesis, so without loss of generality, we can assume
that thel;'s and theL;'s are numbered in such a way thiatencryptsL; (and L; encryptsL?)
only if i < j (for a more detailed argument about this, s&R02]; intuitively this means that
those keys irB-Keyg M) that are deeper in/ have a higher number).

Consider now the set of expressions that are subexpressiovisarfN and have the form
{M'}y, or {N'}.,, and also, the sef. Condition (i) then provides the set with elements of the
form Cuqarry,,) @NAC a7y, )-

Let My, = M. Let M, be the expression obtained fraif, by replacing all subexpressions
in M of the form{M’} ., by Cyqanry,,) given by the assumption. Let the;, i > 2, be the
expression obtained from/;_; by replacing all subexpressions id;_; of the form{M’},. by
Cumry,,)- We do this for alli < b and it is easy to see that if;, replacing the subexpressions
of the formC,(ar,. ) bY Oputarry ) for all i, we arrive apattern(M).

Note that inM;_,, L; can only occur as an encrypting key. The reason for this is that if
is a subexpression df/, then it has to be encrypted with some non-recoverable key, otherwise
L; would be recoverable; moreover, it has to be encrypted with some l&¥ieyg )/ ) because
a subexpression a¥f/ is either recoverable or ends up in a box when we conspaitern M ).
Now, the element ifB-Keys /) that encryptd; has to be arl; with j < 4. But, all subexpres-
sions inM of the form{M'} ., were already replaced Wy, s}, ) when we constructed/;.
According to the properties listed in propositi@ril3 L; may onlf/ appear irC“({M/}Lj) as the
encrypting key, and theh, = L, a contradiction. Sd.; cannot appear if/;,_, in any other
place than an encrypting key. Observe as well, Rrdtey$/)/;) = R-KeysM ).

From assumption (ii), it follows then théd/; ] ~ [M;]s, foralli, 1 <i < b. Hence,

[M]s = [Mo]o ~ [Ms]s. (2.3)
Carrying out the same process f§v through(No)o, (No)y, ..., (No), we arrive at
[(No)]o = [(No)ole = [(No)y]e. (2.4)

Since we supposed that = N, that is, pattern(M) = patternfNo), and thereforel, =
pattern M) and(No), = pattern(No), we have

[My]e = [(No)y]e. (2.5)

Then, it is clearly true that
[N]e = [No]e (2.6)

because permuting the keysMdoes not have any effect in the distributions. Putting together
Equations2.3), (2.4), (2.5 and R.6) the soundness result follows:

[M]e ~ [N]e.
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Remark 3. The reader might ask why we do not have a similar general theorem for key-cycles
and KDM-like security. The reason is that this general soundness theorem tells us in which
conditions the several steps of the Abadi-Rogaway hybrid argument can be carried out. One of
the conditions is that by doing one step of replacement, we must obtain equivalent interpretations,
provided that we have the appropriate security notion. However, in our theorem using KDM
security to solve the key-cycles issue, there is only one step of replacement! All the replacements
of undecryptable terms is done at once. Therefore, in a general theorem (without assuming a
specific security level), the condition of the theorem would have to be exactly what we would
want to prove.

Example 2.12 (Type-1 Soundness)The soundness theorem we presented earlier for type-1
encryption schemes is a special case of the theorem above. In thi€xpse= Exp; the
equivalence relatiosc is as in Exampl2.6, which is proper as we mentioned in ExamBl&Q

and the equivalence relatier is trivial here, all keys are equivalent. The elements Qg are

in one-to-one correspondence with the possible length, so the patterns that we obtain this way are
essentially the same what we defined in Sec®@dh], and the equivalence of expressions will be

2, that we also defined there. In order to see that condition (ii) of the general soundness theorem
is satisfied for type-1, we will use the following equivalent definition of type-1 secure encryption
schemes: we can also say that an encryption-schetyipasl securé& no PPT adversari can
distinguish the pair of oraclé€ (%, -, -,0), (K, -,-,0)) and(E(k, -, -, 1), E(k, -, -, 1)) ask andk’

are independently generated, that is, for all PPT adversaries

Pr [k, K K(17) : ASOE60) (ny — 1] —
Pr [k «— K(17) : ASEDERD ) = 1] < neg (1)

where the oracl€(k, -, -,0), upon the submission of two messages with equal lengths encrypts
the first, and the oraclé(k, -, -, 1) encrypts the second.
To show that condition (ii) of Theorei®.14 holds, we first have to chooS&, },¢,(¢) for
a given se® = {{N;};,}i~,. We can choose any familfC, }, .. such that all the”, are
encrypted with the same key, let’s calllit, that is not present in any of tHeV;}, (neither in
M). This is possible, because, as it is easy to check,= Keysfor all v € Qgne. Then, letM
be as in condition (ii). We need to show that{ifV;, }.},_, € ¢ and if we denote by\/’ the
expression obtained frodv by replacing eachV;, } ., with Cuvi; 1) then[M]s ~ [M']s.
Suppose thatM ] % [M']s, which means that there is an adversarhat is able to distin-
guish the two distributions, that is

Priz «— [M]o, : A(1",z) = 1] = Prlz «— [M']s, : A(1",z) = 1]

-
is a non-negligible function ofi. We will show that this contradicts type-1 security. To this
end, we construct an adversary that can distinguish between the two pair of oracles above. This
adversary is the following probabilistic algorithm that access to the orgchesl g:

algorithm B/ (17 M)
for K € KeysM)\ {L, Lo} do7(K) «— K(1")
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y «— CONVERT2(M)
b «— A(l”,y)
return b

algorithm CONVERT2N)

if N = K whereK € Keys then
return 7(K)

if N = B whereB € Blocks then
return B

if N = (Ml, Mg) then
x «— CONVERT2(M,)
y «—— CONVERT2(M,)
return [z, y]

if N ={M},then
z «— CONVERT2(M;)
Y CONVERTQ(M,,) (where CM({Ml}L) = {MV}L())
z— f(z,y)
return z

if N ={M},then
z «— CONVERT2(M;)
y < g(z,z)
return y

if N={M}x (K &{L,Lo}) then
z «— CONVERT2(M;)
y — E(r(K), )
return y

Note that the algorithm CONVERT2 does almost the same as the algorithm CONVERT in Fig-
ure2.1, except that while CONVERT carries out all the necessary encryptions, CONVERT2
makes the oracles carry out the encryptionsgfandL,. Therefore, in the case, when the pair of
oracles(f, g) is (£(k,-,-,0),E(K,-,-,0)), then CONVERT2M) will be a random sample from
[M]s,, whereas if the pair of oracles used(&(k, -,-,1),£(k,-,-, 1)), then CONVERT2M)

will be a random sample frorf\/']s, . Thus,

Pr [k’, K — k(1) : BEK O ER0) (g ppy = 1} = Prlz «— [M]s, : A(1",2) = 1]
and
Pr [k «— K(17) : BE®DEED (1 A = 1] = Prlz «— [M']s, : A(1",2) = 1]

But, according to our assumptiofi\/ ] and[M’]s can be distinguished, that is,

Priz «— [M]o, : A(1",z) = 1] = Prlz «— [M']s, : A(1",z) = 1]

n
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is a non-negligible function of and so, there is an advers&¥¢(17, -) such that

Pr [k Ko K(17) : BEGer W 0 (10 Ny = 1} -
Pr [k «— K(17) : BERnDEGb (A1) = 1]

is also a non-negligible function of. This implies that our scheme cannot be type-1 secure,
which contradicts the assumption. Hence, we cannot fisig 7% [M']s. Hence, condition (i)
of the general soundness theorem is satisfied, so soundness holds for the type-1 case.

Example 2.13 (Type-2 Soundness)The soundness theorem we presented earlier for type-2
encryption schemes is also a special case of the theorem above. In thixpgse- Exp; the
equivalence relatioeec is as in Exampl&.7, which is proper as we mentioned in Exam@l€;

and the equivalence relaticrk is trivial here, all keys are equivalent. The elements Ognc

are in one-to-one correspondence with the keys, so we ca@say= Keys, and thus the boxes
are labelled with keys. In this cagegives an interpretation in the computational setting. Then
for a set¢ = {{N;}.,}, as in condition (ii) of the theorem, we can takg, := {0},,, and
then condition (ii) is satisfied, because the following proposition holds:

Proposition 2.15. Consider an expressioi/, and a keyL € KeygM). Suppose that for some
expressions\/y, Mo, ..., M; € Exp, {M,},{M2}r,....,{M;};, T M, and assume also thdt
does not occur anywhere else/h. Then, denoting by/’ the expression that we get frahh by
replacing each of M/;}, that are not contained in any af/; (j # i) by {0}, [M]s ~ [M']e
holds when the expressions are interpreted with a type-2 encryption scheme.

Proof. We can assume, without loss of generality, that,}, is a subexpression ofM,},,
only if ¢ < j. Suppose thafM]e % [M']e, which means that there is an adversaryhat
distinguishes the two distributions, that is

Pr(z «— [M]o, : A(1",2) = 1) — Pr(z «— [M']o, : A(1",z) = 1)

is a non-negligible function ofi. We will show that this contradicts type-2 security. To this
end, we construct an adversary that can distinguish between the a&féclesand€ (k, 0). This
adversary is the following probabilistic algorithm that access to the orfacle

algorithm B/ (17, M)
for K € KeygM) \ {L} do7(K) «— K(1")
y «— CONVERT2(M)
b— A(1",y)
return b

algorithm CONVERT2N)
if N = K whereK € Keys then
return 7(K)
if N = B whereB < Blocks then
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return B

if N = (Ny, Ns) then
z — CONVERT2(N,)
y «— CONVERT2(N,)
return [z, y]

if N ={N;},then
z — CONVERT2(N;)
y «— f(z)
return y
z — CONVERT2(N,)
y «— E(7(K), )
return y

Note that the algorithm CONVERT2 does almost the same as the algorithm CONVERT in Fig-
ure2.1, except that while CONVERT carries out all necessary encryptions, CONVERT2 makes
the oracles carry out the encryptions for Therefore, in the case, when the orafls £(k, -),

then CONVERT2M) will be a random sample froniM]s,, whereas if the oracle used is
£(k,0), then CONVERT2M) will be a random sample frorf\/']s, . Thus,

Pr [k «— K(17) : BE®) (17, M) =1] = Prfz «— [M]s, : A(1",2) = 1]
and
Prlk«— K(17): BERO (17 M) =1] = Prlx «— [M]s, : A(1",2) = 1]

But, according to our assumptiofi\/]s and[M’]s can be distinguished, that is,

Priz «— [M]s, : A(1",2) = 1] = Prlz «— [M']s, : A(1", ) = 1]

is a non-negligible function of and so, there is an adversa@y(1”, -) that can distinguish the
oraclesE(k, -) and&(k, 0), for randomly generated keys This implies that our scheme cannot
be type-2 secure, which contradicts the assumption. Hence, we canndfhiyves [M']o. O

Hence, condition (ii) of the general soundness theorem is satisfied, so soundness holds for
the type-2 case.

Example 2.14 (Soundness for One-Time Pad)n order to see that the formal treatment of
Section sec:OTP is a special case of the general formalism=gle® that two encryption terms

are equivalent, iff (again) the encryption terms have the same encrypting key. The equivalence
of keys,=k is defined with the help of a length-functiéon the keys: two keys are equivalent

iff they have the same length. The boxes will again be indexed by the encrypting keys. Then
for a set¢ = {{N;},};_, as in condition (i), takeC;,, := {0yr,)—3}z, (Where0;, -3 means

I(L;) —3 many0’s). Itis not hard to check that within this setting, condition (ii) of the soundness
theorem is satisfied, which is an immediate consequence of the following proposition:
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Proposition 2.16. Consider a valid expressiol € Exp,rp, and a keyk, € KeygM). Sup-
pose that for some expressioty, { M}k, is a subexpression df/, and assume also thdt,
does not occur anywhere else/h. Then, denoting b}/’ the expression that we get frak by
replacing { Mo } k, With {0x,)-3}k, (Where0,x,)—s denotes as string consisting 4f,) — 3
many0’s), the following is true whes is the interpretation for OTP:

[M]s = [M']s. (2.7)

Proof. The basic properties of the OTP ensure théf/, } x, ) is evenly distributed over the set
of [(K)) long strings ending with 10, no matter what\/, is. So the distribution o® ({ M, } k, )
agrees with the distribution df({0;(x,)—3} x, ). Also, sincek, is assumed not to occur anywhere
else,®,,(K)) is independent of the interpretation of the rest of the expreskipand therefore,
O({Mo}k,) and ®({0yx,)-3}x,) are both independent of the interpretation of the rest of the
expression. Hence, replacidy { My} x,) with ®({0;x,)-3}x,) Will not effect the distribution.

O

2.5.5 Parsing Process

The technique that we present in this chapter will be very useful in the course of proving our
completeness results. The idea can be summarised as follows: Given a sample element
[M]e, x is built from blocks and randomly generated keys which are paired and encrypted. Some
of the keys that were used for encryption whewas built might be explicitly contained in,
and in this case, using these keys, we can decrypt those ciphers that were encrypted with these
revealed keys. The problem is though, that looking ,at might not be possible to tell where
blocks, keys, ciphers and pairs are in the string of bits, since we did not assume in general that
we tag strings as we did for OTP. However, and we will exploit this fact repeatedly in our proofs,
if we know thatz was sampled froniM ] for a fixed, known expressiol/, then by looking at
M, we can find inx the locations of blocks, keys, ciphers and pairs, and we can also tell from
M, where the key decrypting a certain cipher is located. On the following couple of pages, we
present a machinery that, using the form of an expresaigrextracts from anc «— [M]q
everything that is possible via decryption and depairing, and distributes the extracted elements
over a special Cartesian product of copiestafings.

Throughout this section, we assume that= (Exp,,, =k, =c) and an interpretatiof® in a
general symmetric encryption scheifie= ({K;};c;, €, D, =) is given.

In this chapter we will often use the notion sfibexpression occurrenad/in M. This
means a subexpression together with its positionin The reason for this distinction is that
a subexpression can occur several timed/inand we want to distinguish these occurrences.
But, to avoid cumbersome notation, we will denote the subexpression occurrence just as the
subexpression itself. We start by defining the notion of 0-level subexpression occurrences of an
expressionV/:

Definition 2.39 (Level 0 Subexpression Occurrences}-or an expressiof/, let us calllevel O
subexpression occurrencedl those subexpression occurrenced/rthat are not encrypted. Let
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subo (M) denote the set of all level 0 subexpression occurrencés.ile write N Ty M if N
is a level O subexpression occurrence\oin M.

For an element «—— [M]s, the first thing to do is to extract everything that is not encrypted,
which means that we have to break up all pairg,@and replace them with mathematical pairs.
This process reveals the unencrypted blocks, keys and ciphersi.e., the computational or
statistical realisations of the 0-level subexpression occurrences).

Definition 2.40 (Blowup Function). For each valid expressiai/, we define thélowup func-
tion B(M ), onstrings inductively as follows:

B(K)x :=x for K key

B(B)z := x for B block

B((My, My))x == (B(My) ® B(My)) o [,-] 7! (x)
B{N}k)r = =x.

WhereB(M,) & B(M,) denotes the functiofw, y) — (B(M;)x, B(Ms)y).
The elemenB(M)zx is an element of, (M), which we define inductively the following way:

Definition 2.41 (Associated 0-Tree).The O-tree associatedb a pair of expressiond and M
wheneverN C, M, will be denoted byZ,(N, M), and we define it inductively as follows:

To(K, M) := strings

To(B, M) := strings

To((My, M), M) := To(My, M) x To(Ma, M)
(

To({M'}ic, M) := strings
Let Ty(M) := To(M, M).

We remind the reader that we do not idenfiggrings X strings) X strings with strings x
(strings X strings).

Note also that for expressions T, M’ andN C, M, we have thallo(N, M') = To(N, M).
Nevertheless, we includet in the definition ofZ; since for higher order trees, which we shall
define later, thé\/ in the second argument will make a difference.

Example 2.15.For the expression

M= (({0}K6, Kb b, ) ((m, ({001} i { Kb}, ) {K5}K2)>,

Subo(M) =
{0 s (UK e Yoo Ko, {1001 i (s baea)} s TS b (10} (KT hae b ).
(Km {({001} g, {KG}KS)}K5>7 ((K% {({001} g, {K6}K5)}K5>, {K5}K2) , M

Y
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and

To(M) = (strings X strings) X ((strings X strings) x strings).

Blocks, keys and ciphers are replacedhbyings, pairs are replaced by. An element: sampled
from [M]4 looks like

ool [0

wherec; is a sample fronf{0} ]+, c2 is a sample from{{{K:}x, } x.]s, k is a sample from

[K>]s, cs is a sample fronf{ ({001} k,, {KG}K5>}K5]]<I>! andc, is a sample fron{{ K5} x,]o-
When we apply the blow-up function to this elementve obtain

((ave) ((hoa)a))

which is an element of (M ).

Proposition 2.17. For an expression, if x «— [M]e, thenB(M)(z) € To(M).

Proof. Immediate from the definitions & and7. O

Perhaps it is even clearer if we label the copiesteings in 7,(M ) with the formal expres-
sions that they belong to:

!

(K
7, (B, M) := stringsp

Ty ((My, My), M) := Ty (My, M) x T (My, M)
Ty({M'} i, M) := strings .y, .

o’\‘i

, M) := strings

In our example,

T, M) = (Sope, X Sttrbiy e, ) X (S50 X SE000e Kby i) X Sika, )

where we used as a shorthand faitrings.
In the previous example;, is a random sample froM{ K5} ,]s, and the function that
projects onto the last copy etrings in 7,(1), namely, ontostrings, Ks}r, EXIractsey from

the blow-up. Similarly, projecting onto the other copiesstfings, we extract samples form
[{0} kelos [{{ K7}k, } i, ]o €tC. To implement this idea in the general situation, we define what
we can call the “0-Get Functiorg, (N, M) for an expressiof/ and a subexpression occurrence
N, wheneverN is not encrypted inV/. Forx «—— [M]e, the purpose of, (N, M) is to extract
from B(M)x the sample of N]¢ that was used for computing The precise definition is the
following:
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Definition 2.42 (0-Get Function). For subexpression occurrenc®sC, N’ T, M, we define
the 0-get function associatet the triple (V, N', M), Go(N, N', M) : To(N', M) — To(N, M)
inductively in N’ as follows:

QO(N, N, M) = id’To(N,M)

Go(N, My, M) o % vr anxz 1T N oceurs indy,
Go(N, (My, My), M ::{ 0(M1,M)xTo (M2, M) .
o(NV, (My, M), M) Go(N, My, M) 0 T 11 vpyssamary  Otherwise
We defineGy (N, M) := Go(N, M, M).
Example 2.16.In the previous example,
g0<{0}K67M)7 gO({{K7}K1}K47M) : 76<M) — strings
Go ({0} ko, M) (21, 22), (w3, 4), 25)) = 1,
gO({{K7}K1}K47 M) (('rly xZ)u ((x37x4>7x5)) = T2,
etc; that isGo ({0} x,, M) does the projection onttrings oy, , Go({{K7}x } x,, M) does the
projection ontcstrings K1}, )i, €1C

Observe, that for two expressiongandN, if 7o(M) = 7y(N), then for anyM’ € suby (M),
there is a uniquéV’ € suby(N) such thatiy(M', M) = Go(N’, N). This motivates the following
definition:

Definition 2.43 (Same Position of Subexpression Occurrencedjor two expressiond/ and
N, if To(M) = Ty(N), we say thatV/’ € suby(M) and N’ € suby(M ) are in the same position
at level Q if
go(M/, M) — go(N/, N)
Let
F()(N, M) : Subo(M) — Sub()(N)
denote the unique bijection such that
Go(M', M) = Go(To(N, M)M', N)
for all M’ € suby(M).

Example 2.17.Let N = ((0,0), ((0,0),0). Then, if M denotes the expression from the previous
examplesZ,(N) = 7,(M). Enumerating th@'s in NV, we get the subexpression occurrences
0; =0,0, =0,05 =0,04, =0and05 = 0, with N = ((04,02), ((03,04), 05). We have that:

(
Lo(N, M){{ K7}k, } i,y = 02
To(N, M) Ky = 0
FO(N7 M){({001}K37 {KG}K5)}K5 =04
Lo(N, M){ K5}k, = 05
Lo(N, M)<{O}K6’ ({{K7}K1}K4> = (01,02)
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For an expression/, let C,; denote the set of all those subexpression occurrencés in
which are ciphers encrypted by recoverable keys, i.e.,

Cu={{M'}x T M |{M'}x € vis(M)and K € R-KeysM)}.

We emphasise that in the previous definition we are referring to subexpression occurrences, that
is, if an encryption term is encrypted with a recoverable key occurs twidé,ithen it will be

listed twice inC,,. Since we assume that the elements of this set are encrypted by recoverable
keys, it is possible to decrypt these elements one after the other, using only information contain-
ing M. Therefore, it is possible to enumerate the elements of this set in an order in which we
can decrypt them by taking keys froid, decrypting what is possible with these keys and hence
revealing more keys and then decrypting again with those keys etc. Let the total number of this
set be denoted by(A/). Then

Cy = {C,C2, ..., CY,

Note that this enumeration is not unique. Also, note that the numbering does not mean that you
can decrypt the ciphers only in this order. ICéjey denote the key that is used in the encryption

C* and letC},,, denote the encrypted expression.
Example 2.18.1n our example, the only possible way to enumerate is
C' = {Ks}r,
= { ({001} iy, { K6} i) } .
C° = {Ks}xs
C* = {0} g,

Now, to each expressiof/, we associate the “1-Decrypting Functiof; (). It acts on
To(M) and works as follows: for any e 7,(M), the functionD, (M) extractsGy(C*, M)t from
stringsci, Go(C,y, M)t from stringscy and with the latter decrypts the former if that is
possible (namely, if they are of the rlght form: the former a cipher and the latter a key). The result
is then broken into mathematical pairs, and what we get this way is put in the last component of
the setstrings x {0} x 75(Cy.,,), while Go(Cy,, M)t goes into the first component. That is,

text

the following element is created:
(GlChys M0t 0. BC)(P(G(CLy MG 00) ) ).

If (Go(Cley» M)t,Go(C*, M)t) ¢ Domp, thenD; (M) outputs(0,0,0). The rest ofZy(M)
is left untouched. We warn the reader for the similarity of notations between the decryption
algorithm of the encryption schenie(-, -), and the 1-Decrypting functio®; (). This notation
is convenient a®; () is the function that decrypts the ciphers encrypted with recoverable keys
at levels<. We will always index this functions with the respective inddé® avoid confusions.

Let us introduce the notation

T (M) = {t € To(M) | (Go(Chley» M)t, Go(C", M)t) € Domyp } .
Then,
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Definition 2.44 (1-Decrypting Function). For expressionsv T, M, we define the function
D, (N, M) on7y(M) inductively as follows: Let € 7,(M). Then

Dy (K, M)t := Go(K, M)t

Dy (B, M)t := Go(B, M)t

Di({M" Y, M)t = Go({M" e, M)t if K ¢ R-Keyg¢M)

Dy ((My, M), M)t = (Dy(My, M)t , Di(Ms, M)t)

Dy(CY, M)t

(go< by ML 0, B(Clo) (D(Go(Clys ML Go(CH, M) ) i ¢ € T (M) and j = 1
(0,0

G

0,0,0) if t ¢ 7C (M) and j =1

We introduce the notatio®; (M) := D, (M, M), this is what we will be interested in.

We remark, that it is not important how we defife(C', M)t whent ¢ T,C" (M), we will
not need that. We chosé, 0, 0) just for convenience.

Example 2.19.In our running example we have

M = <<{0}K67{{K7}K1}K4)7 ((K2> {<{001}K37{K6}K5)}K5>7{K5}K2)>'
With the choiceC'! = {K°}k,, we obtain

((:131, 5), <($37 @4), (3,0, B({Ks}x,)(D(zs, $5))>>)

if (l’g, 513'5) S Domp
((z1,22), (23, 24),(0,0,0)) otherwise

Dy (M) ((1, 22), (23, 24),25)) =

The target set oD, (M) is naturally notZ,(M), because instead of the copy sifrings
corresponding t&' we now have a set of the forstrings x 0 x 75(CL,,). We will call this
new setZ; (M), and so we extend the definition @ to higher order, up t@;, (). First we
need the following:

Definition 2.45 (Level: Subexpression Occurrences)We will say that a subexpression oc-
currenceN C M is level: with respect taC,,, and denote this relation by C; M, if the
occurrenceV is not in the occurrenc€” whenever < j. Letsub (M) denote the set of level
subexpression occurrences.

Notice, that the level subexpression occurrences are all those which are revealed’énce
C?, ... C" are decrypted.
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Definition 2.46 (Associatedi-Tree). We inductively define the-tree associatedo a pair of
expressionsV C; M, and denote it by;(N, M):

T:(K, M) ::= strings

T,(B, M) := strings

T;((My, M3), M) := T;(My, M) x T;(Mj, M)

strings x {0} x T;(C/_,, M) if j <i
strings otherwise

Tio1({M'} g, M) :=strings  for K ¢ R-Keys$ M)

(e )= |

Let 7;(M) := T:(M, M).

Note that we only “open” the encryptions performed with the keyR-ikey$1/) and at each
step: we only open th&"” such thatj < i.

Fact 2.47.For any expressions/ and N, we have tha;(M)N7Z;(N) =0 or ;(M) = T;(N).

Similarly, we need to defing;(N, M) andD; (M) for 0 < i < ¢(M). The first one projects
onto the copy oktrings in 7;(M) that corresponds t&/, and the second maps an element in
7;_1(M) into 7;(M) decrypting the string corresponding@ with the appropriate key.

Definition 2.48 (i-Get Function). For subexpression occurrenc&sC; M, N' C; M (0 <
i < ¢(M)) such thatV occurs inN’, we define the mapget-function associatetb the triple
(N,N', M), G;(N,N' M) : T,(N', M) — T;(N, M) inductively as follows:

QZ(N, N, M) = id?}(N,M)

gi(N7M1’M)OW%-(MLM)XTZ-(MQ,M) |fNEM1
Gi(N, Mz, M) o 7% 01, apyxziapary  OthETWiSE
Gi(N,C M) := G;(N,C) ., M)om forj <i,N # C’

text»

Gi(N, (My, M), M) := {

3
(O M) X {0} XT3 (M)

Define
Gi(N, M) := Gi(N, M, M).

Definition 2.49 (Same Position of Subexpression Occurrencedjor two expressiong/ and
N, if T;,(M) = T;(N), we say that\/’ € sub;(M) andN’ € sub;(M) are in the same position at
leveli, if

Gi(M', M) = G;(N',N).

Let

denote the unique bijection such that

forall M’ € sub;(N).
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Let
TE(M) = {t € T1(M) | (Gi—1(Clay, M)t, Gi—1(C", M)t) € Domp } .

Definition 2.50 (-Decrypting Function). For expression®V =; ; M andl < i < ¢(M), we
define the ma®;(N, M) : T,_,(M) — T;(N, M) inductively as follows: Let € 7;_,(M)
D-(K M)t = G;_ (K, M)t
D1<{M/}K7 )t - gi*l({M/}K7 M)t if K ¢ R_Key$M)
Di((My, M), M) = (Di(My, M)t, D;i(Ma, M)t)
Di(C7, M)t :
gl ( key? M)ta O7Di<cgext7 M)) if J <t

= Gi- 1( key7 )t’ O7B(Ctiext)( (gl ( keyv )tagi—l(civM)t))>vt € Zgll(M%] =1
(0,0,0)  ift ¢ TC (M) and j =i
Gi1(CI, M)t if j >4

Let
D(M) := Doary(M) o ... o Dy (M) o B(M)

The composition of function®; (M) (in order) decrypt all the ciphers that are encrypted with
recoverable keys. At the en®()/) decrypts all ciphers encrypted with recoverable keys upon
an input from samplingM | .

Example 2.20.In our on-going example,

- (({O}Km{{mmm), (e {<{001}K37{Ka}K5>}K5),{K5}K2)>7

If y is a sample fronjM |4, thenD(M )y has the form

(((967070%91), <<y2, (55,0, (ys, (ys,O,yg)))), (y2,0795))>,

Whereys,, y5, ys are outcomes of the key-generation algorithgx., ), Ko x,), Kg(xs) respec-
tively, y; is an undecryptable sample element friPffd K7 } «, } k,] o, @andys is an undecryptable
sample from[{001} x,]s. Moreover,(ys, 0, 0) indicates that the keys; encrypts the plaintexi,
(y2,0,ys) indicates that the key, encrypts the plaintext; (which is also a key), and so on.

The following lemma essentially claims that if the interpretation is such that conditions (i)
and (ii) below hold, then for any two valid expressiahsand N, the distribution ofD(M )z,
wherezx is sampled fron{M |4 (let D(M)([M]e) denote this distribution), is indistinguishable
from the distribution ofD(N)y, wherey is sampled fronf N]¢ wheneveM]e =~ [N]o.

For a functionf onstrings, let f([M]e) denote the probability distribution ¢f(x) asz is
sampled fron{M]s.
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Lemma 2.18.Let A = (Exp,,, =k, =c) be a formal logic for symmetric encryption, and {et
be an interpretation oExp,, in IT = ({K;}icr, £, D, ~). Suppose that this realisation satisfies
the following properties for any, K, K" € Keys B € Blocks M, M', N € Exp,:

(i) no pair of [K]s, [Ble, [(M,N)]s, [{M'}k]e are equivalent with respect ts; that is,
keys, blocks, pairs, ciphers are distinguishable.

Q) If [(K, {M}i)]o ~ [(K", {M"})]o, thenK’ = K"

Let M and N be valid formal expressions. L&, = {C},, ...Cj}M)} be an enumeration of all
ciphers encrypted by recoverable keyslinsuch that they can be decrypted in this order. Then,
[M]s =~ [N]e implies thate(M) = ¢(N), andCy = {Cy, ..., Cf\;N)} can be enumerated in the
order of decryption such thdt. ., (N, M)C}, = C%. Moreover, with this enumeration Gfy,
D;(M) =D;(N), and

D(M)([M]a) = DIN)([N]a)
Proof. Let M and N be expressions such thgt/]s ~ [N]s. Since we assumed condition (i)
and since the equivalenee is assumed to be invariant under depairing, the pairs that are not
encrypted i}/ and in N must be in the same positions, andd/) = B(/N) must hold. Since
the blow-up function is obtained by repeated application of the inverse of the pairing function,
projecting and coupling,

B(M)([M]s) ~ B(N)([N]s). (2.8)

As mentioned in Propositic?.17, if = is sampled fronfM ], thenB(M )z € 7,(M). Therefore,
To(M) = Ty(N).
SinceZy(M) = 7y(N), there is a unique bijection
Lo(N, M) : suby(M) — suby(N)
that satisfies
Go(M', M) = Go(To(N, M)M', N).

Let C}, = {C}W’text}%key and L, := I'o(N, M)C};,.,. L1 must be a key for the following
reason: o

(Go(Chreys M) 0 BIM))([M]a) = (Go(Cy ey, M) 0 B(M))([N]a),
since we again apply the same functigi(C}, ., M) o B(M) on [M]s and [N]s, and this
function is made up of depairing, projecting and coupling. But, for the left hand side we clearly
have

(Go(Clpey: M) 0 B(M))([M]a) = [Chy eyl
and for the right hand side,

(Go(Cht ey M) 0 BIM))([Ne) = (Go(L1, N) o B(N))([N]a) = [Li]e-
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Therefore, by assumption (I); must be a key. Similarly,
(Go(Cars M) 0 B(M))([M]a) = (Go(Ciy, M) 0 B(M))([N]a)-

The left-hand side equal€’i,]+, hence we need to have an interpretation of a cipher on the right
too, implying that for soméV’ expression and key,

FO(N> M)Czlw - {N,}L

and hence
Go(Crr, M) = Go({N"}1, N). (2.9)
Then, according to the foregoing,
(Go(Chreys M), Go(Ciyy M)) 0 B(M)) = (Go(L1, N), Go({N'} 1, N)) o B(N),

and therefore,
<(g0(011\4,key7 M), 90(011\4, M)) o B(M)) ([[]\/[]]q)) ~
<(g0(L17N)7QO({N/}L;N>) OB(N)> (INTa).

But, the left-hand side equal&C}, ..., C')]«, whereas the right-hand side[ig.,, {N'} )], SO
we have

[(Chipey: Callle ~ [(L1 AN} 1)]a-
By assumption (ii) then, = L, follows, becaus&”}, = {011\47text}0i4_key' But then we can
choose the first element 6 to be the occurrencgN’} .., and with this choice,
Di(M) = Dy(N).
Therefore
Dy(M)(B(M)([M]es)) = Dy(N)(B(N)([N]e)),

and therefore,
T.(M) = T,(N),

becauseé, (M) (B(M)([M]e)) gives a distribution or¥; (M), andD, (N)(B(N)([N]e)) gives
a distribution orz; (V).
An argument similar to the one above shows that

Namely, there is a unique bijection
['y(N, M) :sub (M) — sub (N)

satisfying
Gi(M', M) = G (Ly(N,M)M', N).
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Then, just as we proved fdr;, Ly := I'; (N, M)Oﬁey must be a key, and
L1(N, M)C? = {N"}y,
for someN” expression, implying that
Dy(M) = Dy(N).
And so on. So
Deany (M) o ... o Dy(M)(B(M)([M]e)) = Deqary(N) 0 ... o Dy(N)(B(N)([N]e)),
since the functions applied on\/]s and [N]e are the same, and they are made up only of

depairing, projecting, coupling and decrypting. Thefil/) < ¢(N). Reversing the role ol/
andN in the argument, we get thatN) < ¢(M), and sa:(M) = ¢(N). Hence,

and
D(M)([M]e) = D(N)([N]e).

We illustrate our proof with the following example:

Example 2.21.Suppose again, that

M= (({0}K6, Kb b ) ((KQ, ({001} iy { Kb}, ) {K5}K2)>,

and assume that conditions (i) and (ii) of the lemma are satisfied. Suppogé thatso a valid
expression such thél/]e ~ [N]s. Let

Chyr = {Ks}
Cxr = {({001} sy, { K6} i),
Chr = { Ko}k
Cf% = {O}Ka'

M is a pair of two expressions/ = (M;, Ms). Then, sincd(M;, Ms)]e = [N]s, condition (i)
of the lemma ensures that must be a pair tooN = (N1, N»). Then, since

[[Ml]]q) = 71-;tringsxstrings © [.7 ']_I(HMH(D)’

and
[[Nl]]q) - 7T'sltringsxstrings © [.’ ]71([[]\[]]41))
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(whererl . denotes projection onto the first componenstfings x strings), and

strings xXstrings

since~ is assumed to be preserved by depairing and projecting, it follows that

[Mi]e ~ [N1]e.

Therefore, sincé\/; is a pair,/N; must be a pair too. We recursively apply this argument and
this way we conclude, that the non-encrypted paird/irare in the same position as the non-
encrypted pairs iV, hence

It also follows then, that

To(M) = (strings X strings> X <(strings x strings) x strings) = To(N).
At this point, we know thatV has the form
N = (N3, V), (N5, Vo) V7))

Now, we tookC'}, to be{ K5} r,, the corresponding string, which is a cipher, is located in the last
component of/,(M). The key string that decrypts this cipher is located in the third component
of 7y(M). Hence
QO(C}W, M) = W’E}O(M)
and
g0<0]1\/[,key7 M) = 7T370(M)-

But then, sincery, ;) preservess, it follows that

Ton(BM)([M]s)) = 77,00 (BIN)([N]a)),

and
00 (BM)([M]s)) = 75, (BIN)([N]s)).
It is also true that

But
Go(Cirey: M)(B(M)([M]s)) = [K>]e,
and
Go(Ns, N)(B(N)([N]e)) = [Ns]e,
SO

[Nslo ~ [Ks]e,

and hence, by the assumption (i) of the lemma, it follows Mamust also be a key, let us denote
it with L,. Similarly,
7T§'O(N) = gO(N% N)v
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but then
[N7]o = [{ K5} i, ] e,

and thereforéV; must be a cipherN; = { N’} for some expressiolV’ and keyL. To get that
L = L, consider

(T30 Tan) © BIM)([M]e) = [(K2, { K5} i, )]e

and
(T v T w) © BIN)([N]e) = [(L1, {N"})]e.
From this, since the left-hand sides are equivalent, we conclude that
[(F2, { K5} ko)]o =~ [(L1, AN} o)]o
which means by condition (ii) of the lemma that

L=1,.

Therefore, if we defin€}, as{ N'} ., then these terms and the keys that decrypt them are also in
the same position, so
Dyi(M) = Di(N).

Remember from examp19 thatD, (M) = D, (V) does the following:

((acl, xz), ((11037 T4), (x37 0, B{Ks}k,)(D(xs, x5)))>)

if ($3,.T5) € Domp
((z1,22), ((23,24),(0,0,0)) otherwise,

Di(M)((z1,22), (23, 24), 75)) =

so if x is sampled fronfM ] or [N]s, thenDy (M)(B(M)x) = Dy (N)(B(N)x) has the form

((o12). ((22:0) (00.0.50)) ).

and

Ti(M)="T,(N) = (strings X strings) X <(strings xstrings) x (strings x {0} x strings))

Then, we continue this process until we show tBat)V/) = Dy (N).

2.5.6 Completeness

We finally present our completeness result. Condition (ii) is equivalent to what the authors in
[HGOJ call weak key-authenticity. Observe, that the issue of key-cycles never rise throughout
the proof.
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The proof consists of two separate parts. In the first, it is shown that conditions (i) and (ii)
imply that if M and N are valid expressions arffd/]s ~ [N]e, then there is a key-renaming
o, such that apart from the boxes, everything else in the patterhé afid Vo is the same, and
the boxes in the two patterns must be in the same positions. Moreover, condition (iii) implies
that picking any two boxes of the pattern 8%, there is a key-renaming, such that applying
it to the indexes of these boxes, we obtain the corresponding boxes in the patférnTdien
the theorem follows, if we prove that using these pairwise equivalences of the boxes, we can
construct a’ that leaves the keys df o outside the boxes untouched, and it maps the indexes
of all the boxes ofVe into the indexes of the boxes of.

Theorem 2.19.Let A = (Exp,,=k,=c) be a formal logic for symmetric encryption, such
that =¢ is proper and that=k and =¢ are independent. Leb be an interpretation inl =
({K:}ic1, €, D, ~). Completeness fob holds, if and only if the following conditions are satis-
fied: For anyK, K', K" € Keys B € Blocks, M, M', N € Exp,,

(i) no pair of [K]e, [Ble, [(M, N)]s, [{M'} k] is equivalent with respect te; that is,
keys, blocks, pairs, encryption terms are distinguishable,

(i) if [(K, {M}x)]o ~ [(K", {M'} )]s, thenk’ = K",

(i) for any two pairs of valid encryption ternt$ M, } 1, { M2} 1,) and ({ N1}z, { N2} 1), we
have that
(M3 10, AMo}1o)]e =~ [({NV F g AN} )]
implies
({ My}, {Ma}r,) = ({Nifry, {Na}ry)-

Proof. The only if part is trivial. In order to prove the if part, consider two expressidrnsnd N
such thaf M]s =~ [N]e. By condition (i) and (ii), Lemm®.18is applicable, so;(M) = ¢(N),

D(M)([M]e) = D(N)([N]e),

and
Ty (M) = Ty (N).

In each entry off; ;) (M) andZ.y)(INV), the distribution corresponds either to the interpretation
of a key, or of a block, or of an undecryptable ciphiez.(one that corresponds to a box). Natu-
rally, the same blocks must be in the same positiori@f) (M) andZ;x)(V), because the dis-
tributions of D(M)([M]s) andD(N)([N]s) are indistinguishable, and because of condition (i).
Hence, the patterns dff and N contain the same blocks in the same positions. Moreover, since
D(M)([M]s) andD(N)([N]s) are indistinguishable, the entriesTfy (M) and inZ; ) (N)
containing strings sampled from key generation must be in the same places because of (i) again.
Furthermore, the indistinguishability @f (M) andZ;v)(/V) also implies that repetitions of

a key generation outcome must occur in the same positioffg 9f(M) and 7.y (V) as well.
(This is a consequence of the properties of key-generation in defi2is&) Therefore the key
symbols in the patterns @i/ and/NV change together, so it is possible to rename the recoverable
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keys of N (with a =k preserving functior so that the keys in the pattern 8fc are the same
as the keys in the pattern of1.

Since the distributions ob(M)([M]s) andD(N)([N]e) are indistinguishable, condition
(i) implies that the undecryptable ciphers occur in exactly the same entrigs,j(}) and
7. (N). This means, that in the pattern df and.V, the boxes appear in the same position.
This together with the conclusions of the previous paragraph means, that apart from the boxes,
everything else in the pattern 8f and of No must be the same. By replacidgwith No, we
can assume from now on that the recoverable keyg ahd M/ are identical, and that the pattern
of M and N are the same outside the boxes. Therefore, we only have to show that there is a key
renaminge’ that carries the boxes @f into the boxes of\/ without changing the recoverable
keys.

Suppose that there atdoxes altogether in the pattern bf (and hence in the pattern 6f).
Let {Mi}1,, {Ma}1,,.... {M;}, be thel undecryptable terms i/ that turn into boxes (ir\/)
and{Ni}r;, {Na}ry, ..., {Ni}1; the corresponding undecryptable terms\in We denote by,
andv; the equivalence classes at/; }, and{ N}, respectively, with respect tac. Then, as
we showed above, we have that fof < 1,4 # j,

[({Mi} oo AM;}2)]e = [({Nid ey, {N; o)l
holds sinceD(M)([M]e) andD(N)([N]e) are indistinguishable, and thus, by condition (iii),
{Mite,, {M;}e,) = ({Nite ANj}e)-
So, by definition o= , there exists a key-renamimng; such that
(DMN Duj) = (DUi,j(Vi)7 Dcﬁ;,j(l/j))v
that is, there exists a key-renaming; such that
i = Ji,j(Vi> andﬂj = Ui,j(yj)- (210)

Consider now the class = {{Ni}L;}ﬁzl. Since we assumed by hypothesis thatis proper,
by Propositior2.13(usingS = R-Key$/V) and noticing thal) ¢ R-Key$V)) we have that for
eachyy, equivalence class c{ka}%, there is a representativg, such that:

(i) Key¢C,,) NR-Key$N) =0,
(i) L,z C, forallme{1,2,...,1},

(lll) if Vi, 7& Vi |(I/k1)key’ 7é o0 and‘(I/kQ)key‘ 7é o, thenKeyE{C',,kl) N KeyE{C,,,Q) 7é ¢ if and
only if (g, Jkey = (Vk, )xey = { K} for some keyk, and in that case
1. KeygC,, ) NKeysC,, ) = {K},
2. Gy, andC,,k2 are both of the forn{-}x, and
3. KIZC,, ,KIZLC,, .
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(V) if vy, # i, and either (vy, iey| = 00 OF [(Vk, )key| = o0, thenKeygC,, ) N Key4C,, ) =
0.

We now define the key-renaming functierthat leaves the recoverable keysidf (and V)
untouched but that maps the boxes in the patterN ¢b the corresponding boxes in the pattern
of M. This definition is done by induction.

Induction Basis:Let us start by defining,.> Since we assumed thatc and=k are inde-
pendent, it is possible to modity, » such that the resulting renaming functionthat we get
leaves

l
Sz = (U KeygCy,) UR-KeygN )) \ (KeygC,,) UKeygC,,))
=3
untouched and is such that

7'2(1/1) = 0'172(1/1) andTQ(VQ) = 0’172(1/2).

If we combine the previous equations with 10) we have that

72(1/1) = 01,2(V1) =

and
TQ(V2) = 01,2(V2) = 2.
Induction HypothesisSuppose now that we have defingdin a such a way that, leaves
the keys in

! k
Sk = ( U KeysgC,,) U R-Key$N)) \ (U Keys{Cw)> , (2.11)
i=k+1 i=1
untouched and is such that
Te(v;) = p; forall i < k.

Inductive StepThere are two cases. First suppose that = v; for some: < k. In this
case, we define,,; = 7. Itis obvious that, ., leaves the keys of

Siir = ( J Keysc,,) UR-Key$N)) \ (U Keysicy») ,

i=k+2

untouched and is such that
Tk+1(Vi> = U for all 4 <k+ 1,

sinceC,, , = C,, andy,4; = v;.
In the other case, suppose that, # v; for all ¢ < k. Consider now the substitutior ;1)

with 7 < k. By (2.10 we have that

i = 0 k+1)(V5)

3We define the base caseras- 2 to avoid some cumbersome notation.
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and
Prs1 = 0 k1) (Vhg)- (2.12)
Since=¢ and=g are independent, considering

S = <U KeygC,) U 7 (U Keyi(Cui)> U R-KGY$N)> \ KeysCy, )

and¢ = {C,,,, }, we have that it is possible to modify, ;1) to o* such that
o' (K)=Kforal K € S

and
0" (Vpy1) = 0j,(k+1) (Vkt1)-

Using 2.12), we can rewrite the previous equation as
0" (Vkt1) = Uj,(k+1)(1/k+1) = Hi+1-
Thus, we have two substitutions, ands* such that
Tr(v;) = p; foralli < k (2.13)

and
0" (V1) = Hi1- (2.14)
Our goal now is to combine these two substitutions into one substitgtigrsuch that

Tk+1(Vi) = foralli < k + 1, (215)

and that leaves untouched the keys in

i=k+2

We can immediately notice that by definition,only changes the keys i(Uf:l Keys{(]yi)>

(recall 2.11)) and thato* only alters the keys ifKeySC,, ,,), thus ensuring4.16). We also
notice that from2.13 and R.14), (2.15 follows. So, if it is possible to “merge” the two substi-
tutions, the result follows. We do this by showing that the two substitutions are compatible. We
show that if both substitutions change the value of one Keyhen they change it to the same
value, that is, we show that if for a kdy, 7,(K) # K ando*(K) # K thent(K) = o*(K).

Suppose that both, ando* change the value of a kdy’. Then, by the definition of the two
substitutions,

k
K € (U KeyS{Cyi)> N KeygCy, ., ),
=1
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that is
K' € KeygC,,) N KeysC,, . ,), (2.17)

forsomei € {1,...,k}. By the way we constructed the representatiVgswe have that for any
two different equivalence classeg andvy,,
KeygC,,) NKeygC,,,,) =0
(whenever(v;)key| = oo Or |(vg11)key| = o) or
KeygC,,,) NKeygC,, ) # 0 if and only if (v, )xey = (Vi Jkey = { K},
and in that case
KeysCy,, ) NKeysCy, ) = {K7}.
Applying these results t@(17) we have that

(Vi)key = (Vht1 )key = {K'}. (2.18)

Since{N;}; € v; and{]\ka}L;g+1 € V41, We have thall; € (v)iey and L), | € (Vi1 )key, @Nd
using .19 it follows that
K'=1L,=1L,,,. (2.19)

We just proved that the only key that both and o* change at the same time I§’ so we
just need to prove that they change it to the same value (in order to be compatible), that is,
(K') = o*(K').

By (2.18) we have thaf(v;+1)key| = 1 @and so, using Propositich12and 2.14) it follows
that

(141 )key| = 107 (Va1 Jrey )| = 1.
Since{Mj41}r,,, € pr+1, We have that, 1 € (ti11)rey- SO, from the previous equation and
(2.19) it follows that
0" (K') = 0" (Li1) = Lis1. (2.20)

If we apply the same reasoning tpand;, again by 2.1 we have thaf(v;)xy| = 1 and
so, using PropositioB.12and R.19) it follows that

| (ki )xey| = [Th((Vi)key)| = 1.

Since{M;}., € u;, we have thatl; € (u;)key- SO, from the previous equation aril18) it
follows that
T(K') = m(L}) = L. (2.21)

Now consider the substitution (.. 1). By (2.10 we have that
My = 0i,(k+1)(7/i) andpig1 = Ui,(k+1)(Vk+1)-
Using 2.18) and Propositior2.12it follows that

| (i key | = 1, b1) (Vi) ey) | = T @NA| (k1 )ey | = [0 1) (Vh1 ey )| = 1
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As said beforel; € (14;)xey, L € (Vi)keys L1 € (fto41)key @NALY_; € (Vit1)key @Nd SO
i) (Li) = Li @ndo i) (Lyyy) = Lisr.
Combining this with2.19), sinceL; = L, ,, we have that
Li= Ly (2.22)
and so by 2.21), (2.22), and .20
T(K') = Li = Lipy1 = 0" (K').

Thus for any keyK’ such that both,, andc* change the value, they are compatible. We then
definer,; as

[ o*(K) if K € KeygC,
T (K) = { m(K)  otherwise

Note that by definition of;, it does not change the keys$h = R-Key$N) \ <U§:1 Keys{C,,J)

but, by properness, we have théygC,,) N R-KeysN) = () for all 1 < i < [ which implies
thatr, does not change the keysiRiKey$N).
The substitution that satisfies the required properties, i.e., that leaves the recoverable keys
of M and N untouched, but maps the boxes of the patterivohto the corresponding boxes in
the pattern of\/, is defined as; (I is the number of boxes in the pattern/af) and that is what
we needed to complete the proof. l

k+1) )

Remark 4. Observe, that condition (iii) of the theorem is trivially satisfied when there is only
one box, that is, when all encryption terms are equivalent uaderAlso, if completeness holds
for a certain choice ofc, then, if=( is such thatV/ =¢ N impliesM = N—i.e. when=¢
results fewer boxes—then completeness holds=fgras well. Therefore, we can say, that the
key to completeness is not to have too many boxes.

Example 2.22 (Completeness for Type-1 and Type-2 Encryption Scheme§jhe complete-

ness part of our earlier theorems for type-1 and type-2 encryption schemes are clearly special
cases of this theorem, because the formal language we introduced for these schemes were such
that=c is proper and=x and=c¢ are independent, and the conditions of the theorems are anal-
ogous.

Example 2.23 (Completeness for One-Time Pad) he formal logic for OTP that we presented

in Section2.4 is such that=c is proper andsk and=¢ are independent. Furthermore, con-
dition (i) of Theorem?2.19is satisfied due to the tagging we presented in Se@idn Condi-

tion (ii) is also satisfied because of the tagging: the reason ultimately is that decrypting with
the wrong key will sometimes result invalid endings. Condition (iii) is also satisfied, since the
pairs of encryption terms must be encrypted with different keys (in OTP, we cannot use the
keys twice), and the equivalenfg{ M } 1, {Ma}1,)]e =~ [({ N1}z, { N2} 1y)]e implies that the
corresponding lengths in the two encryption terms must be the sefn¥; }.,) = [({N1}z;)
andl({Mg}L2) = l({NQ}L/Q) which impIieS(Dl({Ml}Ll), Dl({Mg}LQ)) = (Dl({Nl}L’l)’ Dl({N2}L’2))'
Therefore,({ M1} r,, {Ms}1,) = ({Ni}z,, {N2}1y). In conclusion, the formal logic introduced

in Section2.4is complete.
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2.6 Related Work

Work intended to bridge the gap between the cryptographic and the formal models started with
several independent approaches, including the work of Lincoln, Mitchell, Mitchell, and Sce-
drov [LMMS9S8], Canetti ICan0], Pfitzmann, Schunter and Waidnd?3WO0() PWO0(, and

Abadi and RogawayARO02]. There are other works such as the one from Guttman, Thayer,
and Zuck [GTZ01]] aim at the same results but consider specific models or specific properties,
specifically consider strand spaces and information-theoretically secure authentication.

A process calculus for analysing security protocols in which protocol adversaries may be ar-
bitrary probabilistic polynomial-time processes is introduced.MMS98]. In this framework,
which provides a formal treatment of the computational model, security properties are formu-
lated as observational equivalences. Mitchell, Ramanathan, Scedrov, and TA&RR®IEJE use
this framework to develop a form of process bisimulation that justifies an equational proof system
for protocol security.

The approach by Pfitzmann, Schunter and WaidR&GWO0() PWO0( starts with a general
reactive system model, a general definition of cryptographically secure implementation by sim-
ulatability, and a composition theorem for this notion of secure implementation. This work is
based on definitions of secufenctionevaluation,i.e., the computation of one set of outputs
from one set of inputs GL91, MR971, Bea9] Can0(). The approach was extended from syn-
chronous to asynchronous systems®WO01, Can0], which are now known as theeactive
simulatability frameworfPWO01, BPW] and theuniversal composability framewofkCan0]}. A
detailed comparison of the two approaches may be foundkMRO05].

The first soundness result of a formal model under active attacks has been achieved by
Backes, Pfitzmann and Waidn@RWO04J within the reactive simulatability framework. Their
result comprises arbitrary active attacks and holds in the context of arbitrary surrounding inter-
active protocols and independently of the goals that one wants to prove about the surrounding
protocols; in particular, property preservation theorems for the simulatability have been proved,
e.g.,for integrity and secrecyBI03, BPOY. While the original result inBPWO0J considered
public-key encryption and digital signatures, the soundness result was extended to symmetric
authentication and to symmetric encryptionBP\WO0L and BPO04lj, respectively.

Another way of trying to bridge the gap between the two models, the one that we follow
in this work, was proposed by Abadi and Rogaw&RD2]. In this framework, formal terms
with nested operations are considered specifically for symmetric encryption, the adversary is re-
stricted to passive eavesdropping, and the security goals are formulated as indistinguishability of
terms. They show that sufficiently strong cryptography enforced computational soundness for a
notion of formal equivalence. From this, many other results followed: Abadi @rnen AJO]]
extend this result from terms to more general programs. Eaaa(d4 and Acdo, Bana, and Sce-
drov |ABSOE] extend the original Abadi-Rogaway result to weaker encryption schemes, while
Laud and CorinlLC03] do the same for composite keys. These two extensions are orthogonal:
the former extends the applicability of the result to other encryption schemes (e.g., encryption
schemes that reveal the length of the underlying plaintext) while the latter extends the set of
expressions of the symbolic model.

Herzog, Liskov, and MicaliHHLMO3] demonstrate soundness for non-malleability proper-



76 Chapter 2. Soundness of Formal Encryption

ties, and HerzogHer04 later shows that this soundness for non-malleability is in fact implied

by soundness of indistinguishability. The extension of this trace-based approach to active adver-
saries was done by Micciancio and Warins@iW04h] where they show soundness for mutual-
authentication properties in the presence of active adversaries. This resultis a simpler abstraction
than BPWO0J and thus it only addresses a restricted class of protocols.

This trace-based approach, in spite of more restrictive, still allows some extensions such as
Micciancio and PanjwanNIP0Y, soundness of a group-key distribution protocol in the presence
of a CPA-secure scheme, Cortier and Warins€hMO05|, use of automated tools to prove that
symbolic integrity and secrecy proofs are sound with respect to the computational model in
the case of protocols that use nonces, signatures, asymmetric encryption and allow ciphertext
forwarding.

Another extension to asymmetric encryption, but still under passive attacks Hs Md3].

Asymmetric encryption under active attacks is considereH@r(Z] in the random oracle model.
Laud [Lau04 has subsequently presented a cryptographic underpinning for a formal model of
symmetric encryption under active attacks. His work enjoys a direct connection with a formal
proof tool, but it is specific to certain confidentiality properties and restricts the surrounding
protocols to straight-line programs in a specific language.

Recently, there has been concurrent and independent work on linking symbolic and cryp-
tographic secrecy properties. Cortier and Warins@WDE| have shown that symbolically se-
cret nonces are also computationally secret, indistinguishable from a fresh random value
given the view of a cryptographic adversary. Backes and PfitzmiBROY and Canetti and
Herzog ICHO€ have established new symbolic criteria that suffice to show that a key is crypto-
graphically secret. Backes and Pfitzmann formulate this as a property preservation theorem from
the formal model to a concrete implementation while Canetti and Herzog link their criteria to
ideal functionalities for mutual authentication and key exchange protocols.

The first cryptographically sound security proofs of the Needham-Schroeder-Lowe protocol
have been presented concurrently and independenBR04d and [War0J. While the first pa-
per conducts the proof within a deterministic, symbolic framework, the proof in the second paper
is done from scratch in the cryptographic approach; on the other hand, the second paper proves
stronger properties and further shows that chosen-plaintext-secure encryption is insufficient for
the security of the protocol.

Impagliazzo and KaproiK03] suggest a formal logic for reasoning about probabilistic poly-
nomial-time indistinguishability. Datta, Derek, Mitchell, Shmatikov, and Turu&§ 05|
describe a cryptographically sound formal logic for proving protocol security properties without
explicitly reasoning about probability, complexity, or the actions of a malicious attacker.

Regarding completeness, Micciancio and WarinskhW04¢] show that a sufficiently strong
encryption scheme enforces completeness for indistinguishability properties, and later Horvitz
and Gligor HGOJ strengthened this result by giving an exact characterisation of the compu-
tational requirements on the encryption scheme under which completeness holds. Later, it was
shown by BaneBan04 and Adaoet al.[ABSO0 that completeness also holds for a more general
class of (weaker) encryption systems.

We stress that none of the aforementioned soundness results hold in the presence of key-
cycles. The problem of soundness in the presence of key-cycles was already addressed by
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Laud [Lau0Z. Laud’s solution provides soundness in the presence of key-cycles, but does so
by weakening the notion of formal equivalence. It is assumed that key-cycles somehow always
‘break’ the encryption and the formal adversary is strengthened so as to be always able to ‘see’
inside the encryptions of a key-cycle. Soundness in the presence of key-cycles naturally holds
under this assumption, but we feel that the price paid is too high. Formal equivalence should re-
flect the ability of the formal adversary to distinguish messages, which should in turn reflect the
actual extent to which the computational adversary can distinguish messages. It is often unrea-
sonable from a cryptographer’s point of viewa@riori assume that the computational adversary
can break all key-cycles. We therefore propose, in this work, to demonstrate soundness in the
presence of key-cycles not by weakening encryption in the formal model, as suggested by Laud,
but by strengthening it in the computational one.

2.7 Conclusions and Further Work

We have studied expansions of the Abadi-Rogaway logic of indistinguishability for formal cryp-
tographic expressions, considering and solving two weaknesses of the original result.

The first of these weakness was the problem of soundness in the presence of key-cycles.
Computational soundness for expressianghout key-cycles was proved in Abadi and Rog-
away [AR0Z] under the assumption that a computational encryption scheme satisfies a strong
version of semantic security (type-0). We have considered a modification of their logic in the
case of encryption schemes both which-key revealing and message-length revealing. In the pres-
ence of key-cycles, we have proved that the computational soundness property follows from the
key-dependent message (KDM) security proposed by Béaek [BRS0Z. As far as we know,
this is the first time that in order to achieve soundness, the computational model is strengthened
instead of the formal model weakened. We have also shown that the computational soundness
property neither implies nor is implied by type-0 security, and thus the original Abadi-Rogaway
result could not have been demonstrated for key-cycles using the security notions described in
their work.

(We also show in AppendiB that the above results can be extended to the public-key set-
ting. In particular we show that the soundness property holds for arbitrary messages (even with
key-cycles) in the presence of a KDM-secure encryption scheme, and that the computational
soundness property neither implies nor is it implied by security against chosen ciphertext attack,
CCA-2. This is in contrast to many previous results where forms of soundness are implied by
CCA-2 security.)

The other weakness of the original Abadi-Rogaway result addressed in this dissertation con-
cerned the possibility of leakage of information by an encryption scheme. As said before, the
original result assumed a very strong notion of security (type-0) which is not actually achieved
by many encryption schemes. Thus, one might wonder if a similar result might be derived
for weaker schemes. We have showed that for symmetric encryption, subtle differences be-
tween security definitions can be faithfully reflected in the formal symbolic setting. We have
introduced a general probabilistic framework which includes both the computational and the
information-theoretic encryption schemes as special cases. We have established soundness and
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completeness theorems in this general framework, as well as new applications to specific settings:
an information-theoretic interpretation of formal expressions in One-Time Pad, and also com-
putational interpretations in type-1 (length-revealing), type-2 (which-key revealing) and type-3
(which-key and length revealing) encryption schemes based on computational complexity.

Our work presents several directions for future research. Independently of any soundness
considerations, several questions about KDM security remain unanswered. This is no known
implementation of KDM security in the standard model, although there are several natural can-
didates €.g.,Cramer-Shoup@S9¢). Conversely, there remains to be found a natural,ron-
constructed) example of an encryption scheme which is secure in the sense of type-0 (or CCA-2)
but is not KDM-secure. Further, even the constructed examples fail to provide KDM security
only when presented with key-cycles of length 1. It may in fact be possible that type-0/CCA-2
security implies KDM security when all key-cycles are of length 2 or more.

With regard to soundness in the presence of key-cycles, it seems desirable to extend our
results from the passive-adversary setting to that of the active adversary. Also, our results do
not completely explore all ‘gaps’ between the two models. We show that the relationship be-
tween the formal and computational models requires more than type-0/CCA-2 security. While
it demonstrates that KDM security is also necessary, it does not show it to be sufficient—even
when conjoined with CCA-2 security (asymmetric encryption). That is, this investigation is not
complete; it is more than likely that additional properties will be revealed as soundness is more
fully explored.

Also, one might consider various expansions of the formal setting that would allow addi-
tional operations such asr, pseudorandom permutations, or exponentiation. Soundness and
completeness such richer formal settings would, of course, need exploration. In particular, the
definition of patterns appears to be rather subtle in such richer settings. We would also like to
understand how our methods fit with the method<d\@iOz].

Lastly, one might consider exploring partial leakage in the setting of asymmetric encryp-
tion. One might also extend our methods and investigate formal treatment of other cryptographic
primitives. It would be interesting to see if our methods could be combined with the methods of
[BPWO03 Can0].



Chapter 3

Process Algebras for Studying Security

Process Algebras have been widely used in the study of security of concurrent sJgi&38as [
Low95, Low96, AG99, Mil99, AFO01, AFGO0Z, BAFOQ5]. In spite of their success in proving
security of cryptographic protocols, mainly secrecy and authenticity properties, all these are
stated in the so called Dolev-Yao Model, hence no real cryptographic guarantees are achieved.

Another approach is to supplement process calculi with concrete probabilistic or polynomi-
al-time semanticsUMMS98]. Unavoidably, reasoning on processes becomes more difficult.

In this Chapter, we present a process calculus that enjoys both the simplicity of an abstract
symbolic model and a concrete (sound and complete) implementation that achieves strong cryp-
tographic guarantees. Our calculus is a variant of the pi calculus with high level security prim-
itives; it provides name mobility, reliable messaging and authentication primitives, but neither
explicit cryptography nor probabilistic behaviours.

Taking advantage of concurrency theory, it supports simple reasoning, based on labelled
transitions and observational equivalence. We precisely define its concrete implementation in a
computational setting. Our implementation relies on standard cryptographic primitives, compu-
tational security definitions (CCA2 for encryptioRE9]], CMA for signing [GMR8§, recalled
in AppendixA), and networking assumptions. It also combines typical distributed implemen-
tation mechanisms such as abstract machines, marshaling and unmarshaling, multiplexing, and
basic communications protocols.

We establish general completeness results in the presence of active probabilistic polynomial-
time adversaries, for both trace properties and observational equivalences, essentially showing
that high level reasoning accounts for all low-level adversaries.

We illustrate our approach by coding security protocols and establishing their computational
correctness by simple formal reasoning.

This Chapter is organised as follows: In Sect®d, we start by describing the low-level
target model as the constraints imposed by this will drive the design of the high-level language.
In Section3.2, we present our high-level language and semantics, and in S&cBove define
and illustrate our notion of high-level equivalence. SecBohis devoted to applications. We
encode anonymous forwarders in our language and exhibit an example of an electronic payment
protocol. We give also as an example the encoding of an initialisation protocol, that is, given any
systemS that possibly shares names and certificates among principals, we can always find an
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initial systemS° where principals share no information, such that there is a transition $fom
to S. Section3.5describes our concrete implementation, and in Se@iéme state our results.
We conclude this Chapter with the discussion of related work, Se8tiand pointing out some
future directions in which this work may be extended, Sec8&n

3.1 Low-Level Target Model

Before presenting our language design and implementation, we specify the target systems. We
do this, as the design of our language is, in part, driven by the target model. We want to be
as abstract as possible, but at the same time we need to faithfully abstract the properties of the
computational implementation.

As an example, we want our high-level environments to have the same capabilities as the low-
level adversaries, that are probabilistic polynomial-time (PPT) cryptographic algorithms. We fol-
low the conservative assumption that an adversary controls all network traffic: it can intercept,
delay, or even block permanently any communication between principals. For that, we cannot
guarantee message delivery, nor implement private channels that prevent traffic analysis. Reflect-
ing this in the high-level semantics implies that the simple pi-calculusaulé).P | c(x).QQ —
P|Q{M/z}, which models silent communication is too abstract for our purposes. (Cot3ider
and( two processes that are implemented in two separate machines connected by a public net-
work, and even it is a restricted channel, the adversary can simply block all communications.)

We consider systems that consist of a finite number of principdlsc, e, v, v, ... € Prin.

Each principak runs its own program, written in our high-level language and executed by the
PPT machinéM, defined in Sectio8.5. Each machiné/, has two wiresjn, andout,, rep-
resenting a basic network interface. When activated, the machine reads a bitstringhfrom
performs some local computation, then writes a bitstringaty, and yields. The machine em-

beds probabilistic algorithms for encryption, signing, and random-number generation—thus the
machine outputs are random variables. The machine is also parameterised by a security parame-
tern € N—intuitively, the length for all keys—thus these outputs are ensembles of probabilities.

Some of these machines may be corrupted, under the control of the attacker; their implemen-
tation is then unspecified and treated as part of the attacker. Weblet € H with H C Prin
range over principals that comply with our implementation, and/let (M, ), describe our
whole system. We denote laya principal controlled by the adversary¢ Prin \ H) and byu, v
an arbitrary principal irPrin. Of course, whem interacts withu € Prin, its implementatiorM,,
does not know whether € H or not.

The adversaryA, is a PPT algorithm that controls the network, the global scheduler, and
some compromised principals. At each moment, only one machine is active: whenever an ad-
versary delivers a message to a principal, the machine for this principal is activated, runs until
completion, and yields an output to the adversary. We have then the following definition:

Definition 3.1 (Run). We define aun of A andM with security parametey € N as follows:

1. key materials, with security parametgrare generated for every principak Prin;
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2. everyM, is activated withl”, the keys for, and the public keys for all € Prin;
3. Alis activated withl", the keys fore € Prin \ H, and the public keys fai € H;
4. A performs a series of low-level exchanges of the form:

(a) A writes a bitstring on wirdén, and activate$/, for somea € H;
(b) upon completion oM, A reads a bitstring oout,;

5. Areturns a bitstring, written s «—— A[M)].
We keepr implicit whenever possible.

At each Step, the adversanA can choose and compute the bitstring written dan,, from
any previously-received materials, including principal keys and bitstrings collected from previ-
ous exchanges.

By design, our low-level runs do not render attacks based on timed properties, such as for
instance any observation of the time it takes for each machine to reply. Although the risk of
guantitative traffic analysis may be significant, it can be mitigated independently, for instance by
sending messages according to a fixed schedule. We leave this discussion outside the scope of
this dissertation.

To study the security properties of these runs, we compare systems that consist of machines
running on behalf of the same principdis C Prin, but with different internal programs and
states. Intuitively, two systems are equivalent when no PPT adversary, starting with the informa-
tion normally given to the principals € Prin \ H, can distinguish between their two behaviours,
except with negligible probability, DefinitioA.1. This notion is calleccomputational indis-
tinguishability and was introduced by Goldwasser and Mic@M84]. We state it here in a
different but equivalent way.

Definition 3.2 (Low-Level Equivalence).Two system$/° andM* are indistinguishable, written
M? =~ M, if for all PPT adversarieA:

| Pr{1 «— AM]] - Pr[l «— AIM']]| < neg (n).

Our goal is to develop a simpler, higher-level semantics that entails indistinguishability.

3.2 A Distributed Calculus with Principals and Authentica-
tion

We now present our high-level language. We successively define terms, patterns, processes,
configurations, and systems. We then give their operational semantics. Although some aspects
of the design are unusual, the resulting calculus is still reasonably abstract and convenient for
distributed programming.
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3.2.1 Syntax and Informal Semantics

Definition 3.3 (Names, Terms, Patterns)Let Prin be a finite set oprincipal identities Let
Name be a countable set omedisjoint fromPrin. Letf range over a finite number of function
symbols, each with a fixed arify > 0. We defindermsandpatternsby the following grammar:

VW = Terms

T,y variable

m,n € Name name

a,b,e,u,v € Prin principal identity

Vi, Vi) constructed term (whehhas arityk)
T,U .= Patterns

T variable (bindsr)

T as 7x alias (bindsr to the term that matches)

V constant pattern

(T, ..., Tx) constructed pattern (whemhhas arityk)

As usual in process calculi, names and principal identities are atoms, which may be compared
with one another but otherwise do not have any structure. Constructed terms represent structured
data, much like algebraic data types in ML or discriminated unions in C. They can represent
constants and tags (whén= 0), tuples, and formatted messages. As usual, we wegeand
(V1, V,) instead oftag() andpair(Vy, V3).

Patterns are used for analysing terms and binding selected subterms to variables. For instance,
the pattern(tag, ?z) matches any pair whose first componentag and bindsz to its second
component. We write for a variable pattern that binds a fresh variable.

Definition 3.4 (Local Processes)Local processegepresent the active state of principals, and
are defined by the following grammar:

PQ,R::= Local processes
1% asynchronous output
(T).Q input (bindsbu(T') in Q)
*(T).Q replicated input (bindsv(T") in Q)
match V with 7 in Q) else ()’ matching (bind$v(7T) in Q)
vn.P name restriction (“new”, binds in P)
PP parallel composition
0 inert process

The asynchronous outpit is just a pending message; its data structure is explained below.
The input(7").Q) waits for an output that matches the pattéthen runs proces§ with the
bound variables of" substituted by the matching subterms of the output message. The repli-
cated input«(7").) behaves similarly but it can consume any number of outputs that rifatch
and fork a copy ofp for each of them. The match process rdnsf V' matchesl’, and runs
@' otherwise. The name restriction creates a fresh nartieen runsP. Parallel composition
represents processes that run in parallel, with the inert précassinit.
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Free and bound names and variables for terms, patterns, and processes are defined as usual:
x is bound inT if 72 occurs inT’; n is bound invn.P; x is free inT if it occurs in7T and is not
bound inT'. An expression is closed when it has no free variables; it may have free names.

Definition 3.5 (Local Contexts).A local contexis a process with a hole instead of a subprocess.
We say that a context is @avaluation contexivhen the hole replaces a subprocss P’ in the
grammar of Definitior8.4. If it replaces a subprocesgor Q' we call it aguarded context

Our language features two forms of authentication, represented as two constiuctoasid
cert of arity 3 plus well-formed conditions on their usage in processes.

Definition 3.6 (Authenticated Messages, Certificates)Authenticated messagbstween prin-
cipals are represented as terms of the faunh(V;, Vs, Vi), written V;:V5(V3), whereV is the
sender); the receiver, andl; the content. We led/ and N range over messages. The message
M is froma (respectivelyto a) if a is the sender (respectively the receiver)\of

Certificatedssued by principals are represented as terms of thedesv( 1}, V5, V3), written
Vi{Va }vs, WhereV is the issuer}; the content, andl; the label.

Labels in certificates reflect cryptographic signature values in their implementation. They are
often unimportant (and omitted), since our processes use a constant iabbleir certificates
and ignore labels (using in their certificate patterns. Nonetheless, they are necessary because
the standard definition of security for signatures (CMA-security, Defin&@) does not exclude
the possibility that the attacker produce different signature values for certificates with identical
issuer and content. If we do not include labels in our definition of high-level certificates, we
could be excluding attacks.

Example 3.1. Consider a protocol where adversarial principegceives a certificateert; from
a, forges a second certificatert, using some malleability property of the signing scheme, and
then forwardscert; to b andcert, to c.

If later e receivescert; from d, he may discover part of the topology of the network; as1
if d is connected té andi = 2 if d is connected te. If the attack to the protocol depends upon
the knowledge of the network, we have an attack.

If we do not account for this possibility in our high-level semantics, that is, use different
labels for different certificates, we could never capture this attack as the received certifieate by
would be equivalent regardlessiof 0 ori = 1.

Although both authenticated messages and certificates provide some form of authentication,
authenticated messages are delivered at most once, to their designated receiver, whereas cer-
tificates can be freely copied and forwarded within messages. Hence, certificates conveniently
represent transferable credentials and capabilities. They may be used, for instance, to code de-
centralised access-control mechanisms.

Example 3.2. As an exampleqa:b(Hello) is an authentic message framto b with content
Hello, a constructor with arity 0, for which (and onlyb) can verify that it is coming frona

a{b,Hello} is a certificate signed by with the same subterms that can be sent, received,
and verified by any principal.
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We let¢(V') be the set of certificates includedihand let¢(V)x C ¢(V') be those certifi-
cates issued by € X. For instance, we have

d(a{0,b{1}, {2} })ary = {0{1}, a{0,0{1},c{2}}}

Definition 3.7 (Well Formed Process).Let P be a local process. We say thatis well-formed
for a € Prin when:

1. any certificate inP that includes a variable or a bound name is of the fafi: }o;
2. no pattern inP binds any certificate label; and
3. no pattern used for input iR matches any authenticated message fiom

Condition 1 states that the process may produce new certificates only with assu@ddi-
tion, the process may contain previously-received certificates issued by other principals. (We do
not restrict certificate patterns—a pattern that tests a certificate not availableilanever be
matched.) Condition 2 restricts access to labels, so that labels only affect comparisons between
certificates. Condition 3 prevents that authenticated messages senbdyead back by some
local input.

Finally, we are now able to define configurations and systent@nfigurationis an assembly
of running principals, each with its own local state, plus an abstract record of the messages
intercepted by the environment and not forwarded yet to their intended recipiensystém
is a top-level configuration plus an abstract record of the environment's knowledge, as a set of
certificates previously issued and sent to the environment by the principals in

Definition 3.8 (Configurations, Systems).Configurationsandsystemsre defined by the fol-
lowing grammar:

C = configurations
a[P,] principala with local stateP,
M/i intercepted messagé with index:
cl|c distributed parallel composition
vn.C name restriction (“new”, binds in (')
S = systems
o+ C configurationC' exporting certificate®

and satisfy the following well-formed conditions:

¢ In configurations, intercepted messages have distinct indemed closed content/; prin-
cipals have distinct identitiesand well-formed local processés.

e In systems, le#{ be the set of identities for all defined principals, caléesnpliant prin-
cipals intercepted messages are frano b for somea, b € H with a # b; ® is a set of
closed certificates with labélsuch that)(®);, = ®.
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3.2.2 Operational Semantics

We define our high-level semantics in two stages: local reductions between processes, then global
labelled transitions between systems and their (adverse) environment. Processes, configurations,
and systems are considered up to renaming of bound names and variables.

Local Reductions

We start by definingstructural equivalence It represents structural rearrangements for local
processes. Intuitively, these rearrangements are not observable (although this is quite hard to
implement).

Definition 3.9 (Structural Equivalence for Processes)Structural equivalencewritten P =
P’, is defined as the smallest congruence such that:

P=P|0

PIQ=Q|P

PIQIR) = (P|Q)|R

(vn.P)| Q = vn.(P|Q)whenn ¢ fn(Q)
vm.vn.P = vn.vm.P

vn.0=0

Definition 3.10 (Local Reductions, Stable Processed)ocal reduction stepwritten P — P’,
represents internal computation between local processes, and is defined as the smallest relation
such that

(LComm) (1).Q|To — Qo

(LREPY) x(T).Q|To — Qo |+(T).Q

(LMATCH) matchTowithT in Pelse(@ — Po

(LNOMATCH) match V with T in P else Q — @Q whenV # To for anyo

(LPARCTX) (LNEWCTX) (LSTRUCT)
P—Q P—Q P=P P —-Q Q=Q
PIR—Q|R vn.P — vn.Q P—Q

whereo ranges over substitutions of closed terms for the variables boufd in
The local proces$’ is stablewhen it has no local reduction step, writtéh-4. We write
P — Q whenP —*= @Q and@ 4.

System Transitions

We define a labelled transition semantics for configurations, then for systems. Each labelled
transition, writtenS = S’, represents a single interaction with the adversary. We lahd 3

range over input and output labels (respectively from and to the adversary) réeige over
labels, and lety range over series of labels. We wrife S’ for a series of transitions with
labelsp. We also rely on structural equivalence for configurations,
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Definition 3.11 (Structural Equivalence for Configurations). Structural equivalence for con-
figurations written C = (’, is defined as the smallest congruence such that:

c=C"0 cier=c|c cuerien=cceny e
vm.vn.C = vnvm.C (vn.C) | C" = vn.(C'|C") whenn ¢ fn(C")
vn.a[P] = a[vn.P]

Definition 3.12 (Labels). Labelsare defined by the following grammar:

= input labels
(M) input of messagé/
(1) forwarding of intercepted message
G = output labels
vny ... .M output of messag@! (ni,...,n; € fn(M))
vi.a:b interception of messagdromatob (a,b € H)
v o= single label
a+ [ input or output label
Y= series of transition labels

We letinput(p) be the series of input labels in

Definition 3.13 (Labelled Transitions for Configurations). Labelled transitions for configura-
tionsare defined by the following rules:

:a{V) | P —
(CFGOUT) i ZU<V> (Cral N)u V)| (u.am? uza
ala:u(V) | Q] — a[Q] a[P] —— a[C]
V) or i notinC ISINYS’
(CFGBLOCK) — (CFGFwD) D
C'lalP] —= C"|a[P]|b:a{V) /i C|M/)i~—>C'
C L ¢’ ~ notfrom/toa C L ¢ inotiny
(CFGPRINCTX) 5 (CFGMSGCTX) >
C'lalP] = C'"|a[P] C|M/i— C"|M]/i
c 2o nfreeing C L ¢ nnotiny
(CFGOPEN) (CFGNEWCTX) -
on.C 2B, o vn.C' — vn.C’
C=D DLD D=
(CFGSTR)

c L
Rules CFGOUT) and (CFGIN) represent “intended” interactions with the environment, as
usual in an asynchronous pi calculus. They enable local processes fararty to send mes-
sages to other principals and to receive their messages. The transition label conveys the com-
plete message content.
Rules CFGBLOCK) and CFGFwD) reflect the actions of an active attacker that intercepts
messages exchanged between compliant principals, and selectively forwards those messages. In
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contrast with the Comm) rule of the pi calculus, they ensure that the environment mediates all
communications between principals. The label producedd®GBLOCK) signals the message
interception; the label conveys partial information on the message content that can intuitively
be observed from its wire format: the environment learns that an opaque message is sent by
b with intended recipient. In addition, the whole intercepted message is recorded within the
configuration, using a fresh index Later on, when the environment performs an input with
label (i), Rule (CFGFwD) restores the original message and consuivés, this ensures that

any intercepted message is delivered at most once.

The local-reduction hypothesis in RuleKGIN) demands that all local reductions triggered
by the received message be immediately performed, leading to some updated stable(process
Intuitively, this enforces a transactional semantics for local steps, and prevents any observation
of their transient internal state. (Otherwise, the environment may for instance observe the order
of appearance of outgoing messages.) On the other hand, any outgoing messages are kept within
@; the environment can obtain all of them via rul&&GOuT) and CFGBLOCK) at any time,
since those outputs commute with any subsequent transitions.

The rest of the rules for configurations are standard closure rules with regards to evaluation
contexts and structural rearrangements: R@eEJOPEN) is the scope extrusion rule of the pi
calculus that opens the scope of a restricted name included in a message sent to the environment;
this rule does not apply to intercepted messages. Rt#sPRINCTX) deals with principal
a defined in the configuration; condition not from a excludes inputs from the environment
that would forge a message framwhereas condition not toa excludes outputs that may be
transformed by RuleGQFGBLOCK).

Finally, we have a pair of top level rules that deal with the attacker knowledge:

Definition 3.14 (Labelled Transitions for Systems).Labelled transitions for systensse de-
fined by the following rules:
L a
cC = cC—-C C M(d
(SysOuT) 3 (SysIN) gb(aa)H — (®)
dHC L OUB)yFC PHCLPFC

whereH is the set of principals defined i and M (®) = {a{V'}, : a{V'}, € ®} is the set of
certificates the attacker might produce frdnfsee AppendiiAlfor the motivation for this rule).

Rule (SysOuT) filters every outputs and adds teb the certificates included i¥. Rule
(SysIN) filters every inputy, and checks that the certificates includedinan be produce from
the certificates irb.

Our main results are expressed usirmgmal transitionsetween systems.

Definition 3.15 (Stable Systems, Normal Transitions)We say that the systefis stablewhen
all local processes of are stable and has no output transition. (Informally, is waiting for
any input from the environment.)

We say that a series of transitiofis®> S’ is normalwhen every input transition is followed
by a maximal series of output transitions leading to a stable system, that=is;p1¢- . .. ¢,
wherep; = a;3; fori = 1.m, andS = Sy 25 S 2 S,... 25 S, = S for some stable
systemsSy, ..., S,.
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Intuitively normality states that each principals outputs all his messages and stays idle until
he receives a new input.

Compositionality

By design, our semantics is compositional, as its rules are inductively defined on the structure
of configurations. For instance, we obtain that interactions with a principal that is implicitly
controlled by the environment are at least as expressive as those with any principal explicited
within the system.

If we haveC |a[P] < C’|a[P’], then we also have”® 5, ¢, whereC® and C"° are
obtained fromC' and C’, respectively, by erasing the state associated withny intercepted
messaged/ /i from a or to a; and any certificate id issued byu. This compositional property
yields useful congruence properties for observational equivalence on configurations.

3.2.3 An Abstract Machine for Local Reductions

In preparation to the description of a concrete macMpehat executes’s local process’,, we

derive a simple algorithm for local reductions. In contrast with our non-deterministic reduction
semantics, the algorithm relies on partial normal forms instead of structural equivalence, and it
carefully controls the creation of fresh names (to be implemented as random-number generation);
it also relies on an explicit scheduler and is otherwise deterministic.

A processP is in normal form fora when it is a closed well-formed process such that every
subprocess of the formatch V with T in @ else )’ or vn.Q appears only under an input
or a replicated input—intuitively, all name creations and matchings are guarded? bhetin
normal form fora. Up to the structural laws for parallel compositidgh= M | L | G whereM is
a parallel composition of messages sent to other principalsa parallel composition of other
(local) messages, artdis a parallel composition of inputs and replicated inputs. Concretely, we
may represenk as a triple of multisets fod, L, andG.

A scheduleiis a deterministic algorithm off, ) that selects an instance of RulsgomMm)
or (LREPL) for an output o and an input (or replicated input) 6f, if any, and otherwise reports
completion. The reduction algorithm repeatedly calls the scheduler, performs the selected reduc-
tion step, then normalises the resulting process by applying Rula{cH) and LNOMATCH)
and lifting name restrictions to the top level (possibly after a renaming). This yields a local pro-
cess of the formvn. (M’ | L' | G') wheren collect all new name restrictions in evaluation context.

By induction on the length of the derivation, one easily check that» @ if and only if, for
some scheduler, the algorithm returnand P’ in normal form such tha) = vn.P'.

A configuration is in normal form when all restrictions are grouped at top-level and every
local process is in normal form. Our local reduction strategy can be extended to configurations
in normal forms as follows: we perform local reductions as detailed above, then lift any resulting
restrictions to the top level of the configuration up to structural equivalence (ugimgP’] =
vn.a|P']).



3.3. High-Level Equivalences and Safety 89

3.3 High-Level Equivalences and Safety

Now that we have defined labelled transitions that capture our attacker model and implementation
constraints, we can apply standard definitions and proof techniques from concurrency theory to
reason about systems. Our computational soundness results are useful (and non-trivial) inasmuch
as transitions are simpler and more abstract than low-level adversaries. In addition to trace
properties (used, for instance, to express authentication properties as correspondences between
transitions), we consider equivalences between systems.

Intuitively, two systems are equivalent when their environment observes the same transitions.
Looking at immediate observations, we say that two systé&mand S, have the same labels
when, ifS; 5 S/ for somesS’ (and the name exported byare not free inS,), thenS, - S}, for
somes), and vice versa. More generally, bisimilarity demands that this remains the case after
matching transitions:

Definition 3.16 (Bisimilarity). The relationR on systems is a labelled simulation when, for
all Sy R S, if §; 5 S| (and the names exported hyare not free inS;) then S, 2 S, and
S| R Si. Labelled bisimilarity, writtern~, is the largest symmetric labelled simulation.

In particular, if® - C ~ &  C’ thenC and(C’ define the same principals, intercepted-
message indices, and exported certificate§ ¢) = M (d’)).

We also easily verify some congruence properties: our equivalence is preserved by addition
of principals, deletion of intercepted messages, and deletion of certificates.

Lemma3.1l. 1. IfdFC, ~dF CythendUd, - C)lalP] ~PUd, - CylalP]forany
certificates®, issued by: such that the systems are well-formed and P) C o.

2. 1fd+ I/ﬁl.(cl |M1/Z) ~®F I/ﬁg.(CQ | MQ/Z), then®d + I/ﬁl.cl ~®F I/ﬁQ.CQ.
3 DUV Cy = ®U{V}F Gy andV ¢ 6(d), thend - Cy ~ & F Co.

Proof. The proof is by bisimulation. We detail the proof of Propéktyf the lemma—the proofs
for the other two properties are similar but simpler. For fig¢éd- Prin anda € Prin \ H, we let
R be the relation defined by: # - C, ~ & + Cj, then

o, Fuvn.(CylalP]|C,) R @, Fvn.(Cy|a[P]|C,)

for any name%, configurations”;, C, that define the principals€ H, local process, parallel
compositionC, of intercepted messages franor to a, and sets of certificated and ®, such
that the systems are well-formed and

o1 (Pe) U pn(P) U dp(Co) C @ (3.1)

We show thatR is a labelled simulation by case analysis on the transitions of any systems
related byR, of the form

Sy =&, Fun.(Cy|alP]|Cy) L S =&, F v .(C)|a[P]| C)
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Assuming thatS; R Ss, we establish the existence of a matching transition
Sy =@, - vn.(Cy|alP)|C,) L Sy =@+ vi' (Ch|a[P]|C")
such thatS] R S5. We deal with outputs (RuleSysOuT)), then inputs (RuleQYsIN)).

e v = vi.a:b. The transition uses Rul€EGBLOCK) with index: fresh inS; andb € H to

intercept an output produced by RuléAGIN): a[P] vmabV), a[P’]. Up to renaming, we
assume that the namesare fresh. The indekis also fresh inSs.

To obtain a matching transition withff R S, we use this”’, we letC! = C, | a:b(V') /i,

n' = n,m, and we leave the other parameters unchanggd= C,, C), = C;, ¢’ = O,
and®’ = ®,. Property 8.1) is preserved becauggP’) C ¢(P).

e v = vm.a:e(V) for somee ¢ H U {a}. The transition also uses RUlEKGIN): we have

a[P] XY, 1P for some fresh name®’. Leti” = fn(V)N7i. We havei = i Win”
andm =m' ¥ m”.

To obtain a matching transition with; R S, we useP’ andn’, we let®, = &, U
drugay(V) and we leaved’, C;, and C, unchanged. Property3(l) is preserved, as

Prugay(V) = on(V) U by (V) andey (V) € ¢ (P) C @.

e v = wvi.b: afor someb € H. The transition uses Rul€EGBLOCK) with index: fresh
in S; andb € H to intercept an output produced by Ru@~GOuT): 4 il N ¢ for
some fresh names.

By Rule SysOurT), we haved - ¢,

I @/ - O whered = & U g (V).

vmb:a(V).
—

By bisimilarity hypothesisd - C, ~ ® = C,, we obtainC’, such thatd - C,
¢+ Chandd’ - C] ~ '+ C.
To obtain a matching transition with) R S5, we useC], C}, ¢, we letC’, = C, | b:a(V)
andn’ = n, m, and we leave>, and P unchanged.

o v =vm.b:e(V).

vm/b:a(V).

Similarly, the transition usesCFGcOUT): ¢ -
¢ (V') and, by bisimulation hypothesis, we obtaifisuch thatb - C,
with ' = C] ~ &'+ (4.

To obtain a matching transition a¢l R S5, we useCi, Cj, &', n’ = n,m and we
leaveC,, ®,, and P unchanged. Propert(l) is preserved, sincéy (¢q3(M)) C ® by
hypothesis.

o' + C] whered’ = ¢ U

vmb:a(M). P Oé

o v = (eu(V)). We havepy ) (V) € @, by Rule SysIN) and gy (P,) € © by Prop-
erty (3.1), so¢pn (V) C ®. Up to a renaming ofi, we assume that the nameslofdo not
clash withn. We distinguish two subcases:
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— if u = a, thena[P] = a[P’] by Rule CFGIN).
We useP’ and leave the other parameters unchanged. Profdyi$ preserved:
on(P) C @ also by Property3.1), so¢y(P’) C P by definition of local reductions
and P well-formed fora.

— otherwiseu = b for someb € H, and® + C; - @ - C! by Rule CFGIN).

By bisimulation hypothesis, we obtaiff, such thatd - C, - & F ¢ and® +
Ol ~ o+ Cl.
We useC] andC?, and leave the other parameters unchanged.

e 7 = (i). We similarly conclude in each of the following subcas#$/i to a; C, defines
M /i from a; or C; definesM /i.

Finally, R is symmetric by construction, hen@& C ~, andR contains the systems related
by the lemma forn = 0, ®, = ®, andC, = 0. O

Bounding processes

As we quantify over all local processes, we must at least bound their computational power. In-
deed, our language is expressive enough to code Turing machines and, for instance, one can
easily write a local process that receives a high-level encoding of the security parartetgr

as a series off messages) then delays a message outpat’ bgduction steps, or even imple-
ments an ‘oracle’ that performs some brute-force attacks using high level implementations of
cryptographic algorithms.

Similarly, we must restrict non-deterministic behaviours. Process calculi often feature non-
determinism as a convenience when writing specifications, to express uncertainty as regards the
environment. Sources of non determinism include local scheduling, hidden in the associative-
commutative laws for parallel composition, and internal choices. Accordingly, abstract proper-
ties and equivalences typically only consider the existence of transitions—not their probability.
Observable non-determinism is problematic in a computational cryptographic setting, as for in-
stance a non-deterministic process may be used as an oracle to guess every bit of a key in linear
time.

In order to bound the complexity of processes (mainly the complexity of reductions) we de-
fine a function[-] that computes the high-level structural size of systems, labels and transitions.

This is done by structural induction, with for instank:%i ST =[S+ [8]+[57+1. As
for input labels we have that the complexity&fﬂ S’ accounts also for the internal reductions
performed during the transition, that [ ©), S =[S+ Ta]+[S"]+[ua(V) | P - Q] +1,
whereq[P] is defined inS anda|Q)] is defined inS’. We omit the rest of the details as they are
straightforward.

Definition 3.17 (Safe Systems)A systemsS' is polynomialwhen there exists a polynomial
and a constantsuch that, for any, if S 2 S’ then[S % '] < pg([input(p)]), and[5] < ¢
for all output labels? in .
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A systemS is safewhen it is polynomial and, for any, if S = S; andS % S, thenS; and
S, have the same labels.

Hence, starting from a safe process, a series of labels fully determines any further observa-
tion. Safety is preserved by all transitions, and also uniformly bounds (for example) the number
of local reductions, new names, and certificates.

These restrictions are serious, but they are also easily established when writing simple pro-
grams and protocols. (Still, it would be interesting to relax them, maybe using a probabilistic
process calculus.) Accordingly, our language design prevents trivial sources of non-determinism
and divergence (e.g. with pattern matching on values, and replicated inputs instead of full-fledged
replication); further, most internal choices can be coded as external choices driven by the inputs
of our abstract environment.

We can adapt usual bisimulation proof techniques to establish both equivalences and safety:
instead of examining all series of labelsit suffices to examine single transitions for the systems
in the candidate relation.

Lemma 3.2 (Bisimulation Proof). Let’R be a reflexive labelled bisimulation such that, for all
related system§; R Ss, if S; = 5! and S, = S, thenS! R S).
Polynomial systems related & are safe and bisimilar.

Proof. By induction ofp, we show thats; R S, andsS; 2 S fori = 1,2 impliesS! R 5. [

Equivalences with Message Authentication; Strong Secrecy and Authentication

We illustrate our definitions using basic examples of secrecy and authentication stated as equiv-
alences between a protocol and its specification (adapted &&8E0(). Consider a principat

that sends a single message. In isolation, we have the equivalemie@ )| ~ a[a:b(V")] if and

only if V"= V’, since the environment obsenfn the label of the transitioma:b(V)] bVl

a[0]. Consider now the system
S(V.W) = ala:b{V,W)] [ b[(a:(?, )).P],

with an explicit process for principadlthat receives’s message and, assuming the message is
a pair, runsP with the first element of the pair substituted for For any termd/; and W5,

we haveS(V,W;) ~ S(V, W;). This equivalence states the strong secredy/ofince its value
cannot affect the environment. The system has two transitions

SV, W) 2252 alo] | P{V/a}
interleaved with inputs from any € Prin \ {a, b}. Further, the equivalence
SV, W) = ala:b()] [bl(a: (). P{V/x}]

captures both the authenticationlofand the absence of observable informatiorioand 1V in
the communicated message, since the protS¢bl 1/7) behaves just like another protocol that
sends a dummy message instead’ofl’.
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Equivalences with Certificates

Let ® = {a{m}}—thatis, assume has issued a single certificate. We have

O Fal(e:(a{n})).P] ~ ®Faf| (3.2)
O Fala:b(a{n})|(e:(a{n})).P]|b]] ~ & ala:b(0)]|b]] (3.3)
O Fal(e:(a{x})).P] ~ P@Fal(e{a{-})).P{m/z}] (3.4)

These three equations rely on the impossibility for the adversary to forge any certificate from
with another content. Similar equations also hold if the input is performed by another principal
(as long as: does not issue any other certificate), and even if the attacker can choose arbitrary
valuesV and IV instead of the names. andn, as long a3/ # W. Conversely, consider the
system

S[]= @t al(e:{(a{m} as sig,a{m} as sig')).match sig with sig’ in 0 else []]

Since signatures are malleable, the else branch is reachable. Take as an example, an input labelled
(e:a{a{m}o,a{m}1), hence in generd|P] £ S[Q)].

3.4 Applications

We present three coding examples within our language, dealing with anonymous forwarders,
electronic contracts, and system initialisation. In addition, we coded a translation from asyn-
chronous pi calculus processes into local processes, using t&emg:) to represent channels.

(The scope of name represents the scope of the channel, and channel-based communications
is implemented by pattern matching on channel terms.) We also coded distributed communica-
tions for the authenticated join-calculus channelsA#GO0(, using certificates{chan(n)} to
represent output capabilities of channels.

3.4.1 Anonymous Forwarders

We consider a (simplified, synchronous) anonymising mix hosted by princifdiis principal
receives a single messagefrom every participant € A, then forwards all those messages to
some sender-designated addries§he forwarded message does not echo the sender identity—
however this identity may be included as a certificate in the medsa@ée study a single round,
and assume that, for this round, the participants st do not trust one another. We use the
following local processes (indexed by principal) and systems:

P. = Tl,ea(a:c(?b,?V)).(tick|(go).c:b(forward(V)))
Qc _ (tick»foreachaeA HaeA g0

Pg = @:C<bam Vaa> ’ Pc:
S7 = Pe| Qe [Taca alPy]
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The process’. receives a single message from every A, then it emits a locatick message
and wait for a locako message. The proce&s runs in parallel withP. and provides synchro-
nisation; it waits for a&ick message for every participant, then segasnessages to trigger the
forwarding of all messages.

Let A" C A be a subset of participants that comply with the protocol. Wéet A’ & {c}.
Anonymity for this round may be stated as follows: no coalition of principal$ i’ should be
able to distinguish between two systems that differ only by a permutation of the messages sent by
the participants id’. Formally, for any such permutatioasando’, we verify the equivalence
S ~ S°. Hence, even if the environment knows all thHemessages, the attacker gains no
information ono. (Conversely, the equivalence fails, due to traffic analysis, if we use instead a
naive mix that does not wait for all messages before forwarding, or that accepts messages from
any sender.)

3.4.2 Electronic Payment Protocol

As a benchmark for our framework, we consider the electronic payment protocol presented by
Backes and Drmuth BDOF] that is a simplified version of the 3KP payment syst@8GH" 95,
BGH™0Q]. We refer to their work for a detailed presentation of the protocol and its proper-
ties. The authors provide a computationally sound implementation of the protocol on top of an
idealised cryptographic libransBPWO03. We obtain essentially the same security properties,
but our coding of the protocol is more abstract and shorter than theirs (by a factor of 10) and
yields simpler proofs, essentially because it does not have to deal with the details of signatures,
marshalling, and local state—coded once and for all as part of our language implementation.

We adapt their notations, e.g,p — t. Our calculus is more abstract and formally conve-
nient, but less expressive than machines running on top of their library. Arguably, our low-level
machine description factors out (and clarifies) most of their coding on top of the library.

The protocol has four roles, a clieata vendorv, an acquireiac, and a trusted third party
ttp. For simplicity, we assume that andttp are unique and well-known. In addition, we use
a distinct, abstract principdl that sends or receives all events considered in trace properties.
Initially, the client, vendor, and acquirer tentatively agree on their respective identities and a
(unique) transaction descriptbthat describes the goods and their price. The protocol essentially
relies on the forwarding of certificates. We tet{y, '} abbreviates a message with a certified
contentz:y(z{y, V'}), and useus sig to bind the corresponding certificaté¢y, V' }.

A systemS consists of any number of principals (potentially) running the three roles, plus a
unique principattp runningP.,. The system should not defidg which represents an arbitrary,
abstract environment that controls the actions of the other principals. For a given normal trace
we say that the paymentc, v, ac is completevheny includes the following input labels:

(i) if c € H, thenU:c(pay(t,v));
(i) if v € H, thenU:v(receive(t,c)); and

(iii) if ac € H, thenU:ac(allow(t,c,v)).
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Client ¢ Vendor v Acquirer ac
U:c(pay(t,v)) U:v(receive(t,c)) U:ac(allow(t,c,v))
v v v

sig, = v{c,invoice(t)}

sig. = c{v, payment(t)} v:ac(request(sig,, sig.))
vic{confirm(sig,c)) $ig.. = ac{v, response(t,c)}
v v v
c:U(paid(t,v)) v:U(received(t,c)) ac:U(transfer(t,c,v))

Figure 3.1:Diagram of the Electronic Payment ProtocBO 05

We can now state the following properties:

e Weak atomicitys a trace property expressed as followsyifncludes any output of the
formc:U(paid(t,v)), v:U(received(t, c)), orac:U (transfer(t, c,v)), then the payment
t,c,v,acis complete.

e Correct client disputestates that an honest client—who starts a dispute for transaction
t only after completing the protocol fat as coded in the last line @lient.—always
wins his dispute: that is, for any trace if ¢ € H andc:U(paid(t,v)) is in ¢, then
ttp:U(reject(t, c,v)) is notiny. (This property is rather weak, as the vendor and acquirer
complete the protocol before the client.)

e Correct vendor disputandCorrect acquirer disput@re similar to the previous property
and we omit it here.

¢ No framingstates that thetp does not wrongly involve parties that have not initiated the
protocol with matching parameters. It is a variant of weak atomicity: outputs of the form
ttp:U (accept(t, ¢, v)) only occur for complete payments.

These properties are directly established by induction on the high-level transitiéns of

Sketch of the ProofBy induction on the trace. We show that the state of the system is de-
termined byy, and that every enabled input in this state yields outputs that meet the claimed
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Client, = *(U:c(pay(?t,v))).
(v:{c, invoice(t)} as sig,).
(c:{v, payment(t)} |
(v:c(confirm(ac{v, response(t,c)} as sig,.)))-
(U (paia(t, v)) |
(U:c{dispute(t))).c:ttp(client_dispute(sig,, sig,.))))
Vendoy, = x(U:v(receive(?t,?c))).
(v:{c, invoice(t)} as sig, |
(c¢:{v, payment(t)} as sig,).
(v:ac(request(sig,, sig.)) |
(ac:{v,response(t,c)} as sig,.).
(v:c{confirm(sig,.)) |v:U(received(t,c)) |
(U:v(dispute(t))).v:ttp(vendor_dispute(sig,, sig,.)))))
Acquirer,, = «(U:ac{allow(?t,7c,?v))).
(v:ac(request(v{c, invoice(t)} as sig,,
c{v, payment(t)} as sig,))).
(ac:{v,response(t,c)} |ac:U(transfer(t,c,v)) |
(U:ac(dispute(t))).ac:ttp(acquirer _dispute(sig,, sig,)))
Pip = #(?cittp(client_dispute(?d))).
match d with ?v{c, invoice(?t)}, ac{v, response(t,c)} in
ttp:U(accept_client(t, c,v)) else
ttp:U(reject client(t,c,v)) |
*(7v:ttp(vendor _dispute(?d))).
match d with ?c{v, payment(?t)}, ac{v, response(t,c)} in
ttp:U(accept_vendor(t,c,v)) else
ttp:U(reject_vendor(t,c,v)) |
«(ac:ttp(acquirer_dispute(?d))).
match d with ?c{?v, payment(?t)},v{c, invoice(t)} in
ttp:U (accept_acquirer(t,c,v)) else
ttp:U(reject_acquirer(t,c,v))

Figure 3.2:Encoding of the Electronic Payment Protod8005]
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properties. (In contrast wittBD0S], we don’t have to define complex, auxiliary invariants; the
invariant directly follows from our definition of labelled transitions.) l

3.4.3 Initialisation

This technical example shows that, without loss of generality, it suffices to develop concrete
implementations foinitial systemghat do not share any names, certificates, or intercepted mes-
sages between principals and the environment. Up to structural equivalence, every system is of
the formS = ® = vn.([] ey alFa] | I1,e; M/i). The sharing of names and certificates between
principals and the environment can be quite complex, and is best handled using an ad hoc (but
high-level) “bootstrapping” protocol, outlined below:

1. Free names of and restricted non-local namesare partitioned between honest princi-
pals; let(ng1, - - -, Nk, Jacn DE those names.

2. Free names and non-self-issued certificates that occur in the local pro¢esaes ex-
changed using a series of initialisation messayggs, of the form

Mab,r - a:b<initab,r(na,17 v 7na,ka7. 9 a{%b,l}? oo 7a{Vab,m,~})>7

carrying names and certificates issuedutihat occur inP,. Similarly, initialization mes-
sages sent to a fixed principak H export the free names 6f and the certificates b,
whereas initialization messages freimport certificates issued by principals notfif

Each principak € H thus sends a series of initialisation messages, and sequentially re-
ceives and checks all initialisation messages addressed to him, using input patterns of the
form (T, ) whereT,, , is M, , with binding variablesn,, . .., ?n; instead of the names

and aliase${V,,,} as 7z for checking and binding certificates. The whole local initiali-
sation process is guarded by a dummy input with patférn = e:a(-), so that the initial
system be stable.

3. Finally, each principak sends a messagd for every intercepted messagé/i from a
defined inS, then starts>,.

For instance, in cas® = {a, b} with neither nested certificates nor intercepted messages, the
local initialisation process far is

PO = (Tmo).ynl, e ,nka.(MabJ

a

Mae,l |(Tba,1) . (Tea,l)-Pa)

In the general case, several rounds of initialisation messages may be needed to exchange certifi-
cates whose contents include names and certificates, and to emit messages with the same shape
one at a time.

Intuitively, the attacker may preverit, from running at all by not forwarding messages, or
provide a message whose certificates do not match the certificates expedtgdoy it could
block all of a’'s communications anyway. P, does start, it does so with the right names and
certificates.

The next lemma states the correctness of the initialisation protocol. The second property of
the lemma states that an environment that follows the protocol always regiches
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Lemma 3.3 (Initialisation). Let.S; fori = 0, 1 be safe stable systems with the same principals,
exported certificates, and intercepted-message labels.
There exist initial safe stable systesfsand labelsy° such that

1. we have normal transitions; £, Si;
2. any normal transitions? LNy imply thatS’ = S;; and
3. Sy~ Sy ifand only if S ~ S7.

Proof. (Sketch.) We havé? LN S; deterministically, s&g ~ S} implies.S, ~ S;. Conversely,
we show that the relation

R={S),S}) suchthatS, ~ S;,S° % 5/,
andy is a prefix of a permutation of the labelsof}U ~

is a labelled bisimulation. (Intuitivelyy is the part ofy° that has already been enabled by the
attacker.) l

3.5 A Concrete Implementation

We are now ready to define the machines outlined in Se@itinrelying on translations from
high-level terms and processes to keep track of their runtime state. We systematically map high-
level systemsS to the machines of Sectid®.1, mapping each principal[P,] of S to a PPT
machineM, that execute$’,. We start by giving an outline of our implementation.

The implementation mechanisms are simple, but they need to be carefully specified and com-
posed. (As a non-trivial example, when a machine outputs several messages, possibly to the same
principals, we must sort the messages after encryption so that their ordering on the wire leaks no
information on the computation that produced them.)

We use two concrete representations for terms: a wire format for (signed, encrypted) mes-
sages between principals, and an internal representation for local terms. Various bitstrings rep-
resent constructors, principal identities, identifiers for names, and certificates. Marshaling and
unmarshaling functions convert between internal and wire representations. When marshaling a
locally restricted name identifiénd for the first time, we draw a bitstringof lengthn uniformly
at random, associate it withvd, and use it to representd on the wire. When unmarshaling a
bitstring s into an identifier for a name, i is not associated with any local identifier, we create
a new internal identifiefnd for the name, and also associateith ind.

Signatures are verified as part of unmarshaling. Signatures for self-issued certificates are
generated on-demand, as part of marshaling, and cached, so that the same signature value is used
for any certificate with identical content.

Local processes are represented in normal form for structural equivalence, using internal
terms and multisets of local inputs, local outputs, and outgoing messages. We implement reduc-
tions using an abstract machine that matches inputs and outputs using an arbitrary deterministic,
polynomial-time scheduler.
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Marshall
signed.,

For each
principal b :

Collect; Sort

Figure 3.3:Local machine for principat connected to the adversary machine

3.5.1 Implementation of Machines

The transition rules of Sectiadh2.2declare that all communications be authentic and confiden-
tial. In order to meet these requirements, our implementation relies on concrete bitstrings and
cryptographic protocols.

Definition 3.18 (Low-Level State). The runtime state of machirid, consists of the following
data:

e id,, d,, ands, are bitstrings that represent the low-level identifier for principahd its
private keys for decryption and signing.

peers = {(idy,e,,v,) | w € Prin} binds, for every principal, a low-level identifier to
public keys for encryption and signature verification.

pa IS a low-level representation of a local process running(gefined below).

keycache, is a set of authentication keys for all received messages.
e signed, is a partial function from certificates issued dyo signature values.
e names, is a partial function from name identifiers to bitstrings.

The main machine components are depicted in Figuie
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Before detailing the definitions of all the protocols presented if Fi@ig we describe a
complete run of the machine. Recall tha} is connected to the environment by two wiras,
andout,. The wire format for messages is the concatenated bitstfingd,_msg whereu and
v are the (apparent) sender and receiversanglis some encrypted, authenticated, marshaled
message. When it receives such a message (wjtk id,), M, usesid,, to dispatchmsg to the
receive protocol (Definitior3.23 for remote principat.— there is an instance of theceive
protocol for each peer principal The protocol verifies the freshness, integrity, and authenticity
of the message, updatésycache,, then returns a decrypted bitstrirg If a verification step
fails, the message is discarded.

At this stage;msg is a genuine message fromto a, but its content is not necessarily well-
formed. For instance may have included a certificate apparently issued lmyt with an invalid
signature. Content validation occurssas unmarshaled (Definitio.21) from its wire format
into some internal (trusted) representatj@mse,(s) of a high-level terml/. In particular, this
trusted representation embeds a valid signature for every certificateAfter successful recep-
tion and unmarshaling, a representatiorof the incoming messagea (V') may react with an
input within p, and trigger local computations. To this end, a local interpreter (Defirigiag)
derived from the abstract machine of Sec{®8.3runs onp, | m. If the interpreter terminates,
it yields a new stable internal procegs plus a set of outgoing messag&sto be sent to the
network.

Each message:u,;(V;) represented irX is then marshaled (Definitic8.20) and passed to
the instance of theend protocol (Definition3.22) associated with the intended recipient
The resulting bitstrings, all in wire format, of the fori,_id,, -msg,, are eventually sorted (by
receiving principal, then encrypted valuesg,)—to ensure that their ordering leaks no informa-
tion on their payload or their internal production process—and writtenwary. A final done
bitstring is issued and the machine terminates. (Hence, for instancdp#s not react withn,
the machine simply writedone onout, and terminates.)

Next, we describe in turn each of the components of the local machine.

Low-level Processes Reductions

The internal representation of terms uses the same grammar as in the high-level language except
for atomic subterms: principatsare boxed, fixed-sized bitstringsin(id,) ((prin); free names

are boxed, bitstringaame(ind) whereind is an internal identifier for names; and certificate
labels are linear-sized bitstringssuch that eithes is a valid signature for the certificate or

s = 0 and the certificate is self-issued. Bound variables and names may still occur in terms
under input guards.

Definition 3.19 (Internal Reductions). The local reduction algorithm refines the abstract ma-
chine of Sectior8.2 as follows:

1. it represents the multisefs, M, andG using internal terms;

2. it uses a deterministic, polynomial-time, complete scheduler;
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3. instead of lifting new name restrictiom.(), it generates a new identifiend (possibly
incrementing an internal counter) and substitutese (ind) for all bound instances of the

nin Q.

Marshaling and Unmarshaling Protocols

These algorithms are responsible for processing messages that are about to be sent to (that were
received from) the network. The marshaling process transforms each internal term into a bit-
string to be sent over the network, and the unmarshal algorithm attempts to transform a bitstring
received from the network to a (trusted) internal term; it may instead return an error if the mes-
sage is not well-formed, or if the signature of an included certificate cannot be verified. In any

of these cases the entire message is discarded.

We use a fixed, injective function from all constructors plage andprin to bitstrings of a
given fixed size; we still writef, name, prin for the corresponding bitstrings. We writes’ for
the bitstring obtained by concatenatingnds’.

Definition 3.20 (Marshaling). LetX = (G, S, V) be a signature scheme. The functjehmaps
principal’s internal representations of closed terms to bitstrings, as follows:

[name(ind)] = name _names(ind)
addingnames(ind) = s «— {0, 1}" when undefined
[prin(s)] = prin.s
[f(vi,...,00)] = £ [1]-... [va] whenf ¢ {name, prin, cert}
[vi{ve}s] = cert_Jui]_[uve]-s whens # 0
[vi{va}e] = cert [uvi1] [ve] _signed(vi{va}o) wWhenv, = prin(id,),b € H

addingsigned(vi{va}o) = S(sp, [v2]») Wwhen undefined

We denote byf-], the marshaling procedure for machikg that uses only uses tableames,
andsigned ,, that is,names = names, andsigned = signed,,.

We prove as an invariant that for all certificates of the farrfws }, in p,, v1 = prin(id,),
hence]-], is defined for all internal representations of term$/yf

We assume that after marshalling, and before sending, all our messages are padded to a fixed
length that is given by the polynomials(n), a parameter of the implementation. We could have
assumed that this was not the case and if so, we needed to consider this difference of length in our
high-level semantics. We could have done it using sorts and sizes for input and output messages.

Definition 3.21 (Unmarshaling).LetY = (G, S, V) be a signature scheme. The partial function
parse(-) maps bitstrings to internal representations of closed terms, as follows, and fails in all
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other cases.

parse(name_s) = name(ind)  when, there iSnd : names(ind) = s
otherwise if|s| = n then
ind = |dom(names)| + 1 and
addnames(ind) = s

parse(prin_s) = prin(s) when|s| = (o1 @and(s, eg, vs) € peers
parse(f_s1_...s,) = £(v1,...,v,) whenf ¢ {name, prin, cert} has arityn
parse(s;) = v; fori=1..n
parse(cert_s;_sg_s3) = vi{va}s when, for soméid,,, e, v,) € peers,

parse(s;) = prin(id,) = vy,

parse(sy) = vy

V(vy, S2,83) = 1

s = if signed(v1{v2}o) = s3 theno elses;

We denote byarse,(-) the unmarshaling procedure for machiMg that uses only uses tables
names, andsigned ,, that is,names = names, andsigned = signed,,.

Unmarshaling includes signature verification for any received certificate, and is otherwise
standard; it is specified here as a partial function from strings to internal representations, and can
easily be implemented as a parser. Our treatment of self-issued certificates with taftetts
our choice of internal representatiorisstands for the (unique) signature generated by the local
machine for this certificate content, the first time this certificate is marshaled. (In addition, the
adversary may be able to derive a variant of this certificate with a different signature, unmarshaled
with a non-zero label; such certificates are then treated using the default case for marshaling.)

Although we give a concrete definition pf, parse(-), and message formats, our results only
depend on their generic properties. We only require that, for a given local machine, every string
be unmarshaled to at most one internal term, whose marshaling yields back the original string,
that is, parse,(["V*],) = "V (TV 7 denotes the internal representationacfor V. We
define” vV '* formally in Definition3.25) For simplicity, we have that the length of the string be
a function of the structure of the internal term and of the security parameter.

Sending and Receiving Protocols

Two important pieces of our systems are #a@d, andreceive; protocols. There are one pair

of these for each other principal. Tlkend protocol defined below, ensures that, as abstracted

in the high-level semantics, all communications are opaque for the adversary using public-key

encryption, and that the communication is authentic, using authentication and signature schemes.

This protocol takes a bitstring (containing a marshaled message frono v), protects it, and

returns it in wire format. Conversely, the receiving protocol takes a message in wire format

presumably fromu, verifies it, and returns its payload. We also request robustness against replay

attacks; after decryption, we reject any message whose authentication key is already recorded.
These protocols are intended as a simple example; other choices are possible. We may for

instance consider long term shared keys between principals, in order to reduce the overhead of
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public-key cryptography. If we decide to do so, we should introduce a nonce in the message that
is encrypted in SteB.

Definition 3.22 (Sending tou). LetIl = (K,&,D), ¥ = (G,S,V), andA = (Gy,A,C) be
respectively an encryption, signature, and authentication schemes. Given a bitsinegend,,
protocol

1. generates a fresh authentication key— G, (17);

2. computesn = s_id, k_S(s,, k_id,)-A(k, s);

3. computesnsg = &(e,, m); and

4. returnsid,_id,_msg.
Definition 3.23 (Receiving fromu). LetIl = (K,&,D), ¥ = (G,S,V), andA = (Gy, A,C) be
respectively an encryption, signature, and authentication schemes. Given a bitstridg msg,
thereceive, protocol

1. computess_id, _k_Ssig-Sautn = D(da, msg);

2. checks that there is an entfil,, e,, v,) € peers with V(v,, k_id,, Ssig) = 1;

3. checks that (k, s, Squn) = 1;
4. checks thak is not inkeycache, and adds it teycache;
5. returnss.

The entire message is discarded if any step of the protocol fails.

Mapping High-Level Systems to Low-Level Machines

In order to systematically relate the runtime state of low-level machines to the abstract state of
high-level systems, we define an associakddow state This structure provides a consistent
interpretation of terms across machines. In combination, a system and its shadow state deter-
mine their implementation, obtained as a compositional translation of terms, local processes,
and configurations. (This state is shadow as it need not be maintained at runtime in the low-level
implementation; it is used solely as an abstraction to reason about the correctness of our imple-
mentations.) We further partition this state into public parts, intended to be part of the attacker’s
knowledge, and private parts.

Definition 3.24 (Shadow State).Let S = ® - vn.C be a system such that the configuration
C = [l.ex alPa) | T1;c; M/ is in normal form. Ashadow statéor S, written D, consists of the
following data structure:
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e prin € Prin — ({0,1}")% is a function fromu € Prin to bitstringsid,,, €., vu, du, Su
such thatuw — id, is injective, and for every, € H, we have(e,,d,) «— K(1"), and
(Vuy 8u) < G(17).

The bitstringsid,, e, v, are public for allu € Prin; d,, ands, are public ifu € Prin\'H.

e name € Name — {0, 1}" is a partial injective function defined at least on every name that
occurs free inS, and names that occur @, D. certval or D.wire.

The bitstringname(m) is public for every namen ¢ 7.

e ni is a family of partial injective functionsi® : Name — {0, 1}" for eacha € H, defined
at least for all names af, that are not locally-restricted.

e certval is a partial function from certificateg{V'}, to s € {0,1}" defined at least on
the certificates ofb, D.wire, and all certificates o, of the forma{V'}, with ¢ # 0
oru{V}, with u # a. Itis also defined for all the certificates In such thatu{V'}, is
defined incertval. certval satisfies the following property: ifertval(u{V'},) = s, then
V(v,, [TV PY],s) = 1.

The bitstringcertval (V') is public whenV € M(®) or V issued byu ¢ H.
e wire is a partial function from indicesto (M, k, s, del) defined at least oh, whereM =

a:b(V) with a,b € H, anddel = 0 if i € I anddel = 1 otherwise. The bitstrings andk
are the output and the authentication key producesiday,, on input[™V 1P-].

The bitstringss anddel are public.

e keycache is a function froma € H to sets of bitstrings such that, if there existsiamth
wire(i) = (M, k, _, 1) with M to a, thenk € keycache(a).

e msP(n) is a polynomial that sets the padding-size of the implementatios's of

Intuitively, wire records all messages sent between honest principajggche(a) records
the authentication keys of all messages received sy far; it contains at least the keys of mes-
sages invire that were already received by WhenD is clear from the context, we write-in(a)
instead ofD.prin(a), and similarly for the other componentsof We denote byublic(D) the
binary representation of the public parts@f When we are not interested in the specific bit-
strings, we call ishape oD.

Definition 3.25 (Concrete Terms and ProcessesA shadow statd) and a set of principals
X C Prin, define a partial map from high-level terfrsto internal terms as follows:

o Fp DX _ name(ind) , if ind = ni%(n) forallu € X
" 4L , otherwise

o "y X = prin(m (prin(u))) for any principak: € Prin;

o Tu{ V)X = ry DX [rY DY if g € X
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o Tu{V}, PN =y PXLrYy DX wheres = certval(u{V'},) (u € Prin);
o Tf(Vi,. .., V)X = £(TV, DX TV, D)) for any f # cert with arity n.

We extend this map to translate local processes to low-level processes, as follows: high-level
terms within local processes are translated as above, except for variables and locally-restricted
names (left unchanged); high-level patterns are translated by applying the translation to all high-
level terms in the pattern and leaving the rest unchanged; local procBssestranslated to
internal processesP ®-X by translating their high-level terms to internal terms.

As a corollary, we have that B is a shadow state fa¥, anda € Prin then™ 7P is defined
for every subterm and subprocess®findD ("- P denotes - °{}). We often write™V
instead of VP2 whenD anda are clear from the context. Our intent is that, with overwhelming
probability, we have/ = V" iff "/ P« = T}//7D.a wheneveD defines these representations.

We would like to point out that the previous definition is well-formed. One should first
notice that we do not translate high-level terms (hence, high-level certificates) with variables and
locally-restricted names. Hence, when applyindV'}, 7, we can be sure that the certificate
was previously generated and hence defindd. nartval.

Definition 3.26 (System Implementations) Let S be a system with shadow stdle The im-
plementation ofS andD is the collection of machinell(S,D) = (M,(S,D)).cx Where each
machineM, (S, D) has the following state:

e id,, dg, sS4, peers, are read fronD.prin;

_rp D,a-
.pa— Pa H

keycache, = keycache(a);

signed,("a{V}o ®%) = certval(a{V},) when defined,;

names,(ni*(n)) = name(n) when defined,

and useq-], andparse,(-) as the marshaling and unmarshaling algorithms,arll(-) as the
padding size.

3.6 Main Results

In this section we present the main results of this Chapter. Throughout this section we assume
that the encryption schemié= (K, £, D) is CCA-2 secure (recalled in Definitioh.4), and the
signature schemE = (G, S, V) and authentication scheme = (G,,.A,C) are CMA-secure
(recalled in DefinitionA.6).

Our main theorems are stated in terms of arbitrary systemds it is convenient to have a for-
mulation of these theorems in terms of arbitrary systems, one should not forget that an arbitrary
systemsS is obtained starting from an initial systefii that has no shared names or certificates
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and no intercepted messages so, whenever we refer to a systeenare in fact referring to its
initial stateS° plus its initialisation procedure. The same happens with the implementations and
for that we introduce the notion eflid shadow Intuitively, a shadovD is a valid shadow fof,
if there is an interactive run (DefinitiaB.1) that starts withVi(S°, D°) and leads the machine to
stateM(S, D), whereD® is the shadow obtained froBby erasing everything except prin. D°
is called arinitial shadowfor S. We denote byA,[M(S5°, D°)] — s.(M(S, D)) such run, where
s, is the bitstring returned bxx, at the end of the run.

Accordingly, wedefinea low level run starting fromt with (valid) shadowD againstA,
written AM(S,D)] — (M), as(A,; A)[M(S°,D°)] — s.(M) where(A.; A) represents an
adversary that first run&, and then rung.

Definition 3.27 (Valid Shadow). Let S be a safe system with shaddw We say thatD is
a valid shadowfor S if there exist an initial safe systewi® with initial shadowD*, normal
transitionsS® *- S, and a PPT algorithm, such thatA,[M(S°, D°)] — public(D)(M(S, D)),
andmsP(n) > maxpyn<.[[TMP]] wherec is the constant given by the safety condition and
[T M7P] is the result of marshaling the low-level representations/of

We say thaD is a valid shadow for two safe systersis~ S5, if the sameéA, initialises both
M(S1, D) andM(S,, D), andmsP(n) > maxia<maxier,eo} [ [T M °]], wherec; andc, are the
constants given by the safety conditiongyfand S, respectively.

Our first theorem expresses the completeness of our high-level transitions: every low-level
attack can be described in terms of high-level transitions. More precisely, the probability that an
interaction with a PPT adversary yields a machine state unexplained by any high-level transitions
is negligible.

Theorem 3.4 (Completeness for Reachable Stated)et S be a safe stable system,a valid
shadow forS, andA a PPT algorithm.

The probability thatA[M(S, D)] completes and leaves the system in stdtewith M’ #
M(S’, D’) for any normal transitionss % 5" with valid shadowD’ is negligible.

Proof Sketch.We just sketch the proof and refer the reader to Appefifiar the full construc-

tions and proofs of the associated lemmas. The proof is done by tracing the cases when the
behaviour of machin® (S, D) is not in accordance with the high-level semantics and check-
ing that the probability of occurrence of such cases is negligible. A more detailed sketch is the
following:

e We start by defining variants d¥l(S, D) called the defensive varianid(S, D) (Defini-
tion/C.1). These machines behave lik S, D) but include an extra wire where a failure
signal is sent whenever the low-level interaction is not in accordance with the high-level se-
mantics. The reader should be aware that these machines are just used as a proof technique,
hence there is no need to implement it. All our results are stated in terMsHD).

e The second step is to create a machifiés, D) that behaves liké(.S, D) but has a com-
mon state for all machindd, (.S, D) (Definition/C.5). This is the same as having one single
machine that includes all tHd, (S, D) machines, for alt € H. We show thaM(S, D) is
equivalent td\°(S, D).
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e The third step is to definN(S, D). This is the extreme version &F (S, D) where all the
encrypted messages are 0’'s and no signing is ever performed.

Then we have two different arguments. The firstis the partial completend&issoD), N(S, D),
and the failure oN(S, D).

1. We show that all runs of1(.S, D) andN(S, D), where the failure signal is not sent are in
conformance with the high-level semantics (Lem@é&and LemméC.7).

2. We show that the probability that the failure signal is issuedlby, D) machine is negli-
gible by reducing it to the security of the encryption, authentication and signing schemes
(Lemmac.§).

The second argument is thdtS, D) is indistinguishable fronN(S, D), hence the failure of the
former implies the failure of the latter, which only happens with negligible probability. This is
done as follows:

1. N*(S, D) machines are parameterisedby= (n,).c. This parameter defines how many
messages to each honest principal will be “fake” (a fake message is one where we encrypt
O's instead of the real bitstring). Wheneveris reached, it starts behaving lik&, (S, D).

For the fake messages we keep an internal table that associates the fake bitstring to the real
message so that we can proceed with the correct value when the fake message is provided
back to the machine. With a standard cryptographic argument we show that distinguishing
N"(S, D) from N"*1(S, D), wheren + 1 has all the components equaliexcept forn,

that we replace by, + 1 for some principat (LemmaC.12).

2. We show via a cryptographic argument that for all PPT adversavlés, D) is indistin-
guishable fronN(.S, D) (LemmaC.13C.14 andC.15).

This concludes our proof. l

Finally, our main result states the soundness of equivalence: to show that the machines that
implement two stable systems are indistinguishable, it suffices to show that they are safe and
bisimilar. We just need an extra condition that the padding size is the same in both cases.

Theorem 3.5 (Soundness for Equivalences).et S; and S; be safe stable systeni3,a valid
shadow for botht; and Ss.
If S; ~ S5, thenM(S;,D) ~ M(S,, D).

Proof Sketch.For this theorem we also refer the reader to Appei@lifor the full proofs of

the associated lemmas. The proof is done reusing some of the previous lemmas, in particular
LemmaC.15and with the special Lemm&3.16andC.17 This lemmas state that for equivalent
systemsS; and S, the probabilities of failure oN(S;, D) and N(S,, D) are the same up to
negligible probability. l
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3.7 Related Work

Within formal cryptography, process calculi are widely used to model security protocols. For ex-
ample, the spi calculus of Abadi and Gord#€399] neatly models secret keys and fresh nonces
using names and their dynamic scopes. Representing active attackers as pi calculus contexts, one
can state (and prove) trace properties and observational equivalences that precisely capture the
security goals for these protocols. Automated provers (Bla])[also help verify these goals.

In both of these cases, cryptography is supposed to be perfect, that is, decryption is only
possible if one knows the encryption key, and an adversary is an arbitrary context that runs in
parallel with the specified process. These frameworks provide a formal treatment for the so called
Dolev-Yao model.

Abadi, Fournet, and Gonthier develop distributed implementations for variants of the join
calculus, with high-level security but no cryptography, roughly comparable to our high-level
language. Theirimplementation is coded within a lower-level calculus with formal cryptography.
They establish full abstraction for observational equivaleifd@apq AFG0Z AFGO0(. Our
approach is similar, but our implementation is considerably more concrete. Also, due to the larger
distance between high-level processes and low-level machines, our results are more demanding.
Abadi and Fournet also propose a labelled semantics for traffic analysis, in the context of a pi
calculus model of a fixed protocol for private authenticatAi04).

Another different approach is to supplement process calculi with concrete probabilistic or
polynomial-time semantics. Unavoidably, reasoning on processes becomes more difficult. This
was done by Lincoln, Mitchell, Mitchell, and ScedrdMIMS98]. They introduce a probabilistic
process algebra for analysing security protocols, such that parallel contexts coincide with proba-
bilistic polynomial-time adversaries. This was later extended by Mitchell, Ramanathan, Scedrov,
and TeagueNIRSTO01, MRST04 MRSTO€, and Mateus, Mitchell and Scedrc¥MS03]. In
the former they develop an equational theory and bisimulation-based proof techniques, while in
the latter a general simulatability theorem is presented.

3.8 Conclusions and Future Work

We designed a simple, abstract language for secure distributed communications with two forms
of authentication (but no explicit cryptography). Our language provides uniform protection for
all messages; it is expressive enough to program a large class of protocols; it also enables simple
reasoning about security properties in the presence of active attackers, using labelled traces and
equivalences.

We implemented this calculus as a collection of concrete PPT machines embedding stan-
dard cryptographic algorithms, and established that low-level PPT adversaries that control their
scheduling and the network have essentially the same power as (much simpler) high-level envi-
ronments. To the best of our knowledge, these are the first cryptographic soundness and com-
pleteness results for a distributed process calculus.

We also identified and discussed difficulties that stem from the discrepancy between the two
models. Our proofs involve a novel combination of techniques from process calculi and cryptog-
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raphy, but they are less modular than we expected. It would be interesting (and hard) to extend
the expressiveness of our calculus, for instance with secrecy and probabilistic choices.

We refer the reader tAFO6K] for the discussion related to soundness and completeness of
trace equivalence. There we show soundness of the high-level operational semantics, that is,
every series of transitions can be executed (and checked) by a low-level attacker. Said otherwise,
the high-level semantics does not give too much power to the environment. As we can charac-
terise any trace using an adversary, we also obtain completeness for trace equivalence: low-level
equivalence implies high-level trace equivalence. This result is a corollary of the previous result.

Also, it would be interesting to see if the techniques developed to prove the soundness and
completeness results for our calculus can be also applied to similar results for a full-fledge pro-
cess calculus with explicit cryptography.






Chapter 4

A Process Algebra for Reasoning About
Quantum Security

Security protocols are, in general, composed by several agents running in parallel, where each
agent computes information (bounded by polynomial-time on the security parameter) and ex-
change it with other agents. In the context of quantum processes, the computation is bounded by
guantum polynomial-time and the information exchanged is supported by qubits. In this Chapter,
the problem of defining quantum security properties is addressed using a quantum polynomial-
time process algebra. This approach is highly inspirediRET0I, MMSO03)].

In Section 2 the process algebra is introduced together with the logarithmic cost random
access machine. Both the syntax and the semantics of the process algebra are clearly established,
and the section is concluded by presenting the notion of observational equivalence. Section 3
is devoted to emulation and its composition theorem, and finally, in Section 4 quantum zero-
knowledge is defined using process emulation.

4.1 Process Algebra

In the context of security protocols it is common to consider a security paramet@¥. In the

case of quantum protocols we will also consider such parameter in order to bound the quantum
complexity of the principals and adversaries. From now on, the symisakserved to designate

such security parameter. The role of this parameter is twofold: it bounds to a polynomjal on
the number of qubits that can be sent through channels, and it bounds all the computation to
guantum polynomial time (on). We now detail these aspects culminating with the presentation

of the process algebra language.

4.1.1 Quantum polynomial machines

The computational model we adopted to define quantum polynomial machine is based on the
logarithmic cost random access machi@R[/q and it is quite similar to the quantum random
access machine ini96]. We consider a hybrid model using both classic and quantum memaory.

111
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In order to cope with a countable set of qubjt8 we adopt the following Hilbert spack
(isomorphic to/?(2¢7) and L?(277, #)) to model the quantum state (sé4304, MSO0€] for a
discussion on whyH is the correct Hilbert space for modelling a countable set of qubits):

e each elementis a map) : 2% — C such that:

— supp(|v)) = {v € 298 : |¢)(v) # 0} is countable;

- Y @P= Y )P < o

ve2aB vesupp(|¥))
o [th1) + [th2) = Av. [¢1)(v) + [¥2)(v);
o z|Y) = M. z[y)(v);

o (Giltha) =Y [e0)(v) o) (v

veV

The inner product induces the norii)|| = /(¥|¢) and so, the distancé(|¢), [19)) =

[||v1) — [2)]]- v) : v € 298} is an orthonormal basis ¢ where|v)(v) = 1 and
|v)(v") = 0 for everyy’ # v. This basis is called the computational or logic basis{of

A configuration of a quantum random access machine (QRAM) is téipte (m, |¢), s)
wherem € NV, |} € H ands € N. The first component of the triple represents the classical
memory of the machine—an infinite sequence of natural numbers, the second component repre-
sents the quantum state of the machine, and finally the third component is a counter that indicates
how many (qu)bit operations are allowed.

We associate to each QRAM a positive polynomidbr bounding the number of allowed
(qu)bit operations t@(n). In this way, we force each QRAM to terminate in polynomial-time.
Given a finite set of qubits at state), the initial configuration of the QRAM s the triple
&(]9)) = (mo, [¢) ®10), q(n)), where the sequeneay is such tham, (k) = 0 forall k € N and
|0) is the unit vector ir{ such that0)(#) = 1 (note that ifQ is a2" dimension Hilbert space,
then there is a canonical isomorphism betwgeandQ ® H, and thereforéy) ® [0) € Q ® H
can be seen as a unit vectorif). A QRAM receives as input a finite sequence of qubits, but
since it is always possible to encode classical bits in qubits this is not a limitation.

The set of atomic command4C, and their associated cost is presented in the table below

lwe denote the number of bits required to represent a natural numniiejn|.
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Number Instruction Computational cost
1 R,=n In|

2 R; = R; | ;]

3 R, = R; + Ry |R;| + | Ri
4 R, =R; — Ry, |R;| + | Rl
5 RZ = Rij |R]’ X |Rk’
6 RZ:RJ/Rk |R]| X |Rk|
7 RZ :RRj ‘Rj’+|RRj‘
8 Ry, = R [Ril + |R;|
9 Pauli x[b] 1

10 Pauli y[b] 1

11 Pauli [b] 1

12 Hadamard [b] 1

13 phase [0] 1

14 z10] 1

15 c-not  [by, b 1

16 measure [b] — R; 1

Most of the commands above are self-explanatory, but it is worthwhile to notice that all
commands are deterministic with exceptionneéasure . Indeed, according to the measure-
ment postulates of quantum mechanics (see for instaDE®L77]), when a quantum system
is measured the outcome is stochastic, and moreover the state evolves accordingly to this out-
come. Note that we only consider measurements over the computational basis, nevertheless this
is not a limitation since any other qubit measurement can be performed by applying a unitary
transformation before measuring the qubit over the computational basis.

The set of QRAMcommandg is obtained inductively as follows:

1. aeCifac€ AC;

2. cr1;c9 €Cif ey, €0,

3. (f (R,>0) then c¢)eCifceC;
4. (while (R, >0)c)eCifceC.

The executionof a QRAM commana: is a stochastic function between configurations. Let
= = NV x H x N be the set of all configurations, amitol;,(Z) be the set of all probability
measures ovef=, 25) such that only a finite set of configurations have probability different
from 0. The execution of a QRAM commands a maprun, : = — Proh;,(Z), and we write
c] & —, & to denote thaPryn ) (') = p. The execution of QRAM commands can be defined

using the following rules, which are quite intuitive:

s > |n|

[Rz = n] (m7 |¢>7 8) —1 (m/’ |7vz)>v S — |n|>

(Rz - n)7
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wherem’(k) = m(k) for all k£ # ¢ andm’(i) = n;

s > |Rj| R, = R,
R =R i) o s )
wherem' (k) = m(k) for all k # i andm’(i) = m(j);
s > | Ryl + [ Ryl (R = R; + Ry),

[Ri = Rj + Ri] (m, |¢),8) =1 (0, |9), 5 — (|R;] + [Ril))

wherem/ (k) = m(k) for all k£ # i andm/ (i) = m(j) + m(k);

s > || + | Ryl
[Ri = R; — Ri] (m,[),s) —1 (m, |¢), s — (|R;] + | Ry|))

(Ri = R; — Ry),

wherem’(k) = m(k) for all k£ # ¢ andm’(i) = max(m(j) — m(k),0);

s > |Rj| X | Ryl
[Ri = R;Ry] (m, |¢),5) =1 (m, |9), 5 — ([R;] X [ Ril))
wherem’(k) = m(k) for all k£ # ¢ andm’(i) = m(j)m(k);

(Ri = R;jRy),

s 2 [Rj| x | Ri|
[Ri = R;/Ry] (m, [¢),s) =1 (', [¥), s — (|R;] x | Ral))
wherem'(k) = m(k) for all £ # i andm’(i) = |m(j)/m(k)];

(Ri = R;j/Ry),

s > |R;| + |Rg,|
) R;=Rp),
[Ri = Rg;| (m,[¥),s) =1 (m, [¢), s — (|R;| + [Rr,|)) ( w)
wherem'(k) = m'(k) for all k # i andm’(i) = m(m(j));
s > |Ri| + |Ry| (R, = R)),

(R, = R;] (m,|¢),5) =1 (0, |9), 5 — (|Ri] + [R;]))
wherem'(k) = m(k) for all £ # m(i) andm’(m(i)) = m(j);

s>1
[Pauli X[b]] (Il'l, ’w% S) -1 (mv ‘w/>7 S — 1)

(Pauli  x[b]),

where|y’) is obtained fromjy)) by applying the Pauli operator[ ? (1) 1 on qubitb. Similar
rules apply to the following one-qubit operators:

Pauliy{g. _8]; Paulizl1 O];
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o |1 0 1.
) O€i7r/4’

1 1 0],
Hadamard— { 1 1 } Phase{ 0 ; }

s>1
[c-not [b1, by]] (m, |1h),5) —1 (m, [¢), s — 1)
where|t’) is obtained fromj:)) by applying the control-not operator

(c-not  [by, by)),

o O O =
o O = O
o O O
o= O O

on qubitsh; andbs;

s> 1
[measure [b] — R;] (m,|¢),s) —, (m/, |[¢'),s — 1))

(measure [b] — R; =0),

where|y)) is equal to-2LL li“}%‘ p = |Py|)| (P, is the projector onto the subspacetdivhere qubit
b takes valug0)), m’(i) = 0 andm’(j) = m(j) for all j # i;

s>1
[measure [b] — ;] (m,[¢),s) —, (m,[¢),s — 1))

(measure [b] — R; = 1),

where|y)') is equal to-2-4L U@}ZH p = |P1|v)| (Py is the projector onto the subspacetdivhere qubit

b takes valuel)), m’(i) = 1 andm’(j) = m(yj) for all j # i;

] (m, |9),5) —=p, (', [47), 8")  [eo] (m', [¢), ") —p, (m”,[9"), 5")

[01; CQ] (m, |77/J>, 3) — b1 xp2 (m”, |¢//>7 S”) (Cl; Cg);

[(if (R, >0) then ¢)] (m,]y),s) —, [c] (m W) ) ;
m(n) =0 _ |
[(if (R, >0) then ¢)] (m,[1),s) —1 (m, ), s) (if L);

m(n) >0  s>|R,|
[c; (while (R, >0) ¢)] (m,[¥),s—|R,|) —, (m,[¢),s) _ |
[(while (R, >0)c¢)] (m,|),s) —, (m/,|[¢),s) (while T);
min) 0 (while 1).

[(while (R, >0) ¢)] (m,[¢),5) =1 (m, [¢)), s — [Rn])
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Observe, that the reduction of QRAM commands always terminate, since every computation
is bounded by;(n) (qu)bit steps. The execution of a QRAM command can be seen as a word run
of a quantum automatMMSO0E5], however a detailed discussion about this subject is out of the
scope of this abstract.

The output of a QRAM is the quantum state of a set of qubits. This output set is determined
by another positive polynomial associated to the machine. Given a security paramgtie
set of output qubits is constituted by the fio$t)) qubits.

Definition 4.1. A quantum polynomial machirie a triple M = (¢, q,0) wherec is a QRAM
commandy is a positive step bounding polynomial ands a positive output polynomial. We
denote the set of all these triples QP M.

Given a quantum polynomial machidé and a security parametgy the computation of\/
over statg) is the probability distribution over the state of the fisgt)) qubits of|’), where
this distribution is defined by the execution rulel§my, 1), ¢(n)) —, (m’, |¢'), s’). Hence, the
computation of a QRAM is a probability distribution over the state space of the(tysgubits.
Itis traditional in quantum algorithms to measure all relevant qubits at the end of the computation
in order to obtain a classical result (see Shor’s and Grover’s algorithms). However, since we use
QRAM to compute quantum information that can be sent through quantum channels, we do
not impose this final measurement since it may be desirable to send a superposition through a
guantum channel.

The following result asserts that the QRAM model is equivalent to the usual quantum circuit
computational model (a careful presentation of this result is out of the scope of this abstract).

Proposition 4.1. For any uniform family of polynomial quantum circuity = {@,, },en, there
exists a quantum polynomial maching, such that thel/, computes the same stochastic func-
tion as@). Moreover, for any quantum polynomial machikkthere exists an equivalent uniform
family of polynomial quantum circuit@,; = {Q, },en.

Proof. Proof (Sketch): Note that a uniform circuit uses precisely the gates defined as quantum
atomic commands of the QRAM. The construction of the circuit can be mimicked by a RAM
commande. Since this construction must be polynomialrinthe program must terminate in
polynomial time and therefore, there is a polynomjab bound the number of steps, finally

the output must always be a polynomial set of qubits, and therefore we are able to construct an
equivalent QRAM machine.

On the other hand a QRAM program is the realisation of the uniform family construction,
since, for eachy, a circuit can be retrieved by looking at the finite (do not forget that QRAM
programs always terminate) sequence of quantum atomic gates generated by the execution of the
command. The stochastic nature of the execution does not bring a problem, since gates placed
after a measurement can be controlled by the outcome of that measurement. If a measurement
gives the value 1 to a qubit and in that case a gais placed at some qubit then the circuit
should be constructed by placing a conttbate controlled by the measured qubit and targeted
atb. O
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4.1.2 Process algebra

As stated before, we require to know who possesses a qubit in order to know who can retrieve
some piece of information. In order to deal with this fact, a qubit is considered to belong to some
agent, and therefore, the set of qukji3 is partitioned among all agents. To make this more
precise, a countable sdt= {a,,...,as, ...} of agents is fixed once and for all, and moreover
the partitiongB = {¢B,, }.,ca Of ¢B is such that each setB,, is countable and recursively
enumerable.

Note that eacly B,, has a total order (with a bottom element) induced by its recursive enu-
meration. The purpose of this total ordering is to reindex the qubits accessed by a\QPM
when an agent executesV/. An obvious desideratum of the system is that an agestre-
stricted to compute over its own qubi$,, and therefore, when ageatexecutes a quantum
polynomial machinel/, this machine must have access only to the qubitgp (note that if
the qubits ofu are entangled with other qubits, then when the former are modified so can be the
latter). Therefore, if, for instance, an agenéxecutes a machine that consists of the command
Pauli x[b], and if¢B, is recursively enumerated by then the command effectively executed
is Pauli x[y(b)]. The same procedure applies to the input and output qubits, so when a ma-
chine executed by outputs the firsb(n) qubits, the machine is in fact outputting the qubits
{(o(1)),...,7v(o(n))} C qB. € ¢B.

Communication between agents is achieved via public channels, allowing qubits to be ex-
changed. Clearly, this process is modelled by modifying the partitigiofit is also convenient
to allow parallelism inside an agent (that is, an agent may be constituted by several processes
in parallel), for this purpose, private channels (that cannot be intercepted) allowing communi-
cation between the agent local processes are introduced. To make this assumptions clear, two
countable disjoint sets @fuantum channelare considered, the set giobal or public channels
G={91,92---,9,- -}, and the set ofocal or private channeld = {l,ls,...,l,...}. We
denote byC the setG U L. All global channels can be read and written by an adversary while
local channels correspond to private communication from one agent to itself. One role of the
security parameter is to bound the bandwidth of the channels. Hence, we introoiaceveidth
mapbw : C' — q, whereq is the set of all polynomials taking positive values. Given a vaglue
for the security parameter, a channelan send at mogiw (c)(n) qubits.

We also consider a countable set of variablas= {1, xs, ..., 2y, ... }, which are required
to define qubit terms. A qubit termis either a finite subset @f53 or a variabler € Var.

Finally, we present the language of processes, which is a fragmentaitulus. Mind that
the overall computation must be quantum polynomiabcend therefore we do not cope with
recursion nor mobility. First, we establish the language of an agent, that we call local process
language.

Definition 4.2. Thelanguage of local processésis obtained inductively as follows:
1. 0 € L (termination);
2. ¢(M(t)) € L whereM € QPM,t is a qubit term, and € C' (output);
3. ¢(x).QQ € Lwherec € C, z € Varand@ € L (input);
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4. [M(t) = 0].Q whereM € QPM,t is a qubit term, and) € £ (match);
5. (Q1]Q2) whereQq, @, € L (parallel composition);
6. |,Q where( € £ andq € q (bounded replication).

Most of the (local) process terms are intuitive. The output tefid (¢B’)) means that the
output of machiné/, which received the finite set of qubif$’ as input, is sent through channel
c. The input terme(z).(Q means that a set of qubits is going to be received:,0and upon
reception; takes the value of the received qubits.

After fixing the security parameter we can get rid of replication by evaluating each process
l,R asq(n) copies ofR in parallel. Therefore, we always assume that a process term has no
replication. Now, as state before, a protocol is constituted by a set o agents running in parallel,
therefore the global language (or protocol language) is quite simple:

Definition 4.3. Thelanguage of global processésover a set of agents is defined inductively
as follows:

1. 0 € G (global termination);

2. P||(a: Q) € GwhereP € G, a € A does not occur irP, and@ € L (global parallel
composition).

The following example uses the process language to describe the RSA cryptanalysis using
Shor’s algorithm.

Example 4.1 (Shor’s based RSA cryptanalysis)Let p, ¢ be primes (withy length binary ex-
pansion), and, d integers such thatd = 1 mod ¢(pq). Alice is a simple proces4 that knows
some message and outputs® mod pg, wheree is the public key of Bob. This dummy process
can be presented as

(a: A(w)) == (a: g(w® mod pq)).

Bob receivesr and computes? mod pq. This procedure can be modelled by the following
process:

(b:B) = (b: gla).(1a* mod pa)i(y).0)).

Therefore the RSA protocol is given by the procéss A(w))||(b : B). Finally, we can write
the “attacking” process, Eve. She factoriggsinvertse mod ¢(pq) (thus, allowing her to find
d), and intercepts the message sent by Alice (on chay)n&Ve write this process as follows:

(¢ : Li(Shoi(pg)) |11 (y)-L2(InV(y, €)) |g(2).l2(2). (Is{2*  mod pg)|l3(w).0)).
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4.1.3 Semantics

In order to define the semantics of a local process we need to introduce the notion of local
configuration. Alocal configurationor agent configuratioris a triple(|v), ¢B,, Q) where|y) €
H, ¢B, C ¢B is a countable, recursive enumerable set@nd L. The first element of the local
configuration is the global state of the protocol, the second element is the set of qubits the agent
possesses and the last element is the local process term.

The semantics of a local process is a probabilistic transition system where the transitions
are defined by rules. We uge)),¢B., Q) —, (|¢'), ¢B,, Q') to state that, at global state),
when agent: possesses qubitgB,, the local process) is reduced ta))’ and global state is
modified to|)") with probability p. It is also worthwhile to observe that we use the notation
M(|¢),qB.,qB1) —, (|¢'), ¢B2) to denote that the execution of the QRW], operating o B,
(that is, using the recursive enumeratiory &%, to reindex the position of the qubits), and receiv-
ing as inputg B, outputsqgB, and modifies the global state) to |¢’) with probability p. For
the case of local processes, the gdts andg B, are irrelevant, because the qubits owned by the
agent remain the same when a local communication (LCom rule) is applied. Their functionality
will be clear when we present the global rules.

M (1), qBq,qB1) = ([U"),qB2) qB1,qBy C qB, |qBs| < bw(l)(n)
([¥), qBa, (z).QI{M (qB1))) —p ([¥'), ¢Ba, Qip,)

We also introduce the terd/; Meas to denote the machine that, after executihgerforms
a measurement on the computational basis of the output quhits. do a match corresponds
to performing a measurement on the output qubitd/odnd checking whether the result is the
word.

(LCom)

(M; Meas (v, ¢Ba, 4B1) =, ([¥),4B2) _[¥)]4n, = |0)
(|v), qBa, [M(¢B1) = ] Q) —, (W), qBa, Q) (MatchT)

(M;Meas(|¢), 4Ba, 4B1) —p (1¥'),4Bs) [¢)|gn, # 10)
(|w>7qBa7[M(qu) :O] ) (’w>>qBa>O)

The remaining rules are self-explanatory.

(Matchl)

(1), 4B P) = (1), 4Ba, P')
(|w>7qBa>P’Q) (’w/> qBa,P/’Q) (LLPaI’)

(1), 4Ba Q) = (|¢),4Ba, @)
([¥), qBa, P|Q) —p (|¥'), ¢Ba, P|Q’) (LRPan

We proceed by presenting the global rules.glabal configurationis a triple (|¢), ¢B8, P)
where|y) € H, ¢B = {qB.}.ca is a partition ofgB indexed by the set of agents (where
eachgB, is countable and r.e.) and € G. The semantics of a global process is defined by the
following rules:
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([¥),qBa, Q) = (1¥"), qBa, Q')
4B, ( (LtoG)

(W% Q)) _>P (|¢,>,QB, (CL : Q))

M(|Y),qBy, qB1) —p (|[¥'),qB2) qB1,qB> € qBy |qBa| < bw(g)(n)
([), 4B, (a: g(z).Q)[|(b: g(M(gB1)))) —p ([¥), B, (a: Qfp,))

wheregB' = {qB. }uca, B, = qB, U ¢B2, ¢B;, = qBy \ ¢B2, andgB., = ¢B, for all ¢ # a, b.

(GCom)

(‘w>7q87 Pl) (| /> qB,apll)
(109, 4B. Bi[Bs) =, (0B, B[ B5) o)
(W%qB, PQ) p (’ /> qB,7P2/) (GRPaD

(1), 4B, Pi||[P2) = ([¢), 4B, PA[|F3)

All the rules are very simple to grasp. The only non trivial rule is global communication
(GCom), that makes qubits to be exchanged from one agent to another, and therefore an adjust-
ment is required in the qubit partition.

Process term reductions are non-deterministic, in the sense that several different reductions
could be chosen at some step. In order to be possible to make a quantitative analysis, this re-
duction should be probabilistic. For the sake of simplicity, we assume a uniform scheduler, that
is, the choice on any possible reduction is done with uniform probability over all possible non-
deterministic reductions. We do not present in detail the scheduler model but, in principle, any
probability distribution modelled by a QPM can be used to model the scheduler policy. Finally,
note that by applying local and global rules, and assuming a uniform scheduler, one can define
the many step reductior; such that([y1), ¢Bi, P1) — (|¥n), ¢Bn, P.), whenever:

i (|¢1>,(]51,P1) —p1 (|¢2>7qu>P2) p2 T T pn—1 (Wn),an, Pn):

o p=F x B x...x g=whereR; is the number of possible non-deterministic choices
for (\1/;1> qBZ, P;) forall i e {1,. — 1}

e (|¢n),qB,, P,) cannot be reduced any more.

The many step reduction takes into account the scheduler choice, by weighting each stochastic re-
ductionp; with yet another probabilit);%, whereR; is the number of possible non-deterministic
choices at step

4.1.4 Observations and observational equivalence

At the end of a protocol, each agent A is allowed to measure a polynomial ¢ number of
qubits ingB, to extract information. We can always assume that these qubits are the first, say,
r(n) qubits of¢B, wherer is a positive polynomial. Therefore the many step reduction of a
process ternP induces a probability distribution a2i”, where2'™ is the set of all possible
outcomes of(n) qubits when measured over the computatlonal basis (th2it'isis the set of

all »(n)-long binary words).
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Definition 4.4. Given a positive polynomial and a global configuratiofiy), ¢3, P), let

F(W)),qB,P) - {(|¢/>7QB,, Pl) : <|¢>,QB, P) _>; (|77Z)/>7q6,7 Pl) andp > 0}
We define theobservation of an agentto be the family of probability measures

0% = {(2r™, 22" Pr)) tnen
where:
o PE({w}) = Toen o o X [(]0):
e p,issuchthat|y),¢B, P) —; v
e |¢,) is the first component of;

o |(w|y,,)] is the probability of observing then)-long binary wordw by measuring the(n)
first qubits of¢ B, (qubits in possession of agefjtof |+, ) in the computational basis.

Note that the summation used to comp®€,,({w}) is well defined, since’(y) 45.r) is
finite. It is clear at this point,that an observation of an agent is a randgjrong binary word,
with distribution given byPr, ,.

The notion of observational equivalence we adopt is based on computational indistinguisha-
bility as usual in the security communitMRSTO]]. First, we introduce the concept of context.
The set ofglobal contexts is defined inductively as follows:] € C; C[ ]|P andP||C[] € C
provided thatC[ | € C andP € G. Given a context[ | and a global procesB, the notation
C[P] means that we substitute the procé&sfor the[ ] in C[].

Definition 4.5. Let P and P’ be process terms. We say thais computationally indistinguish-
able by agent: from P’ if and only if for every contexC|[ ], polynomialsq andr, ) € H,
partitiongB of ¢BB, n sufficiently large and binary word € 2™,

1
P (w) — P (w)] < —
wherePr; , is given by the observation affor configuration([+), ¢, C[P]) andPr’f(n) is given
by the observation af for configuration(|v)), ¢, C[P’]). In such case we writ& ~ P’

Two processes are computationally indistinguishable if they are indistinguishable by con-
texts, that is, for any input (here modelled py) andgB), there is no context which can dis-
tinguish, up to a negligible function, the outputs produced. The definition above extends the
classical definition of computational indistinguishability to the quantum case, since processes
can be modelled by quantum polynomial machines and theréfprénduces the required dis-
tinguishing machine. A detailed proof of this result is out of the scope of this extended abstract.

In order to set up compositionality, the following result is of the utmost importance:

Proposition 4.2. Computational indistinguishability is a congruence relation with respect to the
parallel primitive ofg.

Proof. Both symmetry and reflexivity are trivial to check. Transitivity follows by triangular
inequality, and taking into account tf‘%’;tj(n) is a polynomial. Congruence on the global parallel
operator follows by noticing that for any contexi$ | andC’[ ], C'[C] ]] is also a context. [J
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4.2 Emulation and Composition Theorem

One of the most successful ways for defining secure concurrent cryptographic tasks is via process
emulation AG99, [Can0(). This definitional job boils down to the following: a process realises

a cryptographic task if and only if it emulates an ideal process that is known to realise such
task. In this section, guided by the goal of defining secure functionalities, we detail the notion of
emulation for the quantum process calculus defined in the previous section.

Let / be an ideal protocol that realises (the honest part of) some secure protocsl and
process that implements the functionality specified/byThe overall goal is to show that
realises, without flaws, (part of) the secure functionality specified.byhe goal is achieved if
for any real adversary, sdy : A), the process’||(a : A) is computationally indistinguishable
by the adversary from the process||(a : B) for some ideal adversary. : B), where an ideal
adversary is an adversary which cannot corrlpnd a real adversary is any local process for
agenta. This property asserts that given a real adversary A), agenta cannot distinguish
the information leaked by’||(a : A) from the information leaked by the well behaved process
I||(a : B) for some ideal adversary: : B), and therefore, we infer that||(a : A) is also
well behaved. This discussion leads to the concept of emulation with respect to a set of real
adversariesA and ideal adversarids.

Definition 4.6. Let P and [ be process terms and and B sets of global processes where the
only agent is the adversary then P emulates/ with respect ta4 and B if and only if for all
processes$a : A) € A there exists a process : B) € B such thatP||(a : A) ~ I||(a : B). In
such case we writ¢’ =9 ; I and say thaf’ is a secure implementation éfwith respect ta4
andzs.

A desirable property of the emulation relation is the so called Composition Theorem. This
result was first discussed informally for the classical secure computation settid@R®il], and
states the following: ifP is a secure implementation of partof an ideal protocol,R and J
are two protocols which use the ideal protodoas a component, and finally is a secure
implementation of/, thenR%, should be a secure implementation/ofThis result is captured as
follows:

Theorem 4.3. Let P, I be processesR[ | and J[ ] contexts andA, B sets of processes over
agenta and C, D sets of processes over agéntlf R[I||(a : B)] =}, J[I||(a : B)] for any
(a: B) € Band P =Y 5 I then for any adversarya : A) € Athere existda : B) € B such
that R[Ql|(a : A)] =k p J[I]|(a : B)].

Proof. Let (a : A) € Aand(a : B) € B be such tha||(a : A) ~ I||(a : B). Now choose
some(b : C) € C, clearly, R[Q||(a : A)]||(c : C) ~ R[I||(a : B)]||(c : C) since~ is a
congruence relation. Moreover, sing!||(a : B)|] =c¢p J[I||(a : B)|, thereisab : D) € D
such thatR[I|(a : B)]|C ~ J[I||(a : B)]||(b : D). Finally, by transitivity of~, we have that
R[Q||(a: A)]||(b: C) ~ J[I||(a: B)]||(b: D) and henceR[Q||(a : A)] =cp J[I||(a: B)]. O

Observe that ideal protocols are constituted by a honesf gend an ideal adversafy : B),
and therefore are of the forif}|(a : B). This justifies whyR|[/||(a : B)] was considered in the
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proposition above instead @i[/]. Moreover, adversaries for the functionality implemented by
R and.J might be different from those af and(), therefore, two pairs of sets of proces€e®
andA, B are required to model two kinds of adversaries.

4.3 Quantum Zero-Knowledge Proofs

An interactive proof is a two party protocol, where one agent is callegttner and the other

is called theverifier. The main objective of the protocol is to let the prover convince the verifier
of the validity of an assertion, however, this must be done in such a way that the prover cannot
convince the verifier of the validity of some false assertion.

Any interactive proof system fulfills two properties: completeness and soundness. Complete-
ness states that if the assertion the prover wants to convince the verifier is true, then the verifier
should be convinced with probability one. On the other hand, soundness is fulfilled if the verifier
cannot be convinced, up to a negligible probability, of a false assertion. Therefore, completeness
and soundness allow the verifier to check whether the assertion of the prover is true or false.

Zero-knowledge is a property of the prover (strategy). Consider the following informal notion
of (quantum) computational zero-knowledge strategy, which corresponds to the straightforward
lifting to the quantum setting of the classical version:

Definition 4.7. A prover strategys is said to beguantum computational zero-knowledmeer a
setL if and only if for every quantum polynomial-time verifier strate§fythere exists quantum
polynomial-time algorithm\/ such that(S, V')(1) is (quantum) computationally indistinguish-
able fromM (1) for all [ € L, where(S, V') denotes the output of the interaction betwéeand
V.

The main application of zero-knowledge proof protocols in the cryptographic setting is in
the context of a usell that has a secret and is supposed to perform some steps, depending on
the secret. The problem is how can other users assuré/thas carried out the correct steps
without U disclosing its secret. Zero-knowledge proof protocols (ZKP) can be used to satisfy
these conflicting requirements.

Zero-knowledge essentially embodies that the verifier cannot gain more knowledge when
interacting with the prover than by running alone a quantum polynomial time program (using the
same input in both cases). That is, running a the verifier in parallel with the prover should be
indistinguishable of some quantum polynomial time program.

Actually, the notion of (quantum computational) zero-knowledge proofs can be captured
through emulation very easily. Assuming that a proof strateé@y) and verifierl’(x) are mod-
elled as terms of the process algebra, it is actually possible to model the interaction bgtween
andv by the procesép : S)||(v : V). Denote byL"(1) the set of all process terms for the verifier
(v : V)7, that is, any process terfm : V') where the free variable was replaced by the binary
word (. We have the following characterisation:

Proposition 4.4. A process term(p : S) denoting a proof strategy is computational zero-
knowledge fot if and only if (p : S)f =}.. () zo() 0, forall i € L.
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Proof. Proof (Sketch): Notice that the ZKP resumes to impose that fofvall V)7 there is
a procesqv : V)7 such that(p : S)¥||(v : V)i ~ 0]|(v : V')F. Since the semantics of a
local process can be modelled by a QPM, and moreoNér : VV')¥ can model any QPM, the
characterisation proposed in this proposition is equivalent to Defirdtian m

So, a proces® : S) models a quantum zero-knowledge strategy if, from the point of view of
the verifier, it is impossible to distinguish the final result of the interaction githS) from the
interaction with the) process. A clear corollary of Theorefifiis that, quantum zero-knowledge
is compositional.

It is simple to adapt the emulation approach to several other quantum security properties, like
guantum secure computation, authentication and so on.

4.4 Conclusions and Future Work

The contributions of this work are multiple. First, we introduced a process algebra for specify-
ing and reasoning about (quantum) security protocols. To restrict the computation power of the
agents to quantum polynomial-time, we introduced the logarithm cost quantum random access
machine, and incorporated it in the process language. Due to the special aspects of quantum in-
formation, qubits were assumed to be partitioned among agents, and the (Qquantum) computation
of an agent was restricted to its own qubits.

Second, we defined observational equivalence and quantum computational indistinguishabil-
ity for the process algebra at hand, and showed that the latter is a congruence relation. Moreover,
we obtained a simple corollary of this result: security properties defined via emulation are com-
positional.

Finally, we illustrated the definition of a security property via emulation with the concept of
guantum zero-knowledge. It is however straightforward to adapt this approach to several other
guantum security properties, like quantum secure computation.

As for future work, a research program can be set up by just extending several results of
classical process algebras to the quantum world. For instance, one can assume that adversaries
have quantum polynomial time power and try to find a sound and complete implementation of a
process algebra over such quantum computational model.
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Conclusions and Future Work

To conclude this dissertation we are going to summarise its main contributions and point out
some of the directions in which this work may be extended.

5.1 Summary of Contributions

This dissertation is divided in three main chapters. In Che2tere discussed extensions of

the Abadi-Rogaway logics of indistinguishabilitARO2]. In more detail, we dealt with two
restrictions of their results, existence of key-cycles in the encrypted expressions, and partial
leakage of information.

Soundness in the presence of key-cycles was never dealt in previous results and seemed to be
a gap between the symbolic and the computational models. In fact, our results show that in order
to bridge this gap we need to perform changes in the computational definitions, in contrast with
the usual practice of changing the symbolic model. We use the notion of KDM-se ®R&07)
and show that, when the encryption scheme is KDM-secure, it is possible to obtain soundness
even in the presence of key-cycles. We also show that the computational soundness property
neither implies nor is implied by type-0 security, and thus the original Abadi-Rogaway result
could not have been demonstrated for key-cycles using the security notions described in their
work. In AppendixB we show similar results for public-key encryption and in particular that
computational soundness property neither implies nor is it implied by security against chosen
ciphertext attack, CCA-2.

The other weakness of the Abadi-Rogaway results that we discuss in this dissertation is the
case of partial leakage of information by an encryption scheme. The original result assumed
a very strong notion of security (type-0) which is not actually achieved by many encryption
schemes. Thus, one might wonder if a similar result might be derived for weaker schemes.
We have showed that for symmetric encryption, subtle differences between security definitions
can be faithfully reflected in the formal symbolic setting. To this end, we introduced a general
probabilistic framework which includes both the computational and the information-theoretic
encryption schemes as special cases. We have established soundness and completeness theorems
of formal encryption in this general framework, as well as new applications to specific settings:

125
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an information-theoretic interpretation of formal expressions in One-Time Pad, and also com-
putational interpretations in type-1 (length-revealing), type-2 (which-key revealing) and type-3
(which-key and length revealing) encryption schemes based on computational complexity.

In Chapter3 we presented an approach for the study of sound abstractions of cryptography
using process algebras. As process algebras have been widely used in the study of security of
concurrent systems, all the existing results are stated in terms of the Dolev-Yao Model, hence
no real cryptographic guarantees are achieved. In more detail, we designed a simple, abstract
language for secure distributed communications with two forms of authentication (but no ex-
plicit cryptography). Our language is expressive enough to program a large class of protocols,
and enables simple reasoning about security properties in the presence of active attackers, using
labelled traces and equivalences. We provide a concrete implementation for this calculus as a col-
lection of concrete PPT machines embedding standard cryptographic algorithms, and established
that low-level PPT adversaries that control their scheduling and the network have essentially the
same power as (much simpler) high-level environments. To the best of our knowledge, this is the
first cryptographic soundness and completeness results for a distributed process calculus.

In Chapteid we introduced a process algebra for specifying and reasoning about (quantum)
security protocols. To the best of our knowledge, this was the first quantum programming lan-
guage that was fully designed having in mind the specific subtleties of security protocols. In order
to restrict the computation power of the agents to quantum polynomial-time, we introduced the
logarithm cost quantum random access machine, and incorporated it in the process language.
We also defined observational equivalence and quantum computational indistinguishability for
the process algebra at hand, and showed that the latter is a congruence relation. We obtained
a simple corollary that security properties defined via emulation are compositional. As an ap-
plication we illustrated the definition of a security property via emulation with the concept of
guantum zero-knowledge. It is however straightforward to adapt this approach to several other
guantum security properties, like quantum secure computation.

5.2 Limitations of Our Results and Future Work

A limitation of our results of Chaptét regarding key-cycles is that the only known realisation of

a KDM-encryption scheme is in the Random-Oracle Model. In spite of our results do not depend
upon this realisation (our results only use the KDM-scheme as a black-box scheme) we would
like to design an KDM encryption scheme that is secure in the standard model. In both the cases
of key-cycles and leakage of partial information, we would like to extend our results from the
passive-adversary setting to that of the active adversary.

Also, one might consider various expansions of the formal setting that would allow addi-
tional operations such a®r, pseudorandom permutations, or exponentiation. Soundness and
completeness such richer formal settings would, of course, need exploration. In particular, the
definition of patterns appears to be rather subtle in such richer settings. We would also like to
understand how our methods fit with the methods\éli0Z].

Lastly, one might consider exploring partial leakage in the setting of asymmetric encryp-
tion. One might also extend our methods and investigate formal treatment of other cryptographic
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primitives. It would be interesting to see if our methods could be combined with the methods of
[BPWO3 Can0].

As for Chapter3 we would like to extend the expressiveness of our calculus. It would be
interesting to extend it with secrecy and probabilistic choices. Also, it would be interesting to
see if the techniques developed to prove the soundness and completeness results for our calculus
can be also applied to similar results for a full-fledge process calculus with explicit cryptogra-
phy. Similarly to what was done in Chap®rwe are also interested in extending our calculus
to incorporate the notion of length of messages in the terms of the calculus. We envisage its
implementation using types and sorts.

As for Chapted, one could try to extend the existent results for classical process algebras
to the quantum world. For instance, one can assume that adversaries have quantum polynomial
time power and try to find a sound and complete implementation of a process algebra over such
guantum computational model as we did in Cha@ttar the classical model.
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Appendix A

Cryptographic Definitions

In this chapter we present the summary of the cryptographic primitives used in this dissertation.
Some of these were already presented on previous chapters. We also state and prove the cryp-
tographic results used in the rest of this dissertation. The first security notion is the notion of
negligible function

Definition A.1 (Negligible Function). A function f : N — R is negligible written f(n) <
neg (n), if for any ¢ > 0 there exists:. such that. > n. implies f(n) < n=°.

The notion ofcomputational indistinguishabilityvas introduced by Goldwasser and Mi-
cali [GM84] and is the notion that we used throughout this dissertation when comparing two
computational systems.

Definition A.2 (Computational Indistinguishability). Two families { D, },cn and {D; },en,
areindistinguishablewritten D, ~ D, , if for all PPT adversaried\,

|Pr[d «— D,; A(1",d) = 1] = Pr [d «— D;; A(1",d) = 1]| < neg (n)

A.1 Cryptographic Primitives

An encryption scheme is a triple of algorithr(¥s, £, D) with key generatioriC, encryption&
and decryptiorD. Let plaintexts, ciphertexts, publickey andsecretkey be nonempty
subsets oktrings. The setcoins is some probability field that stands for coin-tossing,
randomness.

Definition A.3 (Asymmetric Encryption Scheme). An asymmetric encryption scheme is a
triple IT = (K, £, D) where:

e K : N x coins — publickey x secretkey is a key-generation algorithm with security
parameter,

e &£ : publickey x plaintexts x coins — ciphertexts is an encryption function,
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144 Chapter A. Cryptographic Definitions

e D : secretkey x strings — plaintexts is such that for alle,d) € publickey x
secretkey andw € coins, D(d,E(e, m,w)) = m for all m € plaintexts.

All these algorithms must be computable in polynomial-time in the size of the input. We insist
that[E(e, m,w)] = [E(e, m,w’)] for all e € publickey, m € plaintexts andw,w’ € coins,
where[z] stands for the binary length of

There are several different notions of security for an encryption scheme. The one that we
adopt here, introduced bRE9], has been shown to be strictly stronger than almost all other
definitions, including semantic securi@DPR9¢.

In the following, Pr[A; B : C] is the probability of occurrence of eve@tafter performing
eventsA andB.

Definition A.4 (IND-CCA2—Adaptive Chosen Ciphertext Security). A public-key encryp-
tion schemdl = (K, &, D) provides indistinguishability under the adaptive chosen-ciphertext
attack if for all PPT adversariegs

P (e,d) — K(17);
mo, my +— AP0 (17 ¢);
b— {0,1};
c— E(e,my);
g+ AP20)(17 ¢, ¢) :
b=g ] <5 +mneg(n)

The oracleD, (x) returnsD(d, x), andDy(x) returnsD(d, x) if x # ¢ and returnsL otherwise.
The adversary is assumed to keep state between the two invocations. It is requireg dmat
my be of the same length.

Thatis, an adversary should not be able to learn from a ciphertext whether it is the encryption
of the plaintextm, or the plaintextm,, even if the adversary knows the public key used to
encrypt, the adversary can choose the messagesdm;, itself, so long as the messages have
the same length, and the adversary can request and receive the decryptiontbesoyphertext.

Definition A.5 (Signature Scheme).A signature scheme is a triple = (G, S, V) where:

e G : N x coins — sigkey x verifykey is a key-generation algorithm with security
parameter),

e S :sigkey x plaintexts x coins — signedtexts is the signing algorithm, and

e V : verifykey x strings x signedtexts — {0, 1} is such that for every pais, v) «—
G(1") andw € coins, V(v,m,S(s,m,w)) = 1 for all m € plaintexts.

All these algorithms must be computable in polynomial-time in the size of the input. We call
(s,v) a pair of signing/verification keys, and the strif¢s, m,w) a signature of the plaintext
with the keys.
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Similarly to encryption, there are several different notions of security for signature schemes.
We adopt the notion afinforgeable signature under chosen message affabkR8§g.

Definition A.6 (Adaptive Chosen Message Security)A signature schem& = (G,S,V) is
secure against forgery under adaptive chosen-message attack if for all PPT advArsaries

Pr[ (s, v) — G(1");
(m, sig) «— AS1O(17 v) :

V(v,m, sig) =1 | m & Queries ]| < neg(n)
The oracleS, (z) returnsS(s, x) and adds: to the setQueries.

This game intuitively says that, after requesting as many signatures as he wants from the
signing oracleS;, an adversary cannot produce a gair, sig) such thatig is the signature of the
messagen. Of course this game is only fair if the produced pair is not one of the pairs obtained
by querying the oracle. Note that the adversary can also access the verification algorithm since
he knows the verification key.

How is CMA Security used in Chapter3

Definition/A.6/does not state whether the adversary (or even the signer) is able to generate other
valuessig’ such thad’ (v, m, sig’) = 1 givenv, m, andsig (and evers for the signer). In practice,

this ability may come from the underlying cryptographic algorithms, or simply from the lack of
normalisation for signature values.

Conservatively, our high-level semantics presented in Ch8xdssumes this is always pos-
sible, as specified in Rulé&§sIN), whereas our low-level implementation does not rely on this
ability. Still, for establishing some of our results (e.g. the existence of some adversary in com-
pleteness proofs), we need to be more specific. To this end, we then use a signature scheme
¥ =(G,8,V, M) such thatlg, S, V) meets DefinitiorA.6/ and the fourth algorithrM is such
that, if V(v, m, sig) = 1, then the valuesig,, = M (v, m, sig, 1") for n < n are pairwise distinct
and such tha¥’ (v, m, sig,) = 1.

It is straightforward (if not very useful) to build such a signature scheme from any Gives
follows: for signing, we concatenatezeros to the signature valuéy; for signature verification,
we ignore the las} bits of the signature value; for producing other signature value, we increment
the last bits of the signature value.

As for authentication, we use a symmetric signing scheme. A symmetric authentication
scheme\ = (G,, A, C) is defined in the same way as Definitibtb except thatj, generates a
single key, used both for signing and encryption, that verifies the equattom, A(k, m,w)) =
1 for all m € plaintexts. The notion of security is the same as in Definitilre, except that
the adversary is not given the verification kegwhich is also the signing key).
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A.2 Cryptographic Results

Proposition A.1. LetY = (G, S, V) be a CMA-secure authentication scheme arahy function
bounded above by a polynomial in the security parametdrhen for all PPT adversaries:

Pr (si, vi)iey «— G(1");
(m7 SZg) — ASl(.)7S2() ..... Sn(‘)(lmvlavb"'avn) :
V(v;,m, sig) = 1 forsomel <i <n | m & Queries; | <neg(n)

where the oracles;(z) returnsS(s;, «) and addse to the setQueries,.

Proof. Suppose that there is an adversarythat is able to create such signature with non-
negligible probability. We can then create an advergaty-ua that can break CMA-security,
Definition/A.6. DefineAdvema” (17, v) as follows:

generate  (sg,v3),(83,03), ..., (Sn, vy) «—— K(17)

call adversary A(1" v, 09,03, ..., 0,)
on every call of A to Si(z) return the result F(z)
on every call of A to S;(z) return the result S(s;,x)

if A outputs (m,sig) then
output  (m, sig)

It is immediate to see that if there is an adversarghat is able to break the property stated in
the proposition with non-negligible probability, then this adversaryan be used to construct
adversanAdveua” ) above that breaks CMA-security. ]

Proposition A.2 (Equivalent Notion of Negligible Function). Let f : N — R be a function.
f(n) is negligible if and only if

1
Vg(n)ang :n>ny = f(n) < o

Proof. Straightforward from DefinitioiA\. 1. O

Proposition A.3. Let f : N — R be anegligiblefunction andp : N — R a polynomial.
We havep(n) x f(n) is a negligible function.

Proof. By definition,p(n) x f(n) is a negligible function if

1

n > < —.

Vg(n)3ng :n >ny = p(n) x f(n) < )
Letq(n) be a polynomial. Sincég(n) is negligible, we have that
1

Vq¢'(n)3ng:n>ng = f(n) < 700
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Pick¢'(n) = p(n) x ¢(n), then

_
p(n) x q(n)

pn) 1
= p(n) x f(n) < p(n) x q(n) — q(n)’

dng:n>ny = f(n)<

hencep(n) x f(n) is a negligible function. O






Appendix B

Soundness and KDM Security: the case of
Asymmetric Encryption

In this appendix, we re-examine KDM security and soundness in the presence of key-cycles, but
this time we consider the setting of asymmetric encryption. The material of this appendix is
almost entirely the same as that of Sect®awith the following differences:

e The set of keys are split into encryption (public) keys and decryption (private) keys,

e Type-0 encryption is replaced by chosen-ciphertext secure encryption (CCA-2 in the nota-
tion of BDPR9{; found in DefinitionA.4).

Our main result is the same: (asymmetric) KDM-secure encryption provides type-3 soundness
in the presence of key-cycles. In the public-key encryption setting, this result has many powerful
implications. Many extensions of the Abadi and Rogaway result simply rely on soundness as a
‘black-box’ assumption, and are not themselves hindered by key-cycles. By removing the key-
cycle restriction from the Abadi-Rogaway result, it is removed from these extensions as well.
Consider, for example, the non-malleability results of HerzadgrD4. In this setting, the
adversary does not wish to distinguish two expressions but to transform one expressitm
another expressiof/’. The formal adversary has only a limited power to do this, and can only
produce formal messages in a set calleddlesureof M (denotedC[M]). Soundness for this
non-malleability property is that no computational adversary, given the interpretatign cén
produce the interpretation of an expression outsig&/]. As Herzog shows, this soundness
for this non-malleability property is directly implied by soundness for indistinguishability of
messages. Because we show the KDM security soundness for message indistinguishability, this
result of Herzog shows that it also provides soundness for non-malleability properties as well.
For the rest of this section, we present those definitions and proofs that differ from their
counterparts in Sectich.2. Because this section is independent of and parallel to that section,
we will use the same notation and names found there.

Definition B.1 (Expressions).Let Keys = { K7, K>, K3, ...} be an infinite discrete set of sym-
bols, called the set of encryption keys, ateys ' = {K; ' K,' K;',...} the corresponding

149
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set of decryption keys. Ld&locks be a finite subset of0, 1}*. We define theset of expressions
Exp, by the grammar:

Exp == Keys | Keys' | Blocks | (Exp,Exp) | {EXP}keys

We will denote bykeyg M) the set of all encryption keys occurring i and byKeys ™' (M) the
set of decryption keys i/. Expressions of the forfiV } - are calledencryption terms

Definition B.2 (Visible Subterms, Recoverable Decryption Keys)Let vis (M) C Exp, the
visible subterms o#/, be the smallest set of expressions containihguch that:

1. (N1, Ny) € vis (M) = N; € vis (M) andN, € vis (M), and
2. {N}x € vis (M) andK~! € vis (M) = N € vis (M).

Let R-Key$M/), the set ofecoverable decryption keys M, bewvis (M) N Keys ™.

Definition B.3 (Formal Length). We introduce a function symbol with fresh lettéwith the
following identities:

FOF a" blOCkSBl anng, g(Bl) = g(BQ) |ff ‘Bl| = |BQ‘,

For all expressiod/ and key-renaming functiom, (M) = ((Mo),

If K(Ml) = E(Nl), E(Mg) = g(NQ) thenﬁ((Ml, MQ)) = g((Nh NQ)), and
If {((M) = ¢(N), thenforallK;, (({M}k,) = (({N}x,).

Definition B.4 (Pattern). We define theset of patternsPat, by the grammar:
Pat ::= Keys | Keys™' | Blocks | (Pat, Pat) | {Pat}keys | Dkeyst(Exp)

The pattern of an expressidil, denoted bypattern /), is derived fromM by replacing each
encryption term{ M’} x € vis (M) (whereK ! ¢ R-Key$M)) by O o(ar7).-
For two patterng” and@, P =3 (@ is defined the following way:

e If P c BlocksU KeysU Keys™, thenP =5 Q iff P and( are identical.

o If Pisof the formOg ., thenP =3 Q iff @ is of the formT ¢y, andl(M') = ¢(N')
in the sense of DefinitioB.3.

e If Pis of the form(P;, ), thenP =3 Q iff @ is of the form(Q1, Q2) whereP, =3 @,
andP2 =3 QQ.

e If Pis of the form{P'}, thenP =3 Q iff Q) is of the form{Q’} x whereP’ =3 Q)'.

Definition B.5 (Key-Renaming Function). A bijection ¢ : Keys — Keys is called akey-
renaming function For any expression (or pattert), Mo denotes the expression (or pattern)
obtained from\ by replacing all occurrences of keysin M by o(K) (including those occur-
rences as indices @f) and all occurrences of keys ! in M by (o(K)) ™.

Definition B.6 (Equivalence of Expressions)We say that two expressioig and N areequiv-
alent denoted byM = N, if there exists a key-renaming functiensuch thatpattern A\/) =;
patterni No).
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Definition B.7 (Key-Cycles). A formal messag@é/ contains &ey-cycléf it contains encryption
terms{ M, } k,, {Ma}k,, - ... { M, }k, (Where{)M;} x, denotes the encryption of the messade
with the public key/;) such thatV/; contains the key necessary to decrypt;: }x,., andM,
contains the key necessary to decrypf; } x,. In this case we say that we have a key-cycle of
lengthn.

Definition B.8 (Asymmetric Encryption Scheme). A computational asymmetric encryption
schemas a triplell = (IC, £, D) where:

e £ : N x coins — publickey x secretkey is a key-generation algorithm with security
parameter,

e & : publickey x plaintexts x coins — ciphertexts is an encryption function, and

e D : secretkey x strings — plaintexts is such that for all(e,d) € publickey x
secretkey andw € coins

D(d,E(e,m,w)) =m forall m € plaintexts.

All these algorithms must be computable in polynomial time in the size of the input not counting
thecoins (For this reason, the sBtis usually represented as.) We insist that& (e, m, w)| =
|E(e,m,w’)| for all e € publickey, m € plaintexts andw,w’ € coins, where|z| stands for

the binary length of. We also insist thad* C plaintexts.

The CONVERT function for asymmetric encryption can be found in Fifife

Theorem B.1. CCA-2 security does not imply soundness. That is, if there exists an encryption
scheme secure against the chosen-ciphertext attack, then there exists another encryption scheme
which is secure against the chosen-ciphertext attack but does not provide soundness.

Proof. This proof is exactly analogous to the proof of Theoi2h This is shown via a simple
counter-example. Assuming that there exists an encryption scheme secure against the chosen-
ciphertext attack, we will use it to construct another scheme which is also secure against the
chosen-ciphertext attack. However, we will show that this new scheme allows the adversary
to distinguish one particular expression from another particular expression, even though
M = N.

Let M be {K~'}k. Let N be the expressiofK; '}x,. Since these two expressions are
equivalent, an encryption scheme that enforces soundness requires that the family of distributions

{(e.d) — K1) — E(e,d) : chyen
be indistinguishable from the family of distributions
{(e1,dv) — K(17); (€2, dz) «— K(17);¢ «— E(en, da) : Clpen.

However, this is not implied by DefinitioA.4. LetII = (K, &, D) be a CCA-2 secure encryp-

tion scheme. Again, we assume that private keys and ciphertexts have different and easily distin-
guished formats. We construct a second CCA-2 secure encryption s¢thieméK’, £, D’) as
follows:
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algorithm INITIALIZE(M)
for K € KeygM) do (7(K), 7(K1)) «— K(17)

algorithm CONVERT (M)

if M = K whereK € Keys then
return 7(K)

if M = K~! whereK < Keys™! then
return 7(K 1)

if M = B whereB € Blocks then
return B

if M = (Ml, Mg) then
x «— CONVET(M;)
y «— CONVERT (M)
return [z, y]

if M = {M;} then
z — CONVERT(M,)
y «— E(7(K),2)
return y

if M = Og g, then
y — E(r(K), 001
return y

Figure B.1:Interpretation algorithm for asymmetric encryption

o LetK' =K,
e Let &’ be the following algorithm:
, | d ifm=d
Ele,m) = { E(e,m) otherwise -
For many encryption schemes, key-pairs are recognisable as such via number-theoretic
properties. Even when this is not the case, the test that d¢aiyr corresponds to a pair
encryption/decryption key can be conducted via the sub-algorithm:
— Select a random plaintext
— Letc—— &(e,r);
— Letp «— D(m,c);
— Test whethep = r.

e LetD’ be the following algorithm:

, | d ifc=d
D'(d,c) = { D(d, c) otherwise
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The schemdl’ acts exactly likell unless the encryption algorithgY is called on a pair
(e,m) wherem (when used as a decryption key) can decrypt a random value encrypted with
e. However, if such a value famn is easy to guess by the adversary, or easy to compute for a
randomly generated public keythen the schemH could not be CCA-2 secure. Thus, the new
schemdl’ must also be CCA-2 secure. However, it does not guarantee indistinguishability for
the two distributions above. The first distribution will output decryption key while the second
outputs a ciphertext, and these two distributions are easily distinguished by form alone.]

Since CCA-2 security implies a number of other definiticB®PR9§, we can easily con-
clude that these other definitions also do not imply soundness:

Corollary B.2. Soundness is not implied by any of: NM-CCA-1 security, IND-CCA-1 security,
NM-CPA security, or IND-CPA (semantic) security.

Definition B.9 (Asymmetric KDM Security). LetIl = (K, &, D) be an asymmetric encryption
scheme. Let the two oracl&ealy andFakeq4 be defined as follows:

e Suppose that for a fixed security parameter N, a family of keys is given{(e;, d;) «—
(1" };en. The adversary can now query the oracles providing them with a(pai,
wherej € N andg : secretkey™ — {0, 1}* is a constant length, deterministic function
andd is defined as the sequengg, ds, . . .):

— The oracleRealy when receiving this input returns— £(e;, g(d));
— The oracleFakeq When receiving this same input returns— &(e;, 0191,

We say that the encryption scheme&idM-securef for all PPT adversarieA:

Pr[(e,d) «— K(17) : ARela(17 e) = 1] —
Pr[(e,d) «— K(17) : AFakea(17 e) = 1] < neg (n)

Theorem B.3 (KDM Security Implies Soundness).Let Il = (K, &, D) be a computational
encryption scheme. I is KDM-secure, theiil provides soundness.

Proof. For an arbitrary keyK, let .(K) denote the index of{. For an expressioi/, a set
of formal decryption keysS, and a functionr defined on(Keys U Keys™') \ S such that
T|keys takes values irpublickey and 7. s takes values irsecretkey, we define a function

fars.s o coins®™) x secretkey™ — strings (wheree(M) is the number of encryptions i)
inductively in the following way:

e For M = B € Blocks, let fg s, : secretkey™ — strings be defined ags s -(d) = B;
e ForM = K € Keys, let fx s, : secretkey™ — strings be defined agx s, (d) = 7(K);

e For M = K! € Keys' NS, let fi-15, : secretkey™ — strings be defined as
fK_l,S,T(d> = dL(K)!



154 Chapter B. Soundness and KDM Security: the case of Asymmetric Encryption

e For M = K! € Keys' NS, let fi-14, : secretkey™ — strings be defined as
fr-1,5-(d) =7(K71);

o ForM = (M, M), let fiun a),sr coins® ™) x coins®M2) x secretkey™ — strings
be deﬁned ai(Ml,MQ),S,T(WMl y Wiy, d) = [f]Vfl,S,T(wM1 ) d)7 sz,S,T (WM2, d)]1

o ForM = {N}, let fixy,.s : coins x coins®™) x secretkey™ — strings be defined
an{N}Kﬁff(wu W, d) - S(T(K), fN,S,T(WNu d), w)-

We first prove thafM]e ~ [patternM)]s. Suppose thalM]e % [pattern M )]e, which
means that there is an adversarthat distinguishes the two distributions, that is

Prlz «— [M]s, : A(1",2) = 1] — Pr[z «+— [patternM)]e, : A(17,z) = 1]

is a non-negligible function of. We will show that this contradicts the fact that the system is
KDM-secure. To this end, we construct an adversary that can distinguish between the oracles
Realg andFakey . Let F denote either of these oracles. leet publickey™ be the array of

public keys thatF outputs. From now on, le§ = Keys ' \ R-Key$M), and if K—! € S, let
thent(K) = e, k). Consider now the following algorithm:

algorithm A7 (17, e, M)
for K~ € R-Key$M ) do (7(K), (K1) «— K(1")
y «— CONVERT2:(M, M
b— A(1",y)
return b

algorithm CONVERT2(M’, M) with M' = M

if M' = K whereK € Keys then
return 7(K)

if M' = K~! whereK~! € R-Key$M) then
return 7(K 1)

if M = B whereB € Blocks then
return B

if M’ = (Ml,MQ) then
x —— CONVERT2¢(M;, M)
y «— CONVERT2¢(Ma, M)
return [z, y]

if M" = {M}x with K~! € R-Key$ M) then
z —— CONVERT2¢(M;, M)
y — E(1(K),z)
return y

if M" = {M,}x with K~! ¢ R-Key$M) then

Y <— f(L(K)7 thS,T(w? ))
return y
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This algorithm applies the distinguish&(1”, -) on the distribution[ /] when F is Realq,
and the distribution ofpatternM)]s whenF is Fakeq. So, if A(17,-) can distinguisHM] ¢
and [patternM)]s, thenA” (17 e, ) can distinguistRealy and Fakey . But we assumed that
Realy andFakey cannot be distinguished, §08/] ~ [patternNM)]e.

In a similar manner, we can show thg¥V]s ~ [patternN)]s. It is easy to see that
[pattern(M )]s = [pattern N)] e, because the two patterns differ only by key-renaming. Hence
[M]s ~ [N]s. O

Corollary B.4. CCA-2 security does not imply KDM-security. If there exists an encryption
scheme secure against the chosen-ciphertext attack, there exists an encryption scheme which
is secure against the chosen-ciphertext attack but not KDM-secure.

Proof. Suppose that there exists a CCA-2 secure encryption scheme. By ThBatahere

is a CCA-2 secure schenié such thatll does not satisfy soundness. If all CCA-2 encryp-
tions schemes are KDM-secure, thiéns as well. By TheorerB.3, this means thail satisfies
soundness—a contradiction. O

Theorem B.5. KDM security does not imply NM-CPA security. That is, there is an encryption
scheme that is KDM-secure, but not NM-CPA secure.

Proof. This is easily seen by inspecting the KDM-secure encryption scheme given by &lack
al. in the random oracle modeBRS0Z. Let F be a trapdoor permutation generator. Then:

e K = F produces pairsf, f~!) wheref encodes a trapdoor permutation afid encodes
its inverse,

e The encryption algorithr&, on input( f, M), selects a random bit-stringand returns the
pair (f(r), RO(r) & M) (whereRO is the random oracle),

e D,oninput(f~! C = (c1,c)), returnsRO (f~(c1)) & co.

This scheme is not NM-CPA secure: it is simple to change the ciphertext associated with a
messagée\/ into the ciphertext of a related message. Note that an encryptidd pfovides
confidentiality by essentially applying a randonas a one-time pad. Thus, changing a single

bit of the (second component of a) ciphertext changes the same bit of the plaintext. That is, if
C = (f(r), RO(r) ® M) is an encryption of\/, one can easily creat¢/ = (f(r), RO(r) & M)
(wherel is the bit-wise complement dff). C’ decrypts taV/. Thus, this KDM-secure encryp-

tion scheme does not provide non-malleability of ciphertexts. l

Corollary B.6. KDM security implies neither NM-CCA1 security nor CCA2 security.

Proof. Suppose that KDM implies NM-CCAL. Since NM-CCAL1 implies NM-CPA we have that
KDM implies NM-CPA—contradicting TheorerB.5. Thus, KDM cannot imply NM-CCAL.
Similarly for CCA2. [
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We conclude our discussion on the relationships between different notions of security by showing
that soundness does not imply IND-CPA:

Theorem B.7. Soundness does not imply IND-CPA. That is, if there exists an encryption scheme
that provides soundness, there exists a scheme which provides soundness but is not IND-CPA.

Proof. Letll = (K, £, D) be a sound encryption scheme. [Bt= (X', £, D’) be the following.
Let K" = K. Let&’ do the same on an input of a pair of a public key and a plairitext) as

£ for all plaintext, except when is the security parameter given byin which case£’ outputs

a fixed bit-stringo of the same length aS(k, z). D’ is the corresponding modified decryption
algorithm.

This encryption scheme is still sound, because the interpretation of any expression with re-
spect to€ is indistinguishable from the interpretation of this same expression with respgct to
The reason for this is the following: For each security parameter, there is only one string that
is encrypted differently by and&’. Let ® and®’ denote the respective interpretations. For
any K public or private key[K]s = [K]q¢ trivially, and also[B]e = [B]e for any block
B. Moreover these interpretations hit the security parameter with negligible probability. Now,
for any expression/, if [M]es ~ [M]e and[M]qe hits the security parameter with negligible
probability, then[{ M} k]e ~ [{M } k], and[{M } k]s hits the security parameter with neg-
ligible probability. Similarly for pairing. Therefore, by induction, the two interpretations of a
given expression are indistinguishable.

On the other hand, it is easy to see, tHats not IND-CPA secure, because an adversary who
submits as candidate messages the security paramet@t ghdt is, outputsny = 07, m; = 17)
will certainly be able to determine which of the two messages was encrypted. l

All these statements are summarised in Figl2:
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Plaintext Awereness RCCA-2
\ / Theorim B.1
NM-CCA2 — IND-CCA2 - - F - —— -~ > Soundness
P
Ve - ‘
/ \ Thegrem B.7 :
NM-CCA1l IND-CCA1 ) /Y Theor‘em B.3
J] l P ~ - |
e BRS :
NM-CPA IND-CPA =, . KDM
l* BRS }
| |
Theorem B.5
o The nB5 )

(Contributions of this work are represented by dashed arrows.)

Figure B.2:Relation Among Different Security Notions






Appendix C

Proofs for Theorems3.4and 3.5

In this chapter, we prove Theorer8s4 and 3.5, relying on a series of intermediate machines
derived fromM (S, D). We assume that all systerisare in normal form.

We start by showing that, for all “correct” interactions of an adversargnd machine
M(S,D), e.g., interactions where the adversary do not create fake keys, or do not create fake
signatures, i(S, D) evolves to stat&/’, then there is a high-level transitignsuch thats % 5’
andM’ = M(S’, D’) for some shadow)’ of S’. This only represents what happens with “correct”
interactions and hence we should also show what happens in the case that things go wrong.

We then define machind (.S, D), which behaves as machiivyS, D) except that it monitors
(decoded) high-level transitions and raises a flag when it detects a transition not enabled by the
high level semantics. Afterwards, we define the familyN6t S, D) machines that perform some
encryptions of O's instead of the original messages and in the limit do not perform any encryption
or signatureN(S, D) machine. We us&l"(S, D) to prove secrecy for messages aiid, D) to
reduce the problem of falsifying a key to the security of the signing primitive.

Having these two extra constructions, and knowing that in the case of “correct” interactions,
evolutions ofM(S, D) correspond to high-level transitions, we show thHtS, D) ~ N(S, D).

We also show that in the case of “incorrect” interactions, the failure flag is ¢et.to We finish
by proving that this flag is set to-ue only with negligible probability and hence, except with
negligible probability, transitions d¥1(S, D) correspond to high-level transitions.

In bothN"™(S, D) andN(S, D), the interface with the adversary is the same asvi¢s, D),
that is a wirein, andout,, for every principak € H.

C.1 Auxiliary Machines

Our first auxiliary machine has the same runs\V{s5, D), but in addition it performs global
(polynomial) checks that can detect runtime failures to implement the high level semantics. The
checks detect, respectively, a fake message from’H, a fake certificate in a message from

e € Prin \ 'H, and a clash in the representation of names (leading to a non-injective shadow).
When a check fails, a flag is set on an additional wire.

159



160 Chapter C. Proofs for Theore/@gland3.5

Definition C.1 (Defensive Machine).Let M(S, D) be M(S, D) of Definition/3.26 modified as
follows:

1. After unmarshaling an input as messagé °"* from v to a € H, with authentication key
k, (D' is the shadow obtained fromafter unmarshaling) and before calling the interpreter,

(a) if u € H, check thatS includes a messag¥ /i with D.wire(i) = _ k, _, _, _.
(b) if u € Prin \ 'H, check thatS has an input transitiof\/).

2. After generating a bitstring for namen during marshalling, check that# D.name(m)
for anym defined inD.name.

Once a check fails, a flag is set on an additional wire; we then say that the run fails.

_ We write AM(S, D)] — s,(M) for a particular run that completes without failure. We let
A range over PPT adversaries that can read the flag. Hence, we define aAamaM as in
Definition'3.1, except thalA may read the flag after every exchange at 3tep

Definition C.2. MachinesM” andM" are indistinguishable, writteN” = M', when for every
PPT adversarj, we have

| Pr(1 «— AM]] - Pr[l — A[M']]| < neg (n).

Next, we consider the machines that constitute our system as a single machine that runs all
their components. This change has no observable effect (as the components for each machine are
activated to process messages on different wires, with no direct interaction between machines).
The main difference is that the resulting machine, as well as the intermediate machines used in
the proof below, do not have a natural interpretation as a distributed implementation.

These machines are used to reduce the security of a particular run of our low-level communi-
cation protocol to the security of encryption, by selectively replacing its encrypted payload with
a string of0s. They are parameterised by an indexfor eacha € H that indicates how many
runs of the protocol that sends a message &ve thus modified. First we need to extend the
notion of shadow.

Definition C.3 (Extended Shadow State)Let S = ¢ F vn.C be a system such that the con-
figurationC' = [],.,, a[Pu]|[L;c; M/i is in normal form. Anextended shadow stater S,
written D, consists of the following data structure:

e prin € Prin — ({0,1}")% is a function fromu € Prin to bitstringsid,,, €., vy, du, Su
such thatu — id, is injective, and for every. € H, we have(e,,d,) «— K(17), and
(Vu, 8u) <— G(17).

The bitstringsid,,, e,,, v, are public for alk. € Prin; d,, ands,, are public ifu € Prin\H.
e name € Name — {0, 1}" is a partial injective function defined at least on every name that

occurs free inS, and names that occur i, D.certval or D.wire for which D.wire(i) =
(-, false.

The bitstringname(m) is public for every namen ¢ .
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e 77 is a family of partial injective functionsi® : Name — {0, 1}" for eacha € H, defined
at least for all names a?, that are not locally-restricted.

e certval is a partial function from certificates{V'}, to s € {0, 1}" defined at least on the
certificates ofp, D.wire such thaD.wire(i) = (-, -, -, -, false), and all certificates ity of
the formu{V'}, with ¢ # 0. It is also defined for all the certificates hsuch that.{V'},
is defined incertval. certval satisfies the following property: dertval(u{V'},) = s, then
V(v,, [[VPH] s) = 1.

The bitstringcertval (V') is public whenV € M(®) or V issued byu ¢ H.

e wire is a partial function from indicesto (M, k, s, del,b) defined at least o, where
M = a:b(V) with a,b € 'H, anddel = 0if i € I anddel = 1 otherwise. Ifb = false,
the bitstringss andk are the output and the authentication key produceskly, on input
[FVPH]. If b = true, the bitstringss and k are the output and the authentication key
produced by the modifiedend, protocol of DefinitionC.5 on inputM. (Intuitively, the
boolean flag indicates wheth@s are encrypted instead of the message payload. The flag
is set to true only when using stehj of Definition/C.5.)

The bitstringss anddel are public.

e keycache is a function froma € H to sets of bitstrings such that, if there existsiamith
wire(1) = (M, k, _, 1, _) with M to a, thenk € keycache(a).

e msP(n) is a polynomial that sets the padding-size of the implementatios of

Without loss of generality, we assume that all compliant principals use the same identifiers for
representing the same names, that is, for d@lc ‘H and all names, we haveni®(n) = ni®(n)
when defined. (Formally, our machines use name identifiers only for comparisons and table
lookups, so injective renamings on these identifiers do not affect their behaviour.) Also, for
simplicity, we will use the term shadow when referring an extended shadow.

Definition C.4 (N, Machine). Let S be a system with shadow stdde We defineN;; machine
as the collection of machin@, (S, D) = (N3 .(S, D)).ex that share two common tablegned
andnames defined as

o signed("a{V}o"PM) = certval(a{V }o) when definedd € H);
e names(ni®(n)) = name(n), if ni*(n) is defined for some € H,

and where eacNy, (.S, D) machine is defined a4, (S, D) in Definition'3.26with the following
changes:

o D, = I—Pa—ID,'H;
e uses|-] andparse(-) as the marshaling and unmarshaling algorithms.

We define the defensive variaNt, (S, D) asM(S, D) in Definition[C.1 except that in Stefd,
~MPe s replaced by M P,
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Intuitively these shared tables allow all principals to know which names and certificates were
created by honest principals. These tables are the result of mergisgralll, and names,
tables of theM, (S, D) machines. InNy, the internal representation of certificates that were
issued by honest principals always have labélhis can be seen as an extension of the notion of
self-certificates. SincHy controls all the honest principals, a certificate is self-issued if it was
generated by someone of the group. One should remark that whenever sending a message to the
adversaryN;;, is always able to insert the correct label in a certificate frosmce it can find it
in signed. One can easily show the following lemma:

Lemma C.1. LetD be a shadow; € H, andV a closed term such that/ "¢ is defined.
We have™VPe], = [TV PH] and [parse,(s)]. = [parse(s)].

Proof. The proof is by structural induction ow; it relies on the definitions of-], parse(-),
r.7D.X "and implementation of systems. l

We are now ready to definé* machines.

Definition C.5 (N* Machine). Let n be a function fromz € H ton, € NU {w} andS be a
system with extended shaddv

We extend the state dfi;(S,D) with a table enctable that associates bitstringgssg to
TMTPH | for every D.wire(i) = M, k,id, id,_msg, _, true. Intuitively, msg is decoded by
table lookup instead of decryption. For eacke H, we letj, be the number of messages to
principala recorded irenctable.

We define machind” (S, D) asNy(S, D) of Definition/C.4 modified as follows:

1. For each outgoing messagé froma tob € H, if j, < n;, then

(a) marshal the message content aBljp( S, D) then discard the resulting bitstring;
(b) use protocokend, (Definition'3.22) modified as follows:

e Instead of computing the message for encryption (S)eletm = 0™, where
ms(n) is the size of marshaled messages for security parameter

o After encryptingm into msg (Step3), add entry(msg, "M °"™ k) to enctable,
whereD’ is an extension db.

Otherwise proceed d¢;,(.5, D).

2. Use protocolreceive, (Definition3.23 modified as follows:
For each input bitstringd.,_id,_msg, before decryption (Stef), if enctable associates
msg to "M P k. then

e check that)/ is fromwu to a, check thak ¢ keycache,, addk to keycache, (Stepd),
and pas$ M ™®7 to the interpreter (bypassing unmarshaling). If any of the checks
fails, reject the message.

Otherwise proceed ds;, (S, D).
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We define two variants dfi“ by modifying Stepla above; these modifications remove the
side effects of marshalling, that is, the generation of signature values and name representations
recorded irD. certval andD.name.

e N* is N“ where marshalling in Stebe.does not marshal certificates;

e N is N* without marshalling at Steibé.

C.2 Auxiliary Lemmas

In this section we state some auxiliary lemmas that we will use in the next sections.

Lemma C.2 (Correctness of Comparisons)LetD be a shadow such th&t certval is injective,
a € H,andV andV’ two closed terms such that’ "®¢ and™ V7P are defined.
We have/ = V' if and only if "/ 1P:¢ = r/Da

Proof. The proof is by structural induction dn; it relies on the injectivity oD.certval, D.ni®
andD.prin.id. O

Lemma C.3 (Correctness of Pattern Matching).Let D be a shadow such thdd. certval is
injective.
Matching on internal representations @fvith shadowD coincides with high-level matching.

Proof. Immediate from Lemmg&.2. ]

Lemma C.4. Let S be a system where all local processes are stable except for pringjgaid
D a shadow forS such thatD. certval is injective.
If M(S,D) ~* M’, then there exis$” with shadowD’, that differs fromD at most inD’.n:“,

andS —* 5" such thatvl’ = M(.S’, D’), andD’. certval is injective.

Proof. This proof is done by induction in the length of the reduction, relying on the deterministic
scheduling, and Lemm@.3. ]

C.3 Partial Completeness for Low-Level Runs

In this section we show that, for any run with a given adversary, either our defensive machine
correctly implements a series of high-level normal transitions, or it detects a runtime failure.
These lemmas do not depend on probabilities. We also show that the probability of occurrence
of a failure is negligible.

Before doing that, we need to set some notations. Given an arbitrark[MifS,D)] —
s.(M’), and since all the algorithms running within the local machines always terminate in poly-
nomial time, except possibly for the interpreter, we can decompose any part of the run that
involves one of these machines by assuming that the machine is interrupted just before every call

to the scheduling function. Accordingly, we let low-level steps range M/éslga M, M ~s, M,
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andM -5, M’ for a bitstring input, an internal interpretation step, and a bitstring output per-
formed by machiné/,, respectively.

We also introduce a new rule for our labelled semantics of Se&td2. In order to decom-
pose our proofs into small low-level steps, we separate the high-level transitions in two stages.

We IetSﬂS’ be the auxiliary input transition defined by the base rule

M fromc € Printoa c+#a

a[P] Y% o[ | P

(CFGINe)

plus all the context rules for inputs of Sectidr2.2 Intuitively, a transition labelled«)e repre-
sents the first stage of the input, which does not depend on the local process. With this high-level

semantics, ifS {a)e, S*, then either is a previously intercepted message between honest prin-
cipals, ora is constructed by the adversary, using only certificates built ffofRule SysIN).

Let us now start with the proof of the completeness theorem for the case of a single low-level
exchange.

Lemma C.5. Let S be a safe stable system with shadowuch thatD.name andD. certval are
injective.
For every bitstringinp, one of the following holds:

1. M(S, D) "= M’ and there exis8’ with shadowD’ and normal transitionss <% 5"

such thatl’ = M(S’, D’) andD’.name andD’. certval are injective; or

2. M(S,D) (Pdeme M and there exist®’, shadow forS, such thatM’ = M(S,D’) and
D’'.name andD’.certval are injective; or

3. M(s, D) @

~*% M’ and the failure flag is set to true idl’.

Proof. Let inp be a bitstring that is given as an inputNt{ S, D). Let us suppose without loss of
generality thatinp = id,_id,_msg, that is, it is addressed to principal When this message is
received, it is dispatched to theceive, protocol ofa. Analysingreceive, protocol we have
that:

e the receive, protocol fails, i.e., one of the Ste{ds4 of Definition 3.23 fails, inp is
discarded, andone is output by the machine. In this case, since there were no change in
the state oM(S, D), we are in Cas@ with D’ = D; or

e the message is accepted, i®id,_k_s;-Squn = D(dq, msg), all the checks in Stefik-4
of Definition 3.23 succeedf is added tokeycache,, ands is returned to the unmarshal
function.

If the message is accepted by theceive, protocol, thers is passed to thearse,(-) func-
tion, Definition3.21. In both cases of failure or successpafse,(s), we have that the internal
state of the machine may have changed as new fiai#s s') may have been added tames,,.
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e If parse,(s) fails, this message is discarded, afuhe is output by the machine. In this
case, definindgd’ asD except that

— D’.keycache(a) = D.keycache(a) U {k},
and for each new pairind, s') in names,

— D".ni%(n) = ind if there is a name such thaD.name(n) = s'; or
— D’.name(m) = s' andD’.ni*(m) = ind for a fresh new abstract name,

we are in Cas@. D'.name is injective by construction, and’. certval = D.certval hence
it is injective by hypothesis.

e If parse,(s) succeeds, defininD*® asD except that
— D*.keycache(a) = D.keycache(a) U {k},
for each new paitind, s') in names,

— D*.ni%(n) = ind if there is a name: such thaD.name(n) = s'; or
— D*.name(m) = s’ andD*.ni%(m) = ind for a fresh new abstract name,

and for each certificateert_s;_ss_s3 that was successfully unmarshaledt¢v, },
— D*.certval(vi{vy },) = ¢ if there is nol such thaD. certval(vi{vs}¢) = &,

we have that the messagepassed to the interpreterig/ °*¢ = Ty:q (V) P*4, for some
high-level termV/.

If M(S,D) ") Me and the failure flag is set ill*, we are in Cas8. If the flag is not set, we
have by DefinitionC.1 that

1. if u € H, thenS definesM /i andD.wire(i) = _, k, , _; Or
2. if u ¢ H, thenS has an input transitiof\\/).

In the first case considér e, S*, and updat®* modifying the valueiel of D®.wire(i) to 1. In

the second case consider™™". S*. Notice that in this second case names and certificates that
were private, do not become public. In either case there éRistith shadowD*, and« such
thatS =% S*, M* = M(S*, D*), and bothD*.name andD®. certval are injective by construction.
Suppose now tha¥l(S®, D*) ~* M*. Applying LemmeC.4to S°*, D*, andM* we have that
there existS* with shadowD* that differs fromD® at most inD*.ni%, andS® — S* such that
M* = M(S*, D*) andD*.certval is injective. Moreover, the number of reduction steps is bound
by ps([«a]) sincesS is safe.
Suppose now tha#l(S*, D*) ~ M’. While marshalingnames, andsigned, are updated, so

let D’ = D* except that for each new pdiind, s') in names,,
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e D'.name(n) = s’ for the namen such thaD.ni%(n) = ind,
and for each new paiw,{v2 }o, ') in signed,,,
o D' .certval(vi{ve}o) = 5.

If the failure flag is set ifM’, we are in Casa8. If itis not, we have by Definitiol€.1thatD’.name

is injective as the bitstrings generated for alli do not coincide with any other bitstring in
D*.name Also, D'.certval is injective by construction. We have that= "1, 1°%e . T}, 7P"e

for some high level messagés,, ..., M,,. Let M;, = a:u(V1),..., M;; = a:u;(V;) be the
messages i addressed to honest principals ahf, ., M; the messages addressed to
e ¢ H. We have that

+19 ¢

, viraun . vija Mij+1 oo M, S/

whereS’ = &' = S* | M;, /iy |---| M;, /i;, ST is obtained fromS* by removing fromP, all the
messages/y, ..., M,, and®’ = dUJ", | #(M;,)». ExtendD’ such that for eaci;, to honest
principalu;, D'. wzre(zl) (M, ki, 84, O ,false), wherekl is the authentication key produced by
send, on input[~V;°“]. We have thaM’ = M(S’, D).

Hence, we have shown that\f(S, D) W8) % M’ and the failure flag is not set M’, there

existS’ with shadowD’, D".name andD’. certval injective, and normal transitiorts 2%, " such
thatM’ = M(S’,D’). O

We now extend the result by induction to the case of multiple exchanges.

Lemma C.6. Let S° be a safe initial system with initial shaddw andA a PPT algorithm.
If AIM(5°, D°)] == s.(M), then there exis$ with shadowD and normal transitions® % S
such thatVl = M(S, D) andD.name andD.certval are injective.

Proof. By Definition/3.1, the runA[M(5°, D°)] — s.(M) can be decomposed as a series of
low-level exchanges

M(5°,D°) e ) e (1)

that do not set the failure flag. By induction enwe show the existence ¢f with shadowD
and normal transitions® % S such thaM = M(S, D) andD.name andD. certval are injective.

Base caser = 0: We haveM = M(S°,D°). We useS = S°,D = D°, andy = . The partial
functionD°.name is initially undefined for all names, hence injective, the saméforertval.

Inductive case: Suppose that
R

(So DO) 'anl /\,)*/f}} N (inp ) *Sn M anﬂ+1)/\/>*5;r<j;1 M

and that the failure flag is not 'sethh. By induction hypothesis fat, there exists’ with shadow
D’ and normal transition§° < S" such thatM,, = M(S’, D’) andD’.name andD'. certval are
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injective. MoreoverS’ is safe (sinces® is) and stable (by definition of normal transitions). By
applying LemmaC.5to S, D/, andinp,,_ ;, then + 1-th exchange is described by one of the
cases below:

1. M(S', D) (mﬁﬂ)z*s’"\il M and there exis§ with shadowD and normal transitions’ <2
S such that’ = M(.S, D) andD.name andD.certval are injective.

In this case , we conclude with, D, and transitions with labels = gp’oﬁ.

2. M(5",D") ("h)aene \1 and there exist®, shadow fors’, such thatv’ — M(S’,D) and
D.name andD.certval are injective.

In this case, we conclude with = S’, D, and transitions with labels = '.

3. M(5,D") (") #2251 M and the failure flag is set touein M'.
This case is excluded by hypothesis.

]

Lemma C.7 (Partial Completeness for a Run ofN(S5°, D°)). Let S° be a safe initial system
with initial shadowD° andA a PPT algorithm.

If A[N(S°, D°)] — 5:(N), then there exis§ with shadowD and normal transitionss® % §
such thatN = N(S, D) andD.name andD.certval injective.

Proof Sketch.The proof is done by induction in the number of exchanges as the proof for
LemmalC.6, using a modified version of Lemm@.5. We briefly sketch the proof pointing
out the differences.

Suppose thal(s°,D°) (“B r W) et (S, D,) “PaseS N and the failure
flag is not set ilN. We want to show that either

1. there existS with shadowD and normal transition§,, 2%, S such thaN = N(S,D); or

2. there exist shadow forS such thats = done andN = N(S,,, D).

We should start by pointing out that all messages that are natditable will be processed by
receive the same way as in Lemr@aS. As for parse(-) we just have to notice that in the case of
N machines we use the same internal representation for names and certificates for all principals,
that is, there is a common identifierd such thatnd = D,,.ni(n) = D,.ni%(n) for all a € H if
defined, all (previously issued) certificates from honest users are always unmarshaled with label
0. Due to these facts, we also have that the resulting shadows are always injective:foand
certval.

For messages ianctable, we should notice that ifmsg,”" M " k) € enctable then,
there is ani such thatD,,.wire(i) = (M, k, idy-id,-msg, b, true) for b = 0 orb = 1. Now,
if k& € keycache,, the message is dlscarded and we are in @askek ¢ keycache,, then by

definition of D,,, b = 0, which implies that\/ /i is defined inS,,, hence there exists, 0N S
and, defining? as in LemmdC.5, we have thal(S,,, D,,) “%’ N(s®, D?).
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As for reduction we may as well apply Lemn@a4 sinceD?,.name andD?, .certval are in-
jective by construction and the internal behaviourMdfand N is the same, (there is just an
injective renaming on indices and labels for certificates) so there gxisind D! such that
N(S®,D2) ~* N(S*,D¥).

Consider now thaN(S*,D¥) ~+ N. Regarding marshaling, marshaling is only performed
when sending messages to the adversary, we have the same as in efexaept that, as
N(S°,D°) signs messages for all principals usip§ instead of[-],, we should now define
D’.certval(v1{vs}o) = &' for each new paifv;{vs}o,s’) in signed and not just for certificates
form a.

For sending, let' andD as in LemmaC.5 except that we extend such that for eachi/;, =
a:u;(V;) to honest principal;, D.wire(i;) = (M, k;, s4;, 0, true), wherek; is the authentication
key produced by the modifiegknd, algorithm of DefinitioriC.Son input/;,. We have then that
N = N(S, D). _

From this, we can show that there existvith shadowD, and normal transitions,, °p, S
such thalN = N(S, D). By constructiorD.name andD.certval are injective. O

Next we show that the probability of failure bif(.S°, D°) andN*(S°, D°) are negligible func-
tions of the security parameter We do this by reducing the problem of failing to the problem
of breaking CMA-security (Definitio\.6).

Lemma C.8. Let S° be a safe initial system with initial shaddW andA a PPT algorithm.

We havePr[A[N(S°, D°)] fails] < neg (7).

Proof. We first recall that, for any CMA-secure signature scheme, finite indek/send PPT
adversaried\dvcua, We have:

PI'[ (Saava)aeH A — g(]-n)a
(m, SZg) — AdVCM/_\(Sa(.))aeH(1n, (va)a€H> :
V(va, m, sig) = 1 for somea € H andm ¢ Queries, | < neg(n)

where each of the oraclés (z) returnsS(s,, ) and adds: to the setQueries,.

Let S° be a safe initial system with initial shaddw, andA a PPT algorithm, such that the
probability thatA[N(.S°, D°)] fails is not a negligible function of. We define a CMA adversary
AdvemaFe et asAN(S°, D°)] with the following changes:

o for eacha € H, instead of generatin@,, v, ), use parameter, and sets, = 0;
e for eacha € H, instead of signing witls,, call the oracleF,(-);

o if the failure flag is set, stop and outputs the message that was given as ilN{#°td®°)
just before the failure.

Game 1: Game 2:

1. A[ (So, DO)] — S. 1. (Saava)aEH — g(yz),

2. (m, sig) «— Advema @D (17, (vy)aer).-
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It is immediate that Game=2; A[N(S°, D°)], where=, denotes the equality of probability
distributions, until the run fails. For that just suppose that the keys generated if Sté&yefi-
nition 3.1 are generated in the same order as in Game 2. We have that the verification keys for
each principal in the two games are the same. As for signathf&s, D°) performs the signa-
tures by itself, while in Game 2 a signing oracle is used, but the outcome of both is the same as
S(Sa; ) = Sa(') = fa(')'

Let us now analyse the behaviour&dvcya until the run fails. By LemmaC.7, there exist
S, D, ¢ such thats® % S is a normal transitior) is a shadow forS, and

(inp)

N(So DO) l"pl)v*,@)(é"gﬁv*% o (mpn) *Sn N(S D) SN M N
such that at the end, the failure flag is seNirbut not inN(S, D).
Suppose that the failure was set upon an input of the fakmid,_msg. We will start by

showing that this never occurs if the message was indeed sénahy then that in the case that
e is pretending to bé this failure only occurs it is able to forge a signature.

1. if the message was indeed sentihen enctable associatesnsg with " A/ 2%k where
"M TP andk are respectively the message passed to the interpreter and the authentication
key used. By definition oénctable we have that

there exists such thatD.wire(i) = (M, k, idy_id,-msg, _, true). (C.2)

On the other hand, if the message was accepted by definition ofkeycache, we have
that

there is noj such thaD. wire(j) = (M’ k, _, 1, ), (C.3)
whereM’ is a message te. By (C.2) and [C.3) we have that for the above
D.wire(i) = (M, k, idy-id,-msg, 0, true). (C.4)

From (C.4), and definition ofwire we have that € I, hence)M /i is defined inS. For this,
a failure can never occur whenever the message was sent by priicipal

2. if the message was not sentbfi.e., A is trying to create or modify a message pretending
to beb) then there is no association betweasg and™ M ™ L in enctable. By def-
inition of N(S°, D°), this message is accepted only if it is acceptedNipy.S°, D°), that
is, it has to pass theeceive protocol, and in particulay (v, k_id,, s,;) = 1 for some
authentication key:. (condition2 of Definition|3.23). Notice that a signature of a tuple
of the formk_id, by b is only performed whenevéris sending a message & But, by
definition ofN(S°, D°), such keys are never signedipjnenceAdvcua Was able to forge a
signature. From this, the probability th&dvcya outputs a signature fromfor a message
that was never asked for signing to the signing oré&le) is a non-negligible function of
n, breaking the CMA security assumption of the signing scheme.
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Suppose that the failure was set upon an input of a mesgage, msg. By definition of
N(S", D°), these messages are neveeintable, henceid, _id,_msg was received and unmar-
shaled as ifNy(S°, D°). In particular, all the certificates form honest principals were verified
during the unmarshaling protocol. If the failure flag was set, this implies that the input transition
(M) is not enabled, hence some of the certificated/ifrom honest users are not ikt (P), or
some name generated by the adversary was marshaled to a private name. The latter is not possi-
ble inN(S°, D°) as private names are never marshaled, hence no bitstrings sent by the adversary
will ever be unmarshaled to identifiers of private names. Hence, if the run fails, some of the
certificates in)M/ from honest users are not i (P). This implies that these certificates were
never sent to the adversary and, by definitioNoF°, D°), they were never signed, hence the
probability thatAdveya outputs a certificate signed Byfor which a signature was never per-
formed is a non-negligible function ef, breaking the CMA security assumption of the signing
scheme.

Another possibility of failure is by conditio@ of Definition/C.1. It is easy to see that the
probability of failure due to this is a negligible functionmfFor that, notice that by safety 67,
we have that the output ¢f° has to be polynomial in the size of the input labels, and hence, the
number of generated namesgmes iS bound above by that polynomial. A clash on these names
only occur with negligible probability, more concretely, with probability at M@gtmed? x 2.

We have shown that if a run di(S°, D°) fails with non-negligible probability, then this
could not have happened due to a clash of generated names (as this only happen with negligible
probability), hence there is an adversakvcua that is able to break CMA-security assumption.

O

Lemma C.9. Let S° be a safe initial system with initial shaddW andA a PPT algorithm.

We havePr[A[N*(S°, D°)] fails] < neg (n).

Proof Sketch.The proof is similar to the proof of Lemm@.8 The only difference lies on the
fact thatN*(S°, D°) generates more names, hence more failure cases may occur.

Failure upon an input of the fornal,_id,_msg is equal to the case f¥(S°, D°). The prob-
ability of failing upon an input of the formid._id,_msg, is the probability of producing a fake
certificate (equal to the case f(.5°, D°)) plus the probability of capturing a private name. The
probability of the adversary capturing a private name is bounthfy,.d? X 277, wheren/ mes
is the total number of names generated\byS°, D°) (now includes also the names generated to
honest principals) that has to be bound by a polynomial sificis safe. Hence this case fails
with negligible probability.

The probability of failing due to conditio of Definition/C.1 remains negligible, and is at
MOoSt(n) amed” X 277 O

C.4 Reduction to Cryptographic Primitives

In this section, we let° range over safe initial system with initial shad@w.

Lemma C.10. M(S5°, D°) = Ny (S°, D°).
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Proof. Relying on DefinitioriC.4 we can establish the following invariant between the state of
M(S°, D°) andNy (S°, D°):

e there is an injective renaming between the name identifiehd,if5°, D°) and the name
identifiers in Ny (S°,D°); Ny (S°,D°) uses the same identifier across machines while

M(S°, D°) uses a different identifier for each machine.

e for every certificateprin(id,){vs}o in Ny, (S°, D°) there is a certificaterin(id,){va}o
in M, (S°, D°);

e for every certificateprin(id,){vs}, there is a signature valuesuch that for alb # a, if
prin(id,){ve}o iSin Ny, (S°, D°) thenprin(id,){vs}s isin M, (S°, D).

This invariant and Lemm@&.1 guarantee tha¥l(S°, D°) andN;(S°, D°) have the same observ-

able behaviour as the internal processes of each machine are the same up to renaming; renaming
does not affect the internal computation, and Len@rbensures that marshaling a bitstring that

was previously unmarshaled yields the same result regardless the psesqf(-) and[-], or

parse(+) and[-]. Condition["VP<], = [TV P:"] ensures that the initialisation is consistent

with this procedure ag, = " P, ®* in M(S°,D°) andp, = " P, ®7 in Ny (S°, D°). O

Lemma C.11. Ny (5°, D°) = NO(S°, D°).

Proof. Relying on DefinitionC.5 with n, = 0 for everya € H, it is immediate that the two
machines are equivalent; = 0, so the tesj, < n, always fails,enctable remains empty, hence
there are no modifications in the protocol. l

Our next lemma deals with the inductive case, by reduction to CCA-2 security.

Lemma C.12. For someux € 'H, letn + 1 abbreviaten with n, + 1 instead ofn,,.

We havePr[ AIN"(S°,D°)] — 1] — Pr[ A[N"+1(5°,D°)] — 1] < neg (n), whereneg (-)
is a function that only depends upon the encryption scheme.

Proof. Let My = N7(S°,D°) andM; = N"*'(S°,D°). LetA be a PPT adversary. We first
rearrange our target property to match the structure of CCA-2 games, and remark that

b+—{0,1};

AM,] — s;

if s=1theng=1elseg=0:
b=y

Pr < 1+ neg(n) (C.5)

implies thatPr[ A[My] — 1] — Pr[ A[M;] — 1] < neg (), from which we can conclude that
Mo = M; by definition of indistinguishability (DefinitiolC.2).
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Assume that there exisfsthat breaks Propert{d(5). We then usé andN"(.S°, D°) to build
an adversary that breaks CCA-2 security (Defini#od), recalled below:

[ b — {0, 1} 3

(e, d) «— K(1");

mg, my —— Adveea (17, e);
ct— E(e,my);

g — Adveea 2V (17, e, ¢*)
b=g

Pr < 1+ neg(n) (C.6)

More precisely, we define our CCA2 adversary so that runs of the two games displayed below
with the same boolean value forand the same random inputs always yield the same outcome
b=g.

Game 1: Game 2:
1. AM,] — s; 1. (e,d) «— K(17);
2. if s =1theng =1 elseg = 0. 2. mgy, my — AdVCCAgpl(')(ln, e);

3. ¢t — E(e,mp);
4. g —— Advccar ™V (17, e, ¢*).
We letAdvceas” ) be A[N™(S°, D°)] with the following changes:

1. In Stepl of Definition3.1, instead of generating,, d,) for a, lete, = e andd, = 0. (e is
the key generated at Stépf Game 2).

2. Instead of decrypting witld,, use the oracleF(-), that isD;(-) andD,(-), respectively
before and after the challenge ciphertext

3. Change theend, protocol (Definitior3.22) for then, + 1-th message ta as follows: on
inputm’ to thesend, protocol, instead of encrypting messageat Stei3,
(@) letmg = m andm, = 0! (Step2 of Game 2);

(b) passm, andm, to the encryption oracle and continue with= &(e, m;) (Step3 of
Game 2);

(c) record(c*, parse(m’), k) in enctable; and
(d) resume theend,, protocol at Stef.

4. If A[N"(S°,D°)] — 1, output 1, else output 0 (St@of Game 2).

Let G1(b) andG2(b) denote respectively Game 1 and Game 2 when the randomly chosen bit
is b. We show that the outcome 6f, (b) = G»(b), for b € {0, 1}. This is done by induction on
the number of low-level steps, showing that the following state invariants are preserived0if
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e eitherj, < n, andG,(0) andG,(0) have the same state, except for the valué,dfset to
0 and never used in the second game).

e Or j, = n, + 1 andG;(0) andG+(0) have the same state, except for the valud oénd
an extra entry irenctable in the second game, of the forfa", parse(m'), k), wherem/, ¢*
andk are respectively the input, the ciphertext obtained at S8b2pnd the authentication
key, of the modified sending algorithm Aflvcca,” .

e Also, a callF(c*) is never performed.
If b = 1 the following invariant is preserved:

e (71(1) andG,(1) have the same state, except for the valué,qfet to0 and never used in
the second game).

¢ In addition, a callF(c¢*) is never performed.

Before proving that these invariants are preserved, let us remark that in spite of principal
using different decryption oracles, (in Game 1, compliant princigzdrforms decryptions using
D(d,, -), while in Game 2 decryptions are performed by calling decryption ot&¢le changeé2
in Advceao” ), the outcome of these decryptions is the same as lotig-ag, and no callF(c¢*)
is made. (This assures, thatis never used in the second game.) This is true since, by definition,
F(c) = D(d,, c) for all ¢ # ¢*, and L otherwise, hence all messageg ¢* will be decrypted to
the same values regardless the us& 0§ or D(d,, -).

Let us start by considering that= 0 and let us analyse the behaviour of the two games on
the same random inputs. Suppose that we have a run of lengthle will analyse the cases
where the two games have apparent different behaviours.

Base caser = 0: In this case, only initialisation is performed apd= 0 < n,. We have to
show that the invariant is preserved.

The initialisation of the two games is different. In Game 1, initialisation is performed as
described in Stef of Definition3.1, while in Game 2 we replace the generation @f, d,) by
(e,0) where(e, d) «— K(17) is the pair generated in St@f Game 2 (chang&in Advccaz” ).
Since the order of generation of the cryptographic material in EtepDefinition3.1 is irrel-
evant, we may assume, without loss of generality, that the (pairl,) is the first one to be
generated, hende,, d,) = (e, d). (This establishes the first part of the invariant, the state of the
two games is the same except &hrthat is set to 0 in the second game.)

Also, since no more steps were performégywas never used in the second game. Thus, the
base case establishes the invariant.

Inductive case: Let us now suppose that afterlow-level steps, the state of the two games
satisfy the invariant. Consider first the cgse< n,:

1. an input is provided to principat:
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(a) aninputid,, _id,_msg is provided to principal andmsg is associated with some, k
in enctable. Since the state @&, (0) andG»(0) is the same, so isnctable, hence the
two games behave the same way. In this case the invariant is preserved.

(b) an inputid,,_id,_msg is provided to principak but msg is not associated with any
m, k in enctable. In this case botl;(0) and G»(0) behave adN;(S°, D°) (Defi-
nition |C.5), except thatz,(0) will not useD(d,, -) but insteadF(-). As remarked
above { = d,, andmsg # c* sincej, < n,) the decryptions of these messages will
lead to the same value, henGg(0) andG,(0) behave the same way. The invariant
is also preserved in this case.

2. an input is provided to compliant principal

(a) aninputid,_id,_msg is provided to compliant principalandmsg is associated with
somem, k in enctable. This case is equal to Case.

(b) an inputid, id,-msg is provided to compliant principal but msg is not associated
with anym, k in enctable. In this case botld7; (0) andG,(0) behave adl;(S°, D°)
(Definition/C.5). The invariant is also preserved in this case.

3. aninternal reduction is performed by some principdh this case the invariant is trivially
preserved as there is no difference fraém(0) to G(0).

4. principal a performs an output. Since never sends messages to itself, after this output
Jja < n, and the invariant is preserved.

5. compliant principat performs an output: in this case there is no difference betwgén
andG,(0) except when sending messages.tbet us analyse the sending procedssed,,
of c:

(a) after sending all messages, < n,. In this case the,, + 1-th message ta was
not sent hencé&r;(0) and G5(0) behave as in Definitiol€.5, and the invariant is
preserved.

(b) after sending all messages,= n, + 1. In this case, the, + 1-th message ta was
sent. For this particular message(0) behaves all,(S°, D°), while G»(0) behaves
as provided in chang@ of Advcea,” !, that is, forb = 0 it getsc* = E(eq, m)
and recordsc*, parse(m'), k) in enctable, wherem’ andk are respectively the input
and the authentication key, of the modified sending algorithidefca,” ). After
sending this message we have that n, + 1 and the state of/,(0) is equal to the
state ofGG; (0) with this extra entry irenctable. This satisfies the invariant.

Let us now consider the cagge= n, + 1:
1. aninput is provided to principat:

(a) aninputid,, _id,_msg is provided to principal andmsg is associated with some, k
in both enctable of G1(0) andG4(0). This case is similar to Cade of j, < n,.
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(b) aninputid,_id,_msg is provided to principak andmsg is associated with some, k
in enctable of Go(0) but not of G1(0). The only entry that satisfies such conditions
is (¢*, parse(m’), k). In this case5,(0) accepts the message if and onlyifs the
sender ofn’, v = a, k ¢ keycache,, and adds to keycache, returningparse(m’) to
the interpreter.

As for G1(0), it behaves adl;(S°, D°), that is, receives the message, decrypts it,
performs the checks of Definitic.22, addsk to keycache,, and returnsn/, that

was the input to the sending algorithm. It then pagsese(m’) to the interpreter,

as GG»(0), hence the behaviour of the two games is the same, and the invariant is
preserved.

(c) an inputid, _id,_msg is provided to principak andmsg is not associated with any
m, k in eitherenctable of G1(0) or G»(0). This case is similar to Cadd of j, < n,
noticing thatmsg # ¢* as this would imply that the message iscitctable of G2(0).

2. an input is provided to compliant principal
(a) aninputid,_id,_msg is provided to compliant principalandmsg is associated with
somem, k in enctable. This case is equal to Cage.of j, < n,.
(b) an inputid, _id,_msg is provided to compliant principal but msg is not associated

with anym, k in enctable. This case is equal to Cag& of j, < n,.

It never occurs that an input,, _id,_msg is provided to principat andmsg is associated
with somem, k in enctable of Go(0) but not ofGG;(0). This only occur in messages o

3. aninternal reduction is performed by some principdh this case the invariant is trivially
preserved as there is no difference fré(0) to G5(0).

4. principal a performs an output. Since never sends messages to itself, after this output
ja < ng and the invariant is preserved.

5. compliant principat performs an output: in this case there is no difference betwgé&b)
andG,(0) except when sending messages.tbet us analyse the sending procedssed,,
of c:

(@) asj, = n, + 1, both G1(0) and G5(0) behave adN,(S°,D°), and the state re-
mains the same, with an extra entry dnctable in the second game, of the form
(c¢*, parse(m'), k), hence the invariant is preserved.

Let us now consider the case= 1 and let us analyse the behaviour of the two games on the
same random inputs. Suppose that we have a run of length

Base casen = 0: This case is equal to the one proven abovefer0.
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Inductive case: Let us now suppose that afterlow-level steps, the state of the two games
satisfy the invariant.

1. aninput is provided to principal: this case is equal to Cadef j, < n, forb = 0.

2. an input is provided to principat this case is equal to Caf j, < n, forb = 0.

3. aninternal reduction is performed by some principdh this case the invariant is trivially
preserved as there is no difference fréi(1) to G (1).

4. principal a performs an output. Since never sends messages to itself, after this output
ja < ng and the invariant is preserved.

5. compliant principat performs an output: in this case there is no difference betwgéh)
andG,(1) except when sending messages td’he sending procedures only differ in the
casej, = n,, that is whenever sending thg + 1-th message ta. Let us analyse the
sending procedurgend, of c:

(a) after sending all messages, < n,. In this case the,, + 1-th message ta was
not sent hencé&r,(0) and G»(0) behave as in Definitio€.5, and the invariant is
preserved.

(b) after sending all messages,= n, + 1. In this case a message thg+ 1-th message
to a was sent taz, that is, a message was sent wjth= n,. In this case(G;(1)
(N"+1(S°, D°)) behaves as in Definitid@.5, that is it marshals the contentmafto m’,
encrypts0’s and record& (e, 0/™"1), m, k) in enctable, wherem” is the message
obtained at SteB of the send,, protocol on inputn’. G5(1) behaves as provided in
changeB of Advcear” ", that is, forb = 1, on inputm’ to thesend, protocol, it gets
¢ = E(eq,0M™"1) and recordgc*, parse(m’), k) in enctable, wherem’ andk are
respectively the input and the authentication key, of the modified sending algorithm
of Advcear” . Sincem = parse(m’) the invariant is preserved.

]

We now relate machind$” andN* that differ only in the marshalling of certificates for mes-
sages exchanged between compliant principiisdoes not marshal certificates when sending
messages to honest principals, whille generates the certificates but does not send them.

Lemma C.13. N¥(S°, D°) = N*(S5°, D°).

Proof. Let A be a PPT adversary. Consider machii¢S°, D°) derived fromN“(5°,D°) as
follows (in the following, we denote byigned* the tablesigned of machineN*(S°, D°)):

e we extend the state d¥*(S°, D°) with a tablehidden-certthat associates internal repre-
sentations of certificates to signature values;
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e whenever marshaling a messagé to H, for each certificate of the forprin(id,){vs}o
such that bottyigned® (prin(id,){vs}o) andhidden-certprin(id,){v,},) are undefined,
add(prin(id,){vs}o, S(s4, [12])) to hidden-cerinstead of adding it taigned’;

e whenever marshaling a message:tg H, if it contains a certificaterin(id,){v.}o for
some(prin(id,){vs2}o,s) € hidden-cert marshal agert [prin(id,)]_[ve]_s and add
(prin(id,){vs}o, 5) tO signed®.

It is easy to see thadl?(S°, D°) = N*(S°, D°) (in fact we even have equality of distributions).
MachineNf(S°, D°) generates the certificates upfront but it only uses them whenever they are
needed inN*(S°, D°), that is, whenever they are part of a message to the adversary. For that,
the two machines have the same distribution. Moreover, since both machines define exactly the
same certificates (the ones generat@diori by N*(S°, D°) do not interfere with the computation
unless they are added i@nedﬁ) the probability of failure of both machines is also the same.

It remains to show thaXi“(S°, D°) = N#(S°, D°). We claim that for any run with length

(5, D°) B ety ) ety e
if the failure flag is not set if\*, then

1. there existS with shadowD? and normal transitions® % S, such thaiN* = N¥(S, D¥),
and

2. N°($°,D°) W) =008 ez ) et N2(S, D), the failure flag is not set in
N“(S,D), andD is obtained fromD* by addingD.certval(cert) = s for all certificates
cert such thaf cert, s) € hidden-cert

It follows from our claim that no adversary can distinguish the two machines when the
run of N¥(S°,D°) does not fail; the outputs for successful runs are the same in both cases.
Hence the only way to distinguisN®(S°, D°) from N#(S°,D°) is if Nf(S°, D°) fails. But,
N¥(S°,D°) = N*(S°, D°) and by LemmiL.9, N*(.S°, D°) fails with negligible probability. Hence
N“(S°,D°) = N*(S°, D°) as needed.

Let us now prove the claim above.

Base caser = 0: We haveN? = N*(S°,D°). We useS = 5°,D? = D°, ¢ = ¢, andD = D°.
Sincehidden-ceris empty,D° satisfies the condition in Cag=

Inductive case: Suppose that
NE(Se,D°) ey ) e g (PR st g (C.7)
and the failure flag is not set . By induction hypothesis for,

(i) there existS, with shadowD! and normal transitions® % S,,, such thal? = N¥(S,,, D?),
and
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(i) N=(s°,D°) W) e ) eza Ut NB (S, D), the failure flag is not set in
N“(S,,,D,), andD,, is obtained fronD, by addingD,,.certval(cert) = s for all certificates
cert such that cert, s) € hidden-cert

Thg proof that there exist with shadowD? and normal transitions,, °F, 5 such that
N* = N*(S, D¥) whenever the flag is not set ¥, is similar to the proof of Lemmg&.7 so we
omit it here.

To show the second part of Properfy.7) we just need to show that on inputep,,, ;) (that
does not set the failure flag M¥ by hypothesisN“(S,,, D,,) will unmarshal the input to the same
value; we need also to show the conditions on the output. Let us start analysing the unmarshaling
procedure.

One should recall thatarse(-) is only applied when receiving messages from the adversary
or when receiving messages from honest users that are ratinble, i.e., messages that the
adversary is trying to input as messages serit yence, if(inp,,, ) = id,_id,_msg andmsg is
in enctable associated with sorrfeMTDgw”, k, thenNf andN“(S,, D,,) behave the same way as
both skip unmarshal and retufid/ %7 to the interpreter. Notice th&t\/ 1P%H = )/ PnH
asD? andD,, only differ in certificates with labed and these, whenever interpreted using”*
will have labelo regardless the value defined for itin

Suppose thal? andN“(S,,, D,,) unmarshal the message to two different internal representa-
tionsm* = "M " andm®, whereD’ is an extension ob?. If these two representations are
different, it implies that there is at least one certificate from an honest priricfuedh that

signed” (prin(idy){vs}o) = s and prin(idy){vs}o isinm® (C.8)
signed*(prin(idy){vs}o) = L and prin(id,){v.}, isinm/ (C.9)

as the only difference between the two machines is the content ofsthei! tables.

Let us consider now the case whenp, ;) = id._id,_msg but msg is not associated

with any "M P%™ [ in enctable. Since the failure flag is not set i, M /i is defined in
S, (wherem? = "M M), Let M’ be the certificate contained i such that™ A7/ 0" —
prin(idy){v,},. By Definition3.25 M’ cannot be of the formd{V,}, otherwise™ M’ ®"* —
prin(id,){vs}o, henceM’ = b{V,}, for somel # 0. SinceD? is a shadow forS,, M/i is
defined inS,,, andb{V,}, is a subterm of\/ with ¢ # 0, we have thab (b{V>},) # L, which
implies thatD,,(b{V2},) # L. By Definition3.25 "b{V,},P~*" = prin(id;){v,}, for some
s # 0 which contradicts the hypothesis thatin(id,){v,}, is in m® (C.§). HenceN* and
N“(S,,D,,) cannot unmarshal this input to two different internal representations.

Let us now consider the last cagenp,,.,) = id._id,_msg. Since the failure flag is not set
in N¥, S, has the input transitio(\/), hencep(M )y © M(®,,), in particularb{V}, € ®,, for
b{Vs}o such that b{V,}, """ = prin(id,){v,},. But, by definition ofDf being a shadow for
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S, if b{V,}, € ®, then all its names and certificates are definedfjnhence

Signedﬁ('—b{‘/g}ojDs“H) = signed®(Tb{Va}o P"H)

= signed’ (prin(idy){vs}o) by Definition3.25

= 1 by (C.9)
signedﬁ('_b{Vz}ong“H) = D certval(b{Va}o) by DefinitionC.4

# 1 because{1,}, € ¥,

We derive a contradiction, hence on inpdt_id,_msg, machinesl\l?1 andNa(Sn, D,,) cannot
unmarshal the message to two different internal representations.

As for internal reductions, since both machines unmarshal the message to the same internal
representation, our deterministic scheduler performs the same reductions in both cases.

As for outputsN? andN“(S,,,D,,) are also able to produce the same output: either it is a
message to € H, and in this casél, adds a tuplé cert, sig) to hidden-certwhile N*(S,,, D,,)
adds it tosigned, or it is a message te ¢ H and in this casé\’ uses the same certificate
asN“(S,,D,) either because both generate it or because it was fetchedhidien-cert The
condition onD is trivially verified.

Hence the two machines have the same behaviour as the only difference among them does
not generate different behaviour. l

Similarly, we relate machin_d§* andN that differ only when marshalling names exchanged
between compliant principalsN never generates the names in messages to honest principals
while N* generates the names but do not send them.

Lemma C.14. N*(S°,D°) = N(S°, D°).

Proof. Let A be a PPT adversary. Consider machiiés®, D°) derived fromN*(S°,D°) as
follows (in the following, we denote byames' the tablenames of machineN*(S°, D°)):

e we extend the state &f(S°, D°) with a tablehiddenthat associates internal representa-
tions of names to bitstrings;

e whenever marshaling a message:te 7, for eachind such that botmames'(ind) and
hidder(ind) are undefined, addnd, s +— {0, 1}*) to hiddeninstead of adding itames!;

e whenever marshaling a message:tg H, if it containsind for some(ind, s) € hidden
marshal asame_s and add(ind, s) to names".

It is easy to see thal'(S°, D°) = N(S°, D°) (in fact, we have=,4). MachineN'(S°, D°) gener-
ates the names upfront but it only uses them whenever they are neelésirD°). For that,
the two machines have the same distribution. Moreover, since both machines define exactly the
same names (the ones generadgatiori by Nf(S°, D°) do not interfere with the computation
unless they are added tames’) the probability of failure of both machines is also the same.

It remains to show thati*(S°, D°) = Nf(S°, D°). We claim that for any run with length

Ni(5°,D°) W) ety ) et i
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if the failure flag is not set iM", then there exist with shadowD' and normal transitions
s° % S, such thalN® = Nf(S, DT), and either:

1. N*(S°,D°) =5 G w08 ezs ) et [Nr(S, D), the failure flag is not set in
N*(S,D*), andD* is obtained froerT by addingD*.name(n) = s for all the names:
such tha{D'.ni(n), s) € hidden or

2. N*(5°,D°) st )y (80) s N« and the failure flag is set iN*.

It follows from our claim that no adversary can distinguish the two machines when both runs

do not fail; the outputs for successful runs are the same in both cases. Hence the only way to
distinguishN*(S°, D°) from Nf(S°, D°) is if one fails and the other does not. By Lemi@,
N*(S°, D°) fails with negligible probability. By Lemm&.8 andNf(S°,D°) = N(S°,D°), we
have thalN'(S°, D°) also fails with negligible probability. Henc8l*(S°, D°) = Nf(S°, D°) and
the claim follows.

Let us now prove the claim above.

Base caser = 0: We haveN' = Nf(S°,D°). We useS = S°,Df = D°, p = ¢, andD* = D°.
Sincehiddenis empty,D° satisfies the condition in Cade

Inductive case: Suppose that
Ni(se, D) Pnes | O ey g ) st

and the failure flag is not set iMf. By induction hypothesis for, there existS,, with shadow
D! and normal transitions® % S,,, such thatN! = Ni(S,,, DI ), and either:

(i) N*(5°,D°) W0 e 08 azp ) et e = (S, D7), the failure flag is not
set inN*(S,, D%), and D}, is obtained fromD! by addingD?.name(n) = s for all the
names: such tha{ D! .ni(n), s) € hidden or

(i) N*(5°,D°) W sr ) 2y U0 w2 N* and the failure flag is set iN?.

The proof that there exis§ with shadowD' and normal transitions,, “P, & such thatNt =
Nf(S, D') whenever the flag is not set M, is similar to the proof of Lemmg&.7 so we omit it
here.

To show the second part of Proper®.10) we just need to show that on inp(inp,, ),
machineN* will behave the same way &, unless it fails. Sincé&l* andN] only differ in their
names table (N* has more names inames*), differences between the two may occur when
unmarshaling an input leads to different internal representatiohandm’. The other possible
difference is when marshaling a message; clashes occur more often in the Ngdsugfas this
implies thatN* has the failure flag set to true, this is included in C2se
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Let us then analyse what may occur when receiving a message. First, supposg,that
id,,_id, msg andmsg is associated withi M %™k in enctable. In this case, the two machines
behave the same way as both skip unmarshaling and retdiiPh ™ to the interpreter. Notice
that™ )/ 0hH — ~)[ i for messages imnctable sinceD! andD? only differ in name(m)
for names never sent to the adversary, but for messagescinble, names are represented by
their internal identifiers that are equalldi andD*.

Suppose now thatp,,; = idy_id,-msg but msg is not associated with arfyM M [ in
enctable. Since the failure flag is not set M the message is unmarshaled to séig ™°"* and
Mt /i is defined inS,,. Suppose that the message is received and unmarshaled to two different
representations

mt ="Mt whereD’ extendsD! , and
m* ="M*P"H"  whereD” extendD?,

by N andN*. It is easy to see that receive and unmarshaling succeld ihand only if it
succeeds ifN}, (verification of the authentication key is the same and similarly for verification of
certificates during unmarshaling). Hencerif £ m* there is ans’ that during the unmarshaling
procedure

parse(s’) =v,  inthe case oN!, and (C.10)
parse(s’) = vy in the case oN*

for v, # v,. Besides the tablesames’ andnames*, there is no other difference betwelsj) and
N*, hence the unmarshaling gfdiffer if and only if s’ = name_s.

We have either(v,,s) € names' or (vy,5) € names* (we cannot have both undefined
otherwises’ would have been unmarshaled to a commprBy constructionpames™ C names*,
hence(vs, s) € names* and

D*.name(n) = s and D*.ni(n) = v, for some name: (C.11)
by DefinitionC.4.We have also that
(z,s) & names' for all x (C.12)

by definition of Nt, names’ C names*, hence(z,s) € names! if and only if z = wv,; but
parse(name_s) = vy in NI andv; # v, by hypothesis, hence there is.nguch thatiames'(z) =
S.

By (C.10 and (C.12) we have that, is a new name identifier (created by the-se(-) pro-
cedure) that is not defined .ni. We have then that there exists a nameZ n in M with

D'.name(n’) = s and D'.ni(n’) = v;.

SinceD’ is an extension ob! andD’.name(n’) = s we have that eitheDd! .name(n’) = s or
Di.name(n’) = L; if DI .name(n’) = s then by hypothesi®*.name(n') = s. Using [C.1])
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and injectivity ofD}.name this implies that»’ = n which contradicts the fact of’ being a new
name; hence
D! .name(n’) = L and D! .ni(n/) = L (C.13)

By definition of shadowD],.ni is undefined at most for locally restricted names, herids a
locally restricted name or it is a name generated by the adversary. Obvidusignot be locally
restricted since it part of/7 /i, hence it has to be generated by the adversary. In this case, it is
free in S,, and by definition of shadow)! .name(n’) # L which contradicts€C.13), hence on
input id;_id,_msg, machines\! andN* cannot unmarshal the message to two different internal
representations.

As the last case, suppose thap,  , = id.-id,-msg. Suppose again that the message is
received and unmarshaled to two different representations

mt =T MIP" whereD’ extendsD!, and
m* = "M*P"H" whereD” extendsD*

by NI andN*. Similarly to the previous case we obtain tifag, s) € names* and there is na
such thatz, s) ¢ names'. We have then that

(ve,s) € names™

= dn:DJ.name(n) =s A Dj}.ni(n) = vy (C.14)
—  3n:DX.name(n) =s A DI .ni(n) = v, (C.15)
—  3n:Di.name(n) =s A Dl ni(n) =vy A

A (vg, DI .name(n)) € names’ (C.16)
= 3n:Di.name(n) =s A Dl .ni(n) =vy A D! .name(n) # s (C.17)
—  3n:D!.name(n) = L A D!.ni(n) =vy A

A (DI .ni(n),s) € hidden (C.18)
—  (vg,s) € hidden A
A DI .name(n) = L for n such thaD! .ni(n) = v, (C.19)

Step C.14 follows from Definition/C.4 applied tonames*. Step IC.15) follows from the
definition of N* machine; it has the same internal representations for nanmés &tep (C.16)
follows from DefinitionC.4 applied tonames'. Step [C.17) follows by hypothesis: there is no
such thatx, s) € names'. Step[C.18) follows from IH as ifD".name(n) # D*.name(n), then
Df.name(n) = L and(D'.ni(n), D*.name(n)) € hidden Step|C.19 follows from the fact that
DI .ni is injective, hence there is only omesuch thaD] .ni(n) = ind.

By definition of Nf(S°, D°), if (v, s) € hiddenand there is na such thatz, s) € names',
then no message containing was ever sent to the adversary. Moreo¥,name(n) = L
implies by definition of shadow that does not occur free i,, and does not occur if,, nor
DI .certval. Sincen does not occur free i¥, nor ®,, andn is a subterm of\/* (v, is in
“M*°" M andD*.ni(n) = v, implies that is a subterm of\/*), we cannot have, . 7,
hence the failure flag is set M. We conclude that iN! andN* unmarshal the message to two
different internal representatiori$} has the failure flag set, hence we are in Case
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As for internal reductions, since both machines unmarshal the message to the same internal
representation whenever both do not fail, our deterministic scheduler performs the same reduc-
tions in both cases.

As for outputsN! andN* are also able to produce the same output: either it is a message to
b € ‘H, and in this cas®l! adds a tuplécert, sig) to hiddenwhile N* adds it tonames, or it is a
message te ¢ ‘H and in this casdl! uses the same bitstring for the name\gseither because
both generate it or because it was fetched ffodden The condition orD* is trivially verified.

It may also occur a clash on the generation of names. In this case a failure flag ifNsetrid
we are in Casg@. O

By composing these equivalences, we obtain
Lemma C.15. M(S5°, D°) = N(S°, D°).
Proof. Let A be a PPT adversary, with a run-time bounded by the polyngmia). Let
A;(U) — PI[K[N(Z ..... i—1,4—1,..., i—l)(So’ Do)] _ 1] _ PI[K[N(Z ..... i,i—1,..., i—l)(So7 DO)] _ 1}
where the tuples differ at positioh 1 < j < |H|. Let

pa(n) |H|

=22 A

i=1 j=1

By LemmalC.12, A}(n) is a negligible function of) for all 4, j. It follows that f(n) < [H| x
Pa(n) X maxi<i<p (mya<i<in A5 () = [H| x pa(n) x g(n) whereg(n) is a negligible function.
Applying PropositiorA.3to g(n) and|H| x px(n) we get thatf () is a negligible function. Now,
expandingf(n) we obtain that
f(n) = PrAN©9(5°, D°)] — 1] — Pr[A[N®(--ralD) (5° D%)] — 1]

that is,

Pr[AN©-9(5° D°)] — 1] — Pr[A[N@®am--Px()(S° D°)] — 1] < neg(n).  (C.20)

By LemmasC.10andC.1],

Pr[A[M($°,D°)] — 1] — PrAN©®9(5°,D°)] — 1] < neg (1) (C.21)

Since at mostz(n) messages are exchanged in any given run and the ma&%@}Sﬁ D°)
andN“(S°, D°) may have different behaviours only aftgf(n) exchanges, we have

Pr[ A[NPA( (5°, D°)] — 1] — Pr[ AN®(5°, D°)] — 1] = 0. (C.22)
By LemmasC.13andC.14 we have
Pr[A[N®(5°,D°)] — 1] = Pr[A[N(S°,D°)] — 1] < neg (n). (C.23)
ComposingC.21), (C.20), (C.22), and C.23), we finally obtain
Pr[A[M(S°,D%)] — 1] = Pr[A[N(S°,D°)] — 1] < neg (n).
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C.5 Main Proofs

We are now ready to complete the proofs for our main theorems.

Restatement of TheorenB.4. Let S be a safe stable systein,a valid shadow forS, andA a
PPT algorithm.

The probability thatA[M(S,D)] completes and leaves the system in stdtewith M’ £
M(S’, D’) for any normal transitionss % 5" with valid shadowD’ is negligible.

Proof. Let S be a safe stable system with valid shadowandA a PPT algorithm (with no access
to the failure flag oM (.S, D)). By definition of D being a valid shadow fab, there exist a safe
initial systemS° with initial shadowD?, normal transitionss® £- S, and a PPT algorithm,
such thatA,[M(S°,D°)] — M(S, D).

Let M’ badabbreviate that there are no normal transitisng> S’ and valid shadowd’ for S’
such thatV’ = M(S’, D). Let M/, bad (resp.M’, bad) abbreviate that there are no normal transi-
tions S° % 5" and valid shadovd’ for S” such thaM!, = M(S’, D’) (resp.M, = M(S’,D")).

Pr[AM(S,D)] —> s.(M’) A M’ bad (C.24)
= Pr[(As; A)[M(S°,D°)] — s.(M.) A M/, bad (C.25)
Pr[(Ao; A)[M(S°,D°)] —> (M) A M., bad (C.26)

< Pr[(A,;A)[M(S°,D°)] fails]
+Pr [(AO;AW(SO, D°)] - s (M) A M, bad] (C.27)
< Pr[(A.,; A)[M(S°, D) fails] (C.28)
< Pr[(A,; A)[N(S°,D°)] fails] + neg (1) . (C.29)
< neg(n) +neg(n). (C.30)

The probability (C.24) is the target probability of Theorei®.4. Step IC.25) applies the
definition of initialisation ofS with valid shadowD, and Lemmé3.3 S° 2~ S, implies that
S; = S. Step [C.26) holds by DefinitionC.1: sinceA does not read the flag, the additional
checks performed biyi(S°, D°) do not affect the outcome of any given run. St&€o7) splits
the probability depending on the predlcaﬁg A)[M(S°, D°)] fails; the inequality appears as we
ignore(A.; A)[M(S°,D°)] — s.(M’) andM’, badin case(Ao,A)[ (S°,D°)] fails. Step/C.28)
follows from LemmeC.6 applied toS°, D°, and(A,; A): the two predicates within the second
probability are mutually exclusive, so the second probability is zero. &) follows from
LemmacC.15applied toS°, D° and indistinguishability (Definitio/C.2) applied to an adversary
A that runs(A.; A) and then returns the failure flag. Sté®.30) applies Lemmi.8to S°, D°,
and(A.; A). O

Lemma C.16. Let ST and S5 be safe initial systems with initial shaddyy.
If S ~ S5, then for all output messagss,

r [AIN(S?, D)) 5 s (Ny)| = Pr [AN(SS, D)) = s (N2) |
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Proof. We first show by induction on that, for any given run, if

— mnp s1 (inp s np s
N(S7,D?) (Ml)«»*/\b(/\/f)v*f\% ... (,\,;L)M*,\g N,

and the failure flag is not set i, then

1. there existS; with shadowD; and normal transitions? %, S, such thalN; = N(S1,Dy),
and

2. N(S3,D°) e 8 wzs ) _e2s N, the failure flag is not set ifly and
N, = N(S,, D,) for somesS; : S5 . S5, 51 ~ Sy, andD, = D; except for definition of
internal identifiers and the associated messagesdtuble (i.e., Dy.ni andm (Dy.wire)).
Moreover, if we denote byV = {n € Name : Dy.name(n) is defined there is a bijection
betweerD,.ni|y andD,.ni|y wheref|y denotes the restriction ¢gfto domain/V.

The lemma follows easily from this property (using symmetry) as the outputs of the two runs are
the same, hence all the available information to the adversary is the same in both cases. Let us
then prove the property by inductionin

Base caser = 0: We haveN; = N(S?,D°). We useS; = S¢,D;, = D°, andy = . The
partial_functionD° is initially undefined sd;.name is trivially injective. As for Conditior2,
Ny = N(S3,D°). We useS; = S5, D, = D°, andy = e. Trivially Dy = D;.

Inductive case: Suppose that
N(Sl, DO) (lﬁgl)w*,& o (Z@L)M*,S\r/b_} N/1 (in,@ﬂLl)M*Sgl N1
and that the failure flag is not setMy. By induction hypothesis for,

(a) there existS] with shadowD’} and normal transitions? “, S’ such that\N, = N(S}, DY),
and

(b) N(S5,D°) e 02 e () wxa Ny the failure flag is not set iV, and
N, = N(S},D}) for someS) : S5 #, Sy, S1 ~ 4, andD}, = D} except for definition of
internal identifiers and the associated messagesdtuble. Denoting byN’ = {n € Name :
D}.name(n) is defined there is a bijection betwedd, .ni |y andD).ni|y.

We have that botty] and.S), are safe (sincé} and.Ss are) and stable (by definition of normal

transitions). Applying Lemm&.7 to our hypothesis we have that there existwith shadow

D, and normal transition§} LN St b, S; such thalN; = N(Sl, D;) which establishes Condi-

tion (1.

To prove Conditior2 one should notice that the keys in the cache\fand N/, are the
same D).keycache = D).keycache) so the same messages will be accepted by the two ma-
chines. Also, since there is a bijection betwd®nni|y. andD}.ni|x. we have thawames| =
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names’, up to renaming of the internal identifiersdmes; is thenames table forN;), and since
D! .certval = Dj.certval we have also thatigned) = signed, (signed; is the signed table for
N%).

Now there are two different cases:

(i) if (inp,,,) is a message from the adversary, it will be unmarshaled in both cases to the
same internal representatiom up to a renaming of internal identifiers for names, hence

S’ S” andsS] ~ Si imply thatS’ S” (N, does not fail); by safety, we know that
the compIeX|ty of these internal reductlons is boundpb;,( [M]) andpSQ((MD which

means that both machlnes terminate and in partldugar ?\Z“) ~» Ns. As for the
outputsS? LN S1, henceSYy LN S, for someS; andS; ~ S,. As the onIy marshaled names
are the names in messages to the adverggry,ame = D}.name, and the names sent to
the adversary are the same in both cases, the failure flag is not\setAs for messages to
honest users, they may differ froff to S but by definition boti\} andN/, only encrypt
zero’s which imply that’ = s,,.;. Considering the shadol¥, defined ad,.ni = D),.ni
plus all the identifiers generated during the reductidnwire = D;.wire except that the
first component includes the message that was seht and all the other components of
D, asD;, we have thaN, = N(S,, D,), and there exists a bijection betweBnni|y and
Dy.ni|y whereN = {n € Name : D;.name(n) is defined.

(ii) if (inp,.,) is a message from an honest user, ahd is defined inS] with D} . wire(i) =
_ k,_, _, then there is also an inp(t) in S, and sinceD,.wire = D).wire except for the
first componentN2 WiII not fail on this input. Regardless to what this input is unmarshaled,

if S’ 51 thenS’ 52 for some stabl&;. The rest of the argument is similar to the
previous case.

Our claim follows directly from this property. O

Lemma C.17. Let ST and S5 be safe initial systems with initial shaddvy.
If S; ~ S5, thenN(S7, D°) = N(S5, D°).

Proof. Let A be an arbitrary PPT algorithm. We have that

Pr [A[N(S},D%)] — s:(N1)] (C.31)
< Pr [A[N(S}, D°)] fails] + Pr [K[N(Sf, D) = s (N;) (C.32)
< neg (1) + Pr |AIN(S, D)) = s(Ny)| (C.33)
— neg () + Pr [K[N(Sg, D%)] sr(NQ)} (C.34)
< neg(n) + Pr [AN(55,D°)] — s:(Ny)] (C.35)

Step IC.32) splits the probability depending on the predicaf8i(S7, D°)] fails; the inequal-
ity appears as we igno®N(S$, D°)] — s.(N;) whenA[N(Sg, D°)] fails. Step/C.33) follows
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from LemmaC.8 applied toS?, D°, andA. Step [C.39) follows from LemmaC.16 Step (C.3%)
follows from the inclusion of all cases whefdN(S3, D°)] fails in the second probability. By

symmetry, we conclude

| Pr [AIN(S7,D%)] — s:(N1)] — Pr[A[N(S3,D%)] — s:(N2)] | < neg (n).

We are now ready to prove our theorem about soundness of equivalences.

Restatement of TheorenB.5. LetS; and S; be safe stable systenisa valid shadow for both

Sl and52
If Sy~ Sg,thenM(Sl,D) ~ M(SQ,D)

Proof. By Lemma3 3 sincesS; ~ SQ, there exist safe initial systent§, S5 and labelsy° such
that S} ~ S5, S Z. Sy, andSs £ S,. Applying LemmaC.17to S¢ and S we obtain that
(Si)7 Do) ~ N(SS, Do) _ _ _
Applying LemmaC.15to0 S}, S5 andD°, we haveM(S7, D°) = N(S7, D°) andM(S3,D°) =
N(Ss, D°). By transitivity, we obtain

M(S2,D°) = M(SS, D°). (C.36)

By Definition/C.1, an adversanp able to distinguistM (ST, D°) from M(S5, D°) also distin-
guisheaM(.S7, D°) from M(S3, D°), so (C.36) implies

M(SS, D°) ~ M(SS, D°). (C.37)

We finally show thati(S;, D) ~ M(S,, D) by considering the initialisation protocél,. If
there is an adversady that can distinguisM(.S;, D) from M(.S,, D), then the adversarA,; A)
is able to distinguisiM(S7, D°) from M(S5, D°), and this contradictdd,37). O



