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Resumo: Várias abordagens têm sido propostas nośultimos anos para o estudo de problemas
de Criptografia. Visto que o modelo da Criptografia Computacionalé bastante complexo e por
isso bastante difı́cil de utilizar, v́arias abstracç̃oes t̂em sido propostas nośultimos anos sendo a
mais bem sucedida a proposta por Dolev-Yao. No entanto, apesar desta abstracção facilitar o
tratamento dos problemas,é necesśario verificar se estas abstracções s̃ao correctas, i.e., se os
protocolos cuja correcção foi provada, segundo estas abstracções, s̃ao correctos aquando da sua
implementaç̃ao.
Nesta dissertação, começamos por considerar a lógica de indistinguibilidade proposta por Abadi
e Rogaway e mostraremos que dois problemas emanam deste resultado: primeiro, nãoé posśıvel
tratar protocolos que tenham ciclos de chaves de encriptação; segundo, a suposição de que o sis-
tema criptogŕafico consegue ocultar o tamanho da mensagem encriptadaé uma suposiç̃ao muito
forte. Nesta dissertação resolvemos ambos os problemas. Para resolver o primeiro enriquece-
mos o modelo computacional utilizando primitivas criptográficas mais poderosas; para resolver
o segundo consideramos uma classe de lógicas mais geral.
A segunda contribuiç̃ao desta dissertação é a apresentação de umáalgebra de processos se-
melhante ao calculo pi com comunicação segura, certificados, mas sem uso explı́cito de crip-
tografia. Nesta linguagem, propriedades de segurança podem facilmente ser estudadas usan-
do equival̂encia de traços do sistema e equivalência observacional. Apresentamos ainda uma
implementaç̃ao queé simultaneamente correcta e completa face ao modelo da criptografia com-
putacional.
Porúltimo, apresentamos ainda nesta dissertação uma outráalgebra de processos, também simi-
lar ao ćalculo pi, que nos permite expressar e estudar propriedades de protocolos de segurança
quântica.

Palavras Chave: Abstracç̃oes Correctas de Criptografia,Álgebras de Processos, Ciclos de Chaves
Criptogŕaficas, Criptografia, Segurança Clássica, Segurança Quântica.
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Formal Methods for the Analysis of Security Protocols

Abstract: As Computational Cryptography is hard to deal manually, several abstractions have
been proposed to analyse security protocols, being one of the most successful the Dolev-Yao
abstraction. However, one should investigate how reliable are such abstractions, hence the need
to relate these two approaches.
In this dissertation we start by considering the original Abadi-Rogaway logic of formal encryp-
tion and its soundness result, observing then that this result has two weaknesses. The first is that it
cannot tolerate key-cycles, and the second is that the assumption of length-concealing encryption
scheme is too strong. We fix both these problems, the former strengthening the computational
model, and the latter by considering a more general class of logics.
The second contribution of this dissertation is the proposal of a language that is variant of the
pi-calculus with secure communications, mobile names, and high-level certificates, but with no
explicit cryptography. Within this language, security properties can be conveniently studied
using trace properties and observational equivalence in the presence of active adversaries. We
provide a concrete implementation that is both sound and complete with respect to computational
cryptography.
Finally, and arguably one step ahead of reality, we introduce a language also similar to the pi-
calculus, that enable us to express and study security properties of quantum cryptographic pro-
tocols.

Keywords: Cryptography, Key-Cycles, Process Calculi, Quantum Security, Security, Sound
Abstractions of Formal Cryptography.

v



vi



Acknowledgments

It would be difficult, if not impossible, to mention everyone that contributed and helped me
throughout these last four years. To all of them I would like to thank for their contribution. Some
of them deserve a special thanks, due to some small “special” things.

Firstly, I would like to thank my supervisors Paulo Mateus and Andre Scedrov for their guid-
ance, support and constant motivation throughout these four years. Their constant shepherding
was essential for my development as a researcher. Looking back, I must say that I could not have
asked them for more.
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Chapter 1

Introduction

Cryptography (both classical and quantum), and more generally security, has been a topic of
the uttermost interest in the last three decades. Despite the interesting research problems within
this field, this increasing interest cannot be separated from the emergence of the Internet, large
computer networks,e-commerce ande-government, which demanded the design of better and
safer cryptographic protocols.

In the early researches, cryptographic protocols were just devoted to the communication of
secret messages [MvOV96, Sti95], but nowadays they are expected to perform several other
tasks such as digital signatures [RSA78], message authentication [NS78], secret sharing [Rab81,
Sha79], secret key-exchange [Mea92], contract signing [CKS01], electronic cash [Bra99] and
electronic voting [FOO92].

When specifying and designing cryptographic protocols, one always supposes that the pro-
tocol will run in an adversarial environment and, when trying to analyse the security of such
protocols, one may have several different runs at the same time, possibly interleaving with one
another. Proving security of such large security protocols easily turns into a task that cannot
be performed by hand, hence several tools have been designed to deal with such complex prob-
lem [BMV05, MMS97, Pau98, Mea92, Bla01].

The need for such (automated) tools is not only due to the complexity of the protocols. Even
small protocols can be difficult to analyse by hand. If we consider the simple protocol pro-
posed by Needham and Schröeder in 1978 [NS78], it was not until 1995 that Lowe [Low95]
discovered his famous attack on the protocol and suggested a fix using the CSP-model checker
FDR [Low96]. This was the advent of the use of automated tools, model-checkers and theo-
rem provers, for studying security protocols. The proof of security for this (corrected) protocol
(called NSL) was done assuming that cryptography is perfect, that is, that one can only decrypt
a message if in possession of the correct decryption key. With this “perfect cryptography” as-
sumption, the protocol and the model of the adversary are simple enough to be easily analysed
by standard model-checkers and theorem provers. This is one of the most common refinements
when analysing security protocols but there are others, e.g., bound the maximum number of
instances of the protocol running at the same time.

One question that remained unanswered was the following: What happens when cryptogra-
phy is not perfect (which is the case in real life where we can always guess a key with small
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2 Chapter 1. Introduction

probability)? How secure is NSL when using this “imperfect cryptography”? After some posi-
tive results regarding cryptographic soundness of such abstractions, Warinschi [War03] showed
that the attack discovered by Lowe against the NS protocol, could also be performed against the
corrected version if a somewhat weak, but standard, encryption scheme is used (the El-Gamal
encryption scheme [Elg85]). This result turned the attention of the research community for the
need of soundness results for formal cryptography, with respect to computational cryptography,
i.e., it is important to characterise when protocols proved correct using perfect cryptography are
correct when implemented with computational cryptography.

1.1 Background

In the area of cryptographic protocols, two models are noteworthy for their natural definitions
and rigorous proofs. The first of these models, theComputational Model[GM84, Yao82], is
derived from complexity theory. Its definitions are phrased in terms of the asymptotic behaviour
of Turing machines, and its main proof technique is reduction. The second model is theSymbolic
Model (or, Formal Model, or Dolev-Yao model)[DY83, NS78], is so-named because of its gen-
esis in the field of formal methods. Its definitions are phrased in terms of process algebras and
state machines (particularly non-deterministic ones) and it uses many different proof methods
(including automated ones). There are many differences between the two models , but two in
particular are key: their representations of messages and the power they give to the adversary.

• In the computational model, messages are families of probability distributions over bit-
strings (indexed by the security parameter). The adversary is modelled as an algorithm of
realistic computational power: probabilistic polynomial-time, PPT.

• The formal model imposes a more complex structure. Messages are expressions built
according to a particular grammar. The atomic messages are symbols representing keys,
random values, texts, and so on. More complex messages can be built from simpler ones
by application of (symbolic) functions, e.g., pairing and encryption. The adversary is given
only limited power to manipulate these expressions, such as separating a concatenation or
decrypting an encryption (if it knows the decrypting key). These possible operations are
specified via a set of equations.

While the former is a more concrete approach (based on complexity theory) with limits in the
computational power of the adversary, concrete cryptographic algorithms that work on bitstrings,
computational indistinguishability as the “equivalence notion”, and precise (and accepted) def-
initions of security goals (which provides a common ground for discussion), the latter requires
a higher-level of abstraction but in exchange provides automatic tools, and is easier to handle.
Examples of such tools range from logics [AT91, Syv91, SM93, GM95, BAN96, SC00, IK03,
CVB04, CVB05, DDM+05, CMP05], to theorem provers [Pau97b, Pau97a, Pau98, Bla06] and
model checkers [Low96, MMS97, Bla01, BMV05, BAF05], process algebras [AG99, AG97,
AG98], and strand spaces [FHG98, FHG99]. The major drawback of such abstractions is that, as
seen above, it is possible to prove the correctness of protocols that are susceptible to attacks in a
concrete implementation.
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Despite these differences, certain intuitions can be translated between the two models in the
expected way. In particular, under carefully chosen conditions,indistinguishability of messages
can be mapped directly from one model to the other.

1.1.1 The Abadi-Rogaway Logics of Formal Encryption

Relation between these two models was first demonstrated by Abadi and Rogaway [AR00,
AR02] in a particular setting and under strong assumptions. In their formulation of the for-
mal model (where messages are constructed from basic terms, blocks and keys, via pairing and
encryption) two expressions are said to be indistinguishable to the adversary (also calledfor-
mally equivalent) if their only differences lie in the encryption terms that cannot be decrypted by
the formal adversary. In the computational model, on the other hand, messages are families of
probability distributions on bit-strings. Equivalence of computational messages is captured by
the standard notion of computational indistinguishability (i.e., indistinguishability by an efficient
algorithm [GM84]).

Relating the two models.

Once a computational encryption scheme is fixed, an intuitive function translates expressions
between the two models. This function (calledinterpretation) maps blocks to fixed bitstrings,
keys to bitstrings generated by the key-generation algorithm, pairs to the pairing of the interpre-
tations, and encryptions to the bitstring that result from running the encryption algorithm on the
interpretation of the encrypted message.

This interpretation maps each formal expression to an ensemble (indexed by the security
parameter) of probability distributions over bit-strings. Given an encryption scheme, and there-
fore a particular interpretation function, one can then ask whether all pairs of equivalent formal
messages map to indistinguishable ensembles of probability distributions. If so, it is said that
soundnessholds and it implies that the formal model is a faithful abstraction of the computa-
tional model: security in the formal model implies security in the computational model as well.
If the converse holds, that is, if every pair of indistinguishable probability distributions corre-
sponds to interpretations of equivalent formal messages, we say thatcompletenessholds. In this
case, we have that the formal model is not over conservative, that is, it encompasses only the
subtleties of the computational model.

In their seminal work, Abadi and Rogaway demonstrated (in the symmetric-key encryption
setting) that soundness holds when the security level of the computational encryption algorithm
is ‘type-0’ (a scheme is type-0 if it does not leak any information about the size of the encrypted
plaintext, and given two ciphertexts one cannot say if they correspond to the encryption of the
same message, nor if they correspond to the encryption of messages using the same key). This
result was later translated to the public-key setting by Micciancio and Warinschi [MW04b], who
found that soundness is guaranteed by encryption schemes that satisfy ‘chosen-ciphertext se-
curity’ [RS91, Sah99] (CCA-2 in the notation of [BDPR98]). The power of chosen-ciphertext
security has been confirmed by subsequent extensions [Her04, CH06]. These results, however—
in both the symmetric and asymmetric settings—share two significant weaknesses.
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Weaknesses of previous soundness results.

Firstly, the result of Abadi and Rogaway fails to hold in the presence ofkey cycles. An ex-
pression has a (symmetric) key cycle if one can find symmetric keysK1, K2. . .Kn such that
Ki is encrypted in the expression underKi+1 andKn is encrypted byK1. (In the asymmetric
setting, the public keyKi encrypts the private keyK−1

i+1, andK1 encryptsK−1
n .) The formal

model makes no distinction between those messages that have key-cycles and those that do not.
Further, the interpretation function is well-defined over key-cycles, and so, formal key-cycles are
computationally meaningful. However, neither the soundness result of Abadi and Rogaway nor
subsequent soundness results (described in Section2.6) are known to hold for such messages.
(In fact, the stronger of these results [BPW03, CH06] assumes that no private or symmetric keys
are encrypted at all!)

Thus, the question of key-cycles is both interesting in its own right and has implications in
a larger context. The standard security definitions for computational encryption, such as CCA-2
security, do not obviously imply security in the presence of key-cycles [MRS98]. The formal
model, on the other hand, assumes that key-cycles do not weaken encryption in any way. There-
fore, the issue of key-cycles may represent an actual ‘gap’ between the formal and computational
models, and thus may shed light on their general relationship.

The majority of the results relating the two models show the formal model to be sound with
respect to standard definitions of the computational model—with some notable exceptions. Some
gaps have been positively identified. (For example, Canetti and Herzog [CH06] and Backes
and Pfitzmann [BP05] have demonstrated that the formal definition of secrecy is strictly weaker
than the computational definition.) However, these gaps were ‘closed’ by forcing changes onto
the formal model. Should the resolution of the problem of key-cycles again cause changes to
the formal model, or could it this time be more naturally resolved through modifications to the
computational model?

The second weakness of the original Abadi-Rogaway result also identifies a possible gap be-
tween the two models, but one that has already been previously studied. In particular, the original
soundness results of Abadi and Rogaway assumes that formal encryption conceals all aspects of
the plaintext. That is, their result requires that symmetric encryption hides (among other things)
the length of the plaintext. Unfortunately, this cannot be achieved for many contexts, and this
can thus be considered a ‘gap’ between the two models. This particular gap has already been
considered by Micciancio and Warinschi [MW04b], Laud [Lau04], and Micciancio and Pan-
jwani [MP05] who resolve the gap by weakening the formal model. These results, however, are
highly specific to particular classes of computational encryption schemes. It is unclear if or how
these results can be generalised to consider other encryption schemes that might leak other kinds
of information. Rephrasing, can every encryption scheme provide soundness tosomeweakened
version of the formal model, or do some ‘gaps’ remain?

1.1.2 Process Algebras for Security

Process Algebras were introduced as simple models to deal with concurrent systems [Mil89,
Hoa80]. In these models, computation is defined as the communication/interaction between
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processes. The tradition on using process calculus to reason about properties of systems led
easily to its use for studying cryptographic protocols.

Pi calculus [MPW92] was used since its early stages to model mobile processes and dynamic
channels. Pi calculus’ channels are very simple but at the same time a very powerful tool as they
can be created and passed among principals. In particular, it is possible to model private and
secure networks just using private channels. The extrusion rules of the pi-calculus ensure that as
long as a channel is not given to the adversary, he will never be able to access it.

But how can one implement those channels? Private channels are usually implemented using
cryptography and this cannot be expressed in the pi calculus. A first approach to include cryp-
tographic primitives in a process algebra was the development of spi calculus [AG99, AG97,
AG98]. Spi calculus is an extension of pi calculus that has in-built cryptographic primitives.
This extension allows the explicit representation of cryptography in protocols. With that, we can
express security properties as equivalences, e.g., secrecy ofV is shown by proving that a process
that sendsV is equivalent to one that sendsV ′. Modelling an adversary is also very easy in this
setting: we just allow any context to be an adversary. By doing this, we do not need to specify
the capabilities of an adversary; we just allow him to do everything. Two protocols are then said
to be equivalent if their observational behaviour is equivalent. This trend was very successful.
The caveat is that, in spite of the strong (symbolic) guarantees provided by such methods, no
cryptographic guarantees are given for the protocols proved correct. Real implementations use
probabilistic encryption and guessing a key is something that is always possible in real life, but
excluded in the spi calculus.

Another extension is the applied pi calculus [AF01]. The applied pi is another extension
of the pi calculus that includes not only cryptographic primitives but arbitrary operations and
equations.

Type systems for process calculus have also been applied to the study of security [Aba99,
HVY00, BDNN01, GJ03, GJ04, BBD+05, CGG05, AB05, Lau05]. This method allows a static-
analysis of infinite-state protocols providing an alternative to finite-state model-checkers.

Another interesting approach is to supplement process calculi with concrete probabilistic or
polynomial-time semantics. Unavoidably, reasoning on processes becomes more difficult. For
example, Lincoln, Mitchell, Mitchell, and Scedrov [LMMS98] introduce a probabilistic process
algebra for analysing security protocols, such that parallel contexts coincide with probabilistic
polynomial-time adversaries.

In this framework, further extended by Mitchell, Ramanathan, Scedrov, and Teague [MRST01,
MRST04, MRST06], they develop an equational theory and bisimulation-based proof tech-
niques. A general simulatability theorem is presented by Mateus, Mitchell and Scedrov [MMS03].
An automated tool for this approach has been proposed recently by Blanchet [Bla06]. By appli-
cation of games, automatically or with assistance from the user, one is able to prove correctness
of protocols specified in an extension of this calculus.

1.1.3 Quantum Security

As for quantum cryptography two seminal works have driven most of the research on this area:
the quantum polynomial time factorisation algorithm proposed by Shor [Sho97]; and the quan-
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tum public key agreement protocol BB84, proposed by Bennett and Brassard [BB84], which
was proved to be perfectly secure by Shor and Preskill [SP00]. While Shor’s algorithm raises
the threat of making widely used cryptographic systems completely obsolete by a breakthrough
in quantum hardware, the BB84 protocol shows that quantum communication channels allow
public perfect security.

The fact that we are still far from an implementation of quantum computers (at the present
stage, quantum computers can only work with a few qubits) does not make the field of quan-
tum security useless. In fact, several commercial application of quantum cryptographic devices
already exist. For instance, there already exist encryption devices that combine Quantum Key
Distribution algorithms with AES (Advanced Encryption Standard) to achieve perfect security in
Shannon’s sense, and Quantum Random Number Generators that can be included in any standard
computer through a PCI card.

Being able to analyse quantum cryptographic protocols that include complex interactions of
different cryptographic primitives, and more generally quantum programs, is a step that needs to
be taken in the near future either by adapting current techniques from classical cryptography or
by creating new methods that intrinsically incorporate the quantum phenomena.

1.2 Our Work

This dissertation has three different contributions.

1.2.1 Bridging the Gap Between Formal and Computational Cryptogra-
phy

In Chapter2, we address the two weaknesses of the original Abadi-Rogaway result mentioned
above. First, we consider the problem of key-cycles and show that an actual gap exists, but one
that can be bridged by strengthening the computational model. (We note that this is the first gap
to be closed in this way, rather than by weakening the formal model.) In doing this, however,
we must assume (unlike Abadi and Rogaway) that formal encryptions reveal two things: the
‘length’ of their plaintexts, and whether two different ciphertexts were created using the same
key. With this as motivation, we then turn to generalisations of the Abadi-Rogaway formalism.
In particular, we show (in a general way) how Abadi and Rogaway’s formulation of the formal
model can be expanded to consider encryption schemes (computational or information theoretic)
that leak partial information such as plaintext-length. That is, we investigate the conditions under
which a computational encryption scheme provides soundness and completeness to a (possibly
weakened) version of the formal model.

The Problem of Key Cycles:

We solve the issue of soundness in the presence of key-cycles by using the notion ofkey-
dependent message(KDM) security for symmetric encryption. This definition was recently in-
troduced simultaneously by Black, Rogaway and Shrimpton [BRS02], who consider it in their
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own right, and by Camenisch and Lysyanskaya [CL01], who use it for an implementation of a
credential system that discourages people from transferring credentials. We will, however, use it
to demonstrate two points:

1. Firstly, as predicted by Blacket al., we show that this new notion of KDM security is
strong enough to achieve soundness in the presence of key cycles (for a somehow weaker
version of the original model proposed by Abadi and Rogaway);

2. Secondly, we show that in order to achieve soundness for formal encryption, we need
stronger computational definitions than the ones used by Abadi and Rogaway. In partic-
ular, we show that both soundness and KDM security neither imply nor are implied by
type-0 security.
(In AppendixB we address the problem of key-cycles in the case of asymmetric encryption
and show that also in the case of asymmetric encryption, chosen-ciphertext (CCA-2) se-
curity, which is the strongest known definition of security in the (standard) computational
model, neither implies nor is implied by soundness or (asymmetric) KDM security.)

Thus, the problem of key-cycles was, in fact, a genuine gap between the formal and computa-
tional models at the time of the original Abadi-Rogaway result, but one that can be repaired using
recent advances in the computational model. (We believe this to be the first time that a gap has
been bridged by modifying the computational model rather than the formal one.)

Unfortunately, our results regarding key-cycles serve also to demonstrate another gap between
the formal and computational models—one that must also be closed by weakening the formal
model. In particular, KDM-security allows a ciphertext to reveal two things: the bit-length of the
plaintext, and the identity (but not value) of the key used in the encryption. Therefore, soundness
for key-cycles requires that encryptions in the formal model also reveal these two things.

This fact leads to the other weakness of the original Abadi-Rogaway result: it assumes that
computational encryption can hideall aspects of the plaintext. In particular, it demonstrates that
soundness is provided by ‘type-0’ encryption, which hides (among other things) the length of
the plaintext. However, most encryption schemes do not hide this fact, and it can be argued that
‘type-0’ encryption is impossible in general. For this reason, the original Abadi-Rogaway result
must be generalised to consider the kinds of soundness that can be provided by real encryption
schemes.

The Problem of Leakage of Partial Information:

More specifically, we extend the applicability of the Abadi-Rogaway treatment by expanding
their formulation of the formal model. We show how to adjust the formal notion of equivalence
in order to maintain soundness when the underlying computational encryption scheme leaks
partial information. Furthermore, we investigate the circumstances under which an encryption
scheme (or security definition) can be thought of as implementinga (possibly weakened) version
of the formal model.
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Also, our treatment will capture both the standard complexity-based encryption schemes of
the computational model and probabilistic,information-theoreticencryption schemes. That is,
we use a general probabilistic framework that includes, as special cases, both the computational
and purely probabilistic encryption schemes (such as One-Time Pad).

We consider not only soundness properties, but also we providecompletenesstheorems. In
this context, an encryption scheme provides soundness if, when used in the interpretation func-
tion, equivalent formal messages become indistinguishable probability distributions. On the
other hand, a scheme provides completeness if whenever two formal messages have indistin-
guishable interpretations, they are equivalent. Our generalisation will show how both of these
conditions can be maintained. Key-cycles do not pose a problem for completeness, hence we
will only discuss completeness in relation to leaking of information.

1.2.2 Cryptographically Sound Implementation for Communicating Pro-
cesses

In Chapter3, we develop a first sound and complete implementation of a distributed process
calculus (We refer the reader to [AF06a] for the discussion related to soundness). Our calculus
is a variant of the pi calculus; it provides name mobility, reliable messaging and authentication
primitives, but neither explicit cryptography nor probabilistic behaviours. Taking advantage of
concurrency theory, it supports simple reasoning, based on labelled transitions and observational
equivalence. We precisely define its concrete implementation in a computational setting. We es-
tablish general soundness and completeness results in the presence of active adversaries, for both
trace properties and observational equivalences, essentially showing that high level reasoning
accounts for all low-level adversaries. We illustrate our approach by coding security protocols
and establishing their computational correctness by simple formal reasoning.

We implement high-level functionalities using cryptography, not high-level views of cryp-
tographic primitives. Following recent related works, we could instead have proceeded in two
steps, by first compiling high-level communications to an intermediate calculus with ideal, ex-
plicit cryptography (in the spirit of [AFG02, AFG00]), then establishing the computational
soundness of this calculus with regards to computational cryptography. However, this second
step is considerably more delicate than our present goal, inasmuch as one must provide a sound
implementation for an arbitrary usage of ideal cryptography. In contrast, for instance, our lan-
guage keeps all keys implicit, so no high-level program may ever leak a key or create an encryp-
tion cycle. (We considered targeting existing idealised cryptographic frameworks with soundness
theorems, but their reuse turned out to be more complex than a direct implementation.)

Our concrete implementation relies on standard cryptographic primitives, computational se-
curity definitions, and networking assumptions. It also combines typical distributed implemen-
tation mechanisms (abstract machines, marshaling and unmarshaling, multiplexing, and basic
communications protocol.) This puts interesting design constraints on our high-level semantics,
as we need to faithfully reflect their properties and, at the same time, be as abstract as possi-
ble. In particular, our high-level environments should be given precisely the same capabilities as
low-level probabilistic polynomial-time (PPT) adversaries. For example, our language supports
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abstract reliable messaging: message senders and receivers are authenticated, message content
is protected, and messages are delivered at most once. On the other hand, under the conserva-
tive assumption that the adversary controls the network, we cannot guarantee message delivery,
nor implement private channels (such that some communications may be undetected). Hence,
the simple rulec〈M〉.P | c(x).Q → P |Q{M/x}, which models silent communication “in the
ether” for the pi calculus, is too abstract for our purposes. (For instance, ifP andQ are im-
plemented on different machines connected by a public network, and even ifc is a restricted
channel, the adversary can simply block all communications.) Instead, we design high-level
rules for communications between explicit principals, mediated by an adversary, with abstract
labels that enable the environment to perform traffic analysis but not forge messages or observe
their payload. Similarly, process calculi feature non-deterministic infinite computations, and we
need to curb these features to meet our low-level complexity requirements.

1.2.3 A Process Algebra for Reasoning About Quantum Security

In Chapter4 we present a process algebra for specifying and reasoning about quantum security
protocols. Since the computational power of the protocol agents must be restricted to quantum
polynomial-time, we introduce the logarithmic cost quantum random access machine (QRAM)
similar to [CR73, Kni96], and incorporate it in the syntax of the algebra. Probabilistic transi-
tion systems give the semantic for the process algebra. Term reduction is stochastic because
quantum computation is probabilistic and, moreover, we consider a uniform scheduler to resolve
non-deterministic choices. With the purpose of defining security properties, we introduce obser-
vational equivalence and quantum computational indistinguishability, and show that the latter is
a congruence relation. A simple corollary of this result asserts that any security property defined
via emulation is compositional. Finally, we illustrate our approach by establishing the concept
of quantum zero-knowledge protocol.

The computational model we adopt to define quantum polynomial terms is based on the log-
arithmic cost random access machine [CR73]. A hybrid model, using both classic and quantum
memory, similar to [Kni96] but with complexity assumptions, is considered and it is shown to be
(polynomial-time) equivalent to a uniform family of quantum circuits (which are, by themselves,
equivalent to quantum Turing machines). Such machines model the computation of each agent,
receive qubits as input, and return qubits as output.

Thanks to the non-cloning theorem, quantum information cannot be copied without prior
knowledge of its state. This observation imposes some design options in the process algebra,
since it is necessary to know which agent possesses a qubit in order to know who can retrieve
each piece of information. In order to deal with this fact, a set of agents is fixed and the qubits
are partitioned among them.

Although several other approaches to quantum process algebras are already present in the
literature (see [GN05], for instance), ours is quite original, due to the universe of application—
security protocols. In our approach, process terms are divided into local and global. An agent is
modelled by a local process while a protocol is modelled by a global process so, a global process
corresponds to local processes running in parallel. A semantics based on probabilistic transition
systems (which can be easily translated to Markov chains) is provided, and the probabilistic
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transitions are defined using rules and assuming a uniform scheduler to resolve non-deterministic
choices.

Agent observation is defined as a probability distribution over binary words obtained by mea-
suring on the computational basis (some of) the agent’s qubits. This measurement is done at the
end of a protocol run. This concept is the key ingredient to establish observational equivalence
that, in the context of security protocols, is based on computational indistinguishability [Yao82].
Intuitively, two process terms are observational equivalent for an agent if, after making all possi-
ble reductions to each process, it is impossible to distinguish (in quantum polynomial-time) the
qubits of the agent on both processes. Since we internalise quantum polynomial-time machines
in the process algebra language, observational equivalence is easily defined and it is shown to be
a congruence relation.

One of the most successful ways for defining secure concurrent cryptographic tasks is via
process emulation [AG99, Can00]. This definitional job boils down to the following: a process
realises a cryptographic task if and only if it emulates an ideal process that is known to realise
such task. Based on the notion of observational equivalence, we establish the notion of emulation
for the quantum process calculus and show that it is compositional. Finally, we provide the notion
of quantum zero-knowledge via process emulation.

1.3 Outline of this Dissertation

This dissertation is organised in 4 more chapters and an appendix. It follows a brief outline of
each of them.

1.3.1 Soundness of Formal Cryptography

In Chapter2 we extend the Abadi-Rogaway Logics of Formal Encryption in order to address the
problems of key-cycles and leakage of partial information. In Section2.1, we start by recalling
the original result of Abadi and Rogaway [AR02], and the original logic, that is, the definition
of the language and definition of the formal equivalence relation. We proceed then with the
precise definition of the computational model, in particular, we present the security notion used
by Abadi and Rogaway in their result, type-0 security, and afterwards we define the interpretation
of a message.

After this brief introduction we start addressing the problem of (symmetric) key-cycles, Sec-
tion 2.2. We start by showing that type-0 is not strong enough to achieve soundness. We present
then the notion of security introduced by Black, Rogaway and Shrimpton [BRS02] that will
solve the problems of key cycles (KDM-Security). Before showing that, we have to extend the
language of [AR02] and define a new notion of equivalence that is finer than the one in the orig-
inal result. We prove then that KDM-Security provides soundness for this new language. We
conclude by showing that type-0 security does not imply, nor is implied by KDM security.

We proceed then to the analysis of encryption schemes that reveal partial information, Sec-
tion 2.3. We consider 3 different types of encryption schemes (type-1, encryption schemes that
do not conceal the length of the plaintexts, type-2, encryption schemes that do not conceal the
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fact that two ciphertexts were encrypted with the same key, and type-3, encryption schemes that
do not conceal the length of the plaintexts neither the fact that two ciphertexts were encrypted
with the same key) and for each of them present the changes that we have to perform in the
formal model in order to obtain both soundness and completeness for these examples (without
key cycles, in spite of the KDM security notion could be adapted for these cases). In Section2.4,
we consider an implementation of One-Time Pad and show both soundness and completeness
results for such implementation.

In Section2.5, we state our general soundness and completeness theorems for logics of for-
mal encryption. We show that for any logic such that there exists a notion of equivalent non-
decryptable terms (calledproperness), soundness holds for any encryption scheme that cannot
distinguish the concrete implementations of the terms of each class. We also show that com-
pleteness holds, as long as the scheme may distinguish elements of any two different classes. We
conclude this section by showing that the examples in Section2.3are simple corollaries of these
general theorems.

We conclude this Chapter by referring some related work, Section2.6, and presenting some
conclusions and pointers to future work2.7.

Chapter2 extends [Ban04, ABS05, ABHS05] and is the result of a collaboration with Gergei
Bana, Jonathan Herzog, and Andre Scedrov. Part of this work was done while the author was a
visiting student at the University of Pennsylvania.

1.3.2 Cryptographically Sound Implementation of Communicating Pro-
cesses

In Chapter3 we present a language, similar to the pi-calculus, with secure communications,
mobile names and high-level certificates (but no high-level cryptography), that has a crypto-
graphically sound implementation, that is, security properties can be studied conveniently using
trace properties and observational equivalence, and those properties may be carried to a concrete
implementation.

We start by describing the low-level target model, Section3.1, as the constraints imposed by
this will drive the design of the high-level language. We then present our high-level language and
semantics, Section3.2. Section3.3defines and illustrates our notion of high-level equivalence, in
particular, we show how to encode strong secrecy and authentication properties in our language,
and how is equivalence related with certificates.

Section3.4develops applications. We show how to model anonymous forwarders and exhibit
an example of an electronic payment protocol. These examples explore the fact of our language
have in-built authentication and signing primitives. In this section, we also show that given any
systemS, possibly with certificates and names shared among principals, we can always find an
initial systemS◦ where principals share no information, such that there is a transition fromS◦ to
S. This allow us to consider programs where information is already shared without the need to
refer always to initial states.

In Section3.5we describe our concrete implementation. This implementation relies on stan-
dard cryptographic primitives, computational security definitions, and networking assumptions.
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It also combines typical distributed implementation mechanisms (abstract machines, marshaling
and unmarshaling, multiplexing, and basic communications protocol.) In Section3.6 we state
our completeness theorems.

We conclude this Chapter by discussing related work, Section3.7, and presenting our con-
clusions and possible extensions to our framework3.8.

Chapter3 extends [AF06b, AF06a] and is the result of a collaboration with Cédric Four-
net. Part of this work was done while the author was a research intern at Microsoft Research
Cambridge.

1.3.3 An Extension to Quantum Security

In Chapter4 we present an algebra for specifying and reasoning about quantum security proto-
cols. In order to restrict the power of the agents to quantum polynomial-time, we include in the
syntax of our algebra the logarithmic cost quantum random access machine (QRAM).

We start by describing our process algebra, Section4.1. In particular, we introduce our
notion of Quantum Polynomial Machines, its execution model. Then, we introduce it in the
language of out process algebra, and define the semantics for such algebra, as well as the notion
of equivalence of processes.

In Section4.2we present our emulation theorem . This theorem is immediately derived from
the one in [MMS03]. Since quantum computational indistinguishability is a congruence relation,
we have that all the properties defined via emulation are compositional. We then illustrate its
usage in Section4.3by defining the notion of Quantum Zero-Knowledge protocols via emulation.

We conclude this Chapter by discussing related work, Section3.7, and conclusions of our
work 3.8.

Chapter4 extends [AM] and is the result of a collaboration with Paulo Mateus.

1.3.4 Conclusions

Is Chapter5 we revise the contributions of this dissertation. We briefly discuss the contributions
of each chapter and point out future research directions for each of them.

1.3.5 Appendixes

In this work we include three Appendixes. In the first, AppendixA, we present the main cryp-
tographic definitions used throughout this dissertation. We also prove some properties that, in
spite of being used in particular lemmas, are interesting enough to be proven separately.

In AppendixB we consider the problem of key-cycles in the case of asymmetric encryption.
This is similar to the case for symmetric encryption and curiously was obtained prior to the
former [ABHS05]. The results for symmetric encryption presented in Chapter2 are a recast of
these.

In AppendixC we present the proofs of our completeness results of Chapter3.
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1.4 Claim of Contributions

The contributions of this dissertation are divided in three different topics. We would like to stress
those that we think are the main contributions in each topic. As for the relation between formal
and computational cryptography our main contributions are:

• solution to the problem of key-cycles that was for a long conjectured to be a gap between
the two models; we not only solved the problem but also showed that new cryptographic
primitives were needed in order to bridge this apparent gap between the models; as a
consequence of this result, since most of the extensions of the Abadi-Rogaway original
result use it as a “black-box”, we also remove the referred restriction from this extensions;

• showed that cycles of length 1 are sufficient to differ KDM from CCA2. The question
about longer cycles remained an open question until recently [BPS];

• found new relations among different notions of security of encryption schemes, in partic-
ular, how does KDM relates with the standard security notions;

• extension of the applicability of the Abadi-Rogaway result to weaker encryption schemes;
we showed that, for symmetric encryption, and in the presence of passive adversaries,
subtleties of the encryption schemes may be faithfully captured by the formal model;

• we provide a unified framework for both computational and information-theoretic encryp-
tion schemes.

As for the cryptographically sound implementations of communicating processes our main con-
tributions are:

• a simple calculus for secure distributed communication with two forms of authentication,
expressive enough to program a large class of protocols;

• simple reasoning for this language based on labelled transition systems and observational
equivalence;

• concrete implementation for such calculus as a collection of PPT Turing machines that rely
on standard cryptographic algorithms, and traditional distributed implementations mecha-
nisms;

• the first cryptographic soundness and completeness results for a distributed process calcu-
lus.

As for the study of quantum security, our main contributions are:

• process algebra for specifying and reasoning about quantum security protocols;

• introduction a hybrid model, that uses both classic and quantum memory, with complexity
assumptions, that is (polynomial-time) equivalent to a uniform family of quantum circuits;
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• defined the notion of computational indistinguishability for the process algebra and showed
that it was a congruence relation. As a corollary security properties defined via emulation
are compositional.



Chapter 2

Soundness of Formal Encryption

Relating Symbolic and Computational cryptography has attracted the interest of the research
community in the last few decades. Several different directions have been taken to bridge the
gap between the two models: some extend the existing results by including more primitives;
some by adapting existing results from the passive adversary scenario to the active adversary
scenario; some others by including new primitives from computational cryptography.

This chapter is one more effort to bridge the gap between these two communities. Mainly, we
try to bridge two gaps that exist since the early results of Abadi and Rogaway. The first is the non-
existence of soundness results in the presence of key-cycles. Key-cycles do not present a problem
from the symbolic point of view. One may even argue that protocols that create messages with
encryption cycles may be avoided and are just result of bad engineering. But, even if we restrict
our protocols to the cases where no cycles are created, no one can ensure us that an adversary is
not able to create cyclic encryptions and that these would not cause problems. Studying this is
part of the work in this chapter. We show that it is possible to close this gap but for that we need
to use new definitions of security.

The second gap that we try to close is to extend the original Abadi and Rogaway result when
the encryption scheme used provides less security guarantees. The encryption scheme used in
their original result is very strong and arguably impossible to realise in many contexts. We
want then to relax such conditions by allowing the use of weaker encryption schemes but still
achieving similar soundness results. We want for instance, to allow encryption schemes that
reveal the length of the encrypted plaintext. We study this particular example and then create a
uniform framework with which we are able to characterise a large family of encryption schemes.

This chapter is organised as follows: in Section2.1, we start by recalling the original result of
Abadi and Rogaway [AR02]. In Section2.2we address the problem of (symmetric) key-cycles.
In particular we show that type-0 is not strong enough to achieve soundness, and present the
notion of security introduced by Black, Rogaway and Shrimpton [BRS02] that will solve the
problems of key cycles (KDM-Security). In Section2.3 we proceed with the analysis of en-
cryption schemes that reveal partial information. In Section2.4, we consider an implementation
of One-Time Pad and show both soundness and completeness results for such implementation.
Section2.5 is devoted to our general soundness and completeness theorems for logics of formal
encryption. As a corollary of these results, we have the examples of Section2.3. We conclude

15
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this Chapter by referring some related work, Section2.6, and presenting some conclusions and
pointers to future work2.7.

As an extension of Section2.2, we present in AppendixB similar results for the case of
key-cycles in the case of asymmetric encryption.

2.1 The Abadi-Rogaway Soundness Theorem

In this section, we provide the context and background for this chapter. We briefly summarise the
main definitions and results of Abadi and Rogaway’s original work [AR00, AR02]. In particular,
we start presenting the formal model, then describe the computational model, and then introduce
the notion of soundness. Furthermore, we also introduce the notion of completeness, which can
be viewed as the counter-point to soundness.

2.1.1 The Formal Model

In this model, messages (orexpressions) are defined at a very high level of abstraction. The
simplest expressions are symbols for atomic keys and bit-strings. More complex expressions
are created from simpler ones via encryption and concatenation, which are defined as abstract,
‘black-box’ constructors.

Definition 2.1 (Symmetric Expressions).Let Keys = {K1, K2, K3, ...} be an infinite discrete
set of symbols, called the set of symmetric keys. LetBlocks be a finite subset of{0, 1}∗. We
define theset of expressions, Exp, by the grammar:

Exp ::= Keys | Blocks | (Exp, Exp) | {Exp}Keys

Let Enc ::= {Exp}Keys. We will denote byKeys(M) the set of all keys occurring inM . Expres-
sions of the form{M}K are calledencryption terms.

Expressions may represent either a single message sent during an execution of the protocol, or
the entire knowledge available to the adversary. In this second case, the expression contains not
only the messages sent so far, but also any additional knowledge in the adversary’s possession.

We wish to define when two formal expressions are indistinguishable to the adversary. In-
tuitively, this occurs when the only differences between the two messages lie within encryption
terms that the adversary cannot decrypt. In order to rigorously define this notion, we first need
to formalise when an encryption term is ‘undecryptable’ by the adversary, which in turn requires
us to define the set of keys that the adversary can learn from an expression.

An expression might contain keys in the clear. The adversary will learn these keys, and can
then use them to decrypt encryption terms of the expression—which might reveal yet more keys.
By repeating this process, the adversary can learn the set ofrecoverable decryption keys:

Definition 2.2 (Subexpressions, Visible Subexpressions, Recoverable Keys, Undecryptable
Terms, B-Keys). We define theset of subexpressionsof an expressionM , sub (M), as the small-
est subset of expressions containingM such that:
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• (M1,M2) ∈ sub (M) =⇒ M1 ∈ sub (M) andM2 ∈ sub (M), and

• {M ′}K ∈ sub (M) =⇒ M ′ ∈ sub (M).

We say thatN is a subexpression ofM , and denote it byN v M , if N ∈ sub (M).
The set ofvisible subexpressionsof a symmetric expressionM , vis (M), is the smallest

subset of expressions containingM such that:

• (M1,M2) ∈ vis (M) =⇒ M1 ∈ vis (M) andM2 ∈ vis (M), and

• {M ′}K andK ∈ vis (M) =⇒ M ′ ∈ vis (M).

Therecoverable keys ofa (symmetric) expressionM , R-Keys(M), are those that an adversary
can recover by looking at an expression. That is,R-Keys(M) = vis (M) ∩ Keys(M).

We say that an encryption term{M ′}K ∈ vis (M) is undecryptablein M if K /∈ R-Keys(M).
Among the non-recoverable keys of an expressionM , there is an important subset denoted by
B-Keys(M). The setB-Keys(M) contains those keys which encrypt the outermost undecryptable
terms. Formally, for an expressionM , we defineB-Keys(M) as

B-Keys(M) = {K ∈ Keys(M) | {M}K ∈ vis (M) butK 6∈ R-Keys(M)} .

Example 2.1.Let M be the following expression

(({0}K6 , {{K7}K1}K4), ((K2, {({001}K3 , {K6}K5)}K5), {K5}K2)).

In this case,Keys(M) = {K1, K2, K3, K4, K5, K6, K7}. The set of recoverable keys ofM is
R-Keys(M) = {K2, K5, K6}, because an adversary sees the non-encryptedK2, and with that he
can decrypt{K5}K2, hence recoveringK5; then, decrypting twice withK5, K6 can be revealed.
We also have thatB-Keys(M) = {K3, K4}.

The formal model allows expressions to containkey cycles:

Definition 2.3 (Key-Cycles). An expressionM contains akey-cycleif it contains encryption
terms{M1}K1, {M2}K2, . . . ,{Mn}Kn (where{Mi}Ki

denotes the encryption of the messageMi

with the keyKi) andKi+1 v Mi andK1 v Mn. In this case we say that we have a key-cycle of
lengthn.

According to our definition, expressions such as{{M}K}K are not considered cyclic. As
we will see, the original result of Abadi and Rogaway does not apply to expressions with key
cycles—a major weakness that we will correct in this work.

2.1.2 The AR Equivalence of Formal Expressions

A visible encryption term will appear ‘opaque’ to the adversary if and only if it is protected by at
least one non-recoverable decryption key. Thus, we wish to say that two expressions are equiva-
lent if they differ only in the contents of their ‘opaque’ encryption terms. To express this, Abadi
and Rogaway define thepatternof an expression through which equivalence of expressions will
be obtained:
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Definition 2.4 (Pattern (Classical)).We define theset of patterns, Pat, by the grammar:

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | 2

The pattern of an expressionM , denoted bypattern(M), is derived fromM by replacing each
encryption term{M ′}K ∈ vis (M) (whereK /∈ R-Keys(M)) by 2

For two patternsP andQ, P = Q is defined the following way:

• If P ∈ Blocks∪ Keys, thenP = Q iff P andQ are identical.
• If P is of the form2, thenP = Q iff Q is of the form2

• If P is of the form(P1, P2), thenP = Q iff Q is of the form(Q1, Q2) whereP1 = Q1 and
P2 = Q2.

• If P is of the form{P ′}K , thenP = Q iff Q is of the form{Q′}K whereP ′ = Q′.

(Note that we call these ‘classical’ patterns. This is to distinguish them from the more com-
plex patterns that we will consider later.)

One last complication remains before we can define formal equivalence. The first thing
coming to mind is to say that two expressions are equivalent if their patterns are equal. However,
consider two very simple formal expressionsK1 andK2. Then these formal expressions would
not be equivalent. On the other hand, these two expressions have the same meaning: a randomly
drawn key. Despite being given different names, they both represent samples from the same
distribution. It does not matter if we replace one of them with the other. More generally, we wish
to formalise the notion of equivalence in such a way that renaming the keys yields in equivalent
expression. Therefore, two formal expressions should be equivalent if their patterns differ only
in the names of their keys.

Definition 2.5 (Key-Renaming Function). A bijection σ : Keys → Keys is called akey-
renaming function. For any expression (or pattern)M , Mσ denotes the expression (or pattern)
obtained fromM by replacing all occurrences of keysK in M by σ(K).

We are finally able to formalise the symbolic notion of equivalence:

Definition 2.6 (Equivalence of Expressions).We say that two expressionsM andN areequiv-
alent, denoted byM ∼= N , if there exists a key-renaming functionσ such thatpattern(M) =
pattern(Nσ).

2.1.3 The Computational Model

The fundamental objects of the computational world are strings,strings = {0, 1}∗, and families
of probability distributions over strings. These families are indexed by asecurity parameter
η ∈ parameters = N (which can be roughly understood as key-lengths). Two distribution
families {Dη}η∈N and {D′

η}η∈N are indistinguishableif no efficient algorithm can determine
from which distribution a value was sampled:

Definition 2.7 (Negligible Function). A function f : N → R is said to benegligible, written
f(n) ≤ neg (n), if for any c > 0 there is annc ∈ N such thatf(n) ≤ n−c whenevern ≥ nc.
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Definition 2.8 (Indistinguishability). Two families{Dη}η∈N and{D′
η}η∈N, are indistinguish-

able, writtenDη ≈ D′
η, if for all PPT adversariesA,

∣∣Pr [d ←− Dη; A(1η, d) = 1]− Pr
[
d ←− D′

η; A(1η, d) = 1
]∣∣ ≤ neg (η)

In this model, pairing is an injectivepairing function [·, ·] : strings × strings → strings
such that the length of the result only depends on the length of the paired strings. An encryption
scheme is a triple of algorithms(K, E ,D) with key generationK, encryptionE and decryption
D. Let plaintexts, ciphertexts, andkeys be nonempty subsets ofstrings. The setcoins is
some probability field that stands for coin-tossing,i.e., randomness.

Definition 2.9 (Symmetric Encryption Scheme).A computational symmetric encryption scheme
is a tripleΠ = (K, E ,D) where

• K : parameters× coins → keys is a key-generation algorithm;

• E : keys× strings× coins → ciphertexts is an encryption function;

• D : keys× strings → plaintexts is such that for allk ∈ keys andω ∈ coins,

D(k, E(k, m, ω)) = m for all m ∈ plaintexts,
D(k, E(k, m′, ω)) =⊥ for all m′ 6∈ plaintexts.

All of K, E andD are computable in polynomial-time in the length of the security parameter.
This definition, note, does not include any notion of security, and this must be defined sep-

arately. In fact, there are several different such definitions. Abadi and Rogaway, in their work,
consider a spectrum of notions of their own devising, from ‘type-0’ to ‘type-7.’ Their main result
uses the strongest of these notions, type-0:

Definition 2.10 (Type-0 Security). We say that a computational encryption scheme is type-
0 secure if no probabilistic polynomial-time adversaryA can distinguish the pair of oracles
(E(k, ·), E(k′, ·)) from the pair of oracles(E(k, 0), E(k, 0)) ask andk′ are randomly generated.
That is, for any probabilistic polynomial-time algorithm,A,

Pr
[
k, k′ ←− K(1η) : AE(k,·),E(k′,·)(1η) = 1

]
−Pr

[
k ←− K(1η) : AE(k,0),E(k,0)(1η) = 1

] ≤ neg (η)

Intuitively the above formula says the following: The adversary is given one of two pairs of
oracles, either(E(k, ·), E(k′, ·)) or (E(k, 0), E(k, 0)) (where the keys were randomly generated
prior to handing the pair to the adversary), but it does not know which. Then, the adversary
can perform any (probabilistic polynomial-time) computation, including several queries to the
oracles. It can even query the oracles with messages that depend on previously given answers
of the oracles. (The keys used by the oracles for encryption do not change while the adversary
queries the oracles.) After this game, the adversary has to decide with which pair of oracles
it was interacting. The adversary wins the game if he can decide for the correct one with a
probability bigger than1

2
, or (equivalently) if it can distinguish between the two. If this difference

is negligible, as a function ofη, we say the encryption scheme is type-0 secure.
As Abadi and Rogaway show, type-0 security is strong enough to providesoundnessto the

formal model. But to see this, we must first explain how the two models can be related.
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2.1.4 The Interpretation Function, Soundness and Completeness

In order to prove any relationship between the formal and computational worlds, we need to
define theinterpretationof expressions and patterns. Once an encryption scheme is picked, we
can define the interpretation functionΦ, which assigns to each expression or patternM a family
of random variables{Φη(M)}η∈N such that eachΦη(M) takes values instrings. As in Abadi
and Rogaway [AR02], this interpretation is defined in an algorithmic way. Intuitively,

• Blocks are interpreted asstrings,
• Each key is interpreted by running the key generation algorithm,
• Pairs are translated into computational pairs,
• Formal encryptions terms are interpreted by running the encryption algorithm on the inter-

pretation of the plaintext and the interpretation of the key

For an expressionM , we will denote by[[M ]]Φη the distribution ofΦη(M) and by[[M ]]Φ the
ensemble of{[[M ]]Φη}η∈N.

Then soundness and completeness are defined in the following way:

Definition 2.11 (Soundness (Classical)).We say that an interpretation issound in the classical
sense, or that an encryption schemeprovides classical soundness, if the interpretationΦ (result-
ing from the encryption scheme) is such that for any given pairs of expressionsM andN

M ∼= N ⇒ [[M ]]Φ ≈ [[N ]]Φ.

The primary result of Abadi and Rogaway given in [AR02] is that type-0 security provides
classical soundness if the expressionsM andN have no key-cycles.

Soundness has a counterpart, completeness. One can consider soundness to be the property
that formal indistinguishability always becomes computational indistinguishability. One can
think of completeness as the converse: computational indistinguishability is always the result
of formal indistinguishability:

Definition 2.12 (Completeness (Classical)).We say that an interpretation iscomplete(in the
classical sense), or that an encryption schemeprovides (classical) completeness, if the interpre-
tationΦ (resulting from the encryption scheme) is such that

[[M ]]Φ ≈ [[N ]]Φ ⇒ M ∼= N

for any expressionsM andN .

We remark that for the proofs of the soundness and completeness results, it was convenient
for Abadi and Rogaway to introduce the interpretation of any patternM (although this is not
absolutely necessary). Therefore, boxes are interpreted as well, such that

• 2 is interpreted by running the encryption algorithm on the fixed plaintext0 and a ran-
domly generated key.

The precise definition ofΦη(M) for any patternM is given by the algorithms in Figure2.1. We
note that these algorithms are fully defined for patterns, and because the grammar for patterns
contains the grammar for expressions as a sub-grammar, they are fully defined for expressions as
well.
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algorithm INITIALIZE(1η,M)
for K ∈ Keys(M) do τ(K) ←− K(1η)
let k0 ←− K(1η)

algorithm CONVERT(M)
if M = K whereK ∈ Keys then

return τ(K)
if M = B whereB ∈ Blocks then

return B
if M = (M1,M2) then

x ←− CONVERT(M1)
y ←− CONVERT(M2)
return [x, y]

if M = {M1}K then
x ←− CONVERT(M1)
y ←− E(τ(K), x)
return y

if M = 2, then
y ←− E(k0, 0)
return y

Figure 2.1:Algorithmic components of the interpretation function

2.2 Soundness in the Presence of Key-Cycles

As we will see later, key-cycles do not cause a problem with completeness, however, as we
discussed in the introduction, one of the weaknesses of the original Abadi-Rogaway’s result
is that it is not possible to prove soundness for expressions that included key-cycles. We will
address this problem in this section starting by showing that, soundness in the presence of key-
cycles is not possible to prove with the security notion adopted by Abadi and Rogaway. We
suggest a new notion of security, KDM-security as a solution for the problem. In order to prove
soundness, we will also need to extend our formal model, and after that we conclude this section
showing that with this new definition of security it is possible to obtain soundness even in the
presence of key-cycles.

2.2.1 Type-0 Security is Not Enough

In this section we show that type-0 security is not strong enough to ensure soundness in the case
of key-cycles. That is, we demonstrate that it is possible to construct encryption schemes that are
type-0, but fail to provide soundness in the presence of key-cycles.

Theorem 2.1. Type-0 security does not imply soundness. That is, if there exists an encryption
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scheme that is type-0 secure, then there exists another encryption scheme which is also type-0
secure but does not provide soundness.

Proof. This is shown via a simple counter-example. Assuming that there exists a type-0 se-
cure encryption scheme, we will use it to construct another scheme which is also type-0 secure.
However, we will show that this new scheme allows the adversary to distinguish one particular
expressionM from another particular expressionN , even thoughM ∼= N .

Let M be{K}K and letN be the expression{K1}K2. Since these two expressions are equiv-
alent, an encryption scheme that enforces soundness requires that the family of distributions:

{k ←− K(1η); c ←− E(k, k) : c}η∈N

be indistinguishable from the family of distributions:

{k1 ←− K(1η); k2 ←− K(1η); c ←− E(k1, k2) : c}η∈N.

However, this is not implied by Definition2.10. LetΠ = (K, E ,D) be a type-0 secure encryption
scheme. We assume thatΠ is such that keys and ciphertexts have different formats. Then, using
Π, we construct a second type-0 secure encryption schemeΠ′ = (K′, E ′,D′) as follows:

• LetK′ = K,

• Let E ′ be the following algorithm:

E ′(k, m) =





k if m = k
E(k, k) if E(k, m) = k
E(k, m) otherwise

• LetD′ be the following algorithm:

D′(k, c) =





k if c = k
D(k, k) if c = E(k, k)
D(k, c) otherwise

The schemeΠ′ acts exactly likeΠ unless the encryption algorithmE ′ is called on a pair(k, k). It
is easy to see that this scheme is also type-0 secure.

To see this, suppose thatΠ′ is not type-0 secure. That is, there exists some adversaryA
which can distinguish the pair of oracles(E ′(k, ·), E ′(k′, ·)) from the pair(E ′(k, 0), E ′(k, 0)).
There are two possibilities. Suppose that the adversary queried the oracle onk or k′. Then it
would certainly be able to distinguish the oracle-pairs, but this also means that the adversary can
produce the secret symmetric key to the schemeΠ. Thus, the encryption schemeΠ cannot be
secure in any sense, much less type-0. Suppose, on the other hand, the adversary did not query
the oracles onk or k′ but managed to distinguish between the oracle pairs anyway. Then it was
able to do so even though the encryption schemeΠ′ acted exactly likeΠ, and soΠ cannot be
type-0 secure.
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Thus, the new schemeΠ′ must also be type-0 secure. However, it does not guarantee in-
distinguishability for the two distributions above. The first distribution will output always the
encryption key while the second outputs a ciphertext, and these two distributions are easily dis-
tinguished by form alone.

Remark 1. We note that in the proof, the expressionM contains a key-cycle of length 1. What
if all key-cycles are of length 2 or more? This question remains open. That is, there is no known
type-0 secure encryption scheme which fails to provide soundness for key-cycles that are of
length two or more.

Because type-0 encryption implies types 1 through 7, Theorem2.1 implies that soundness
with key-cycles cannot be provided by the security definitions devised by Abadi and Rogaway.
In the next section, we show that this soundness property can, however, be met withnewcompu-
tational definitions.

2.2.2 KDM-Security

In the last section, we showed that the notions of security found in [AR00, AR02] are not strong
enough to enforce soundness in the presence of key-cycles. However,key-dependent message
(KDM) security, which was introduced by Blacket al. [BRS02] (and in a weaker form by
Camenisch and Lysyanskaya [CL01]), is strong enough to enforce soundness even in this case.
(We note that Camenisch and Lysyanskaya also provided a natural application of KDM security,
a credential system with interesting revocation properties, and so KDM security is of independent
interest as well.)

KDM security both strengthens and weakens type-0 security. Recall that type-0 security
allows the adversary to submit messages to an oracle which does one of two things:

• It could encrypt the message twice, under two different keys, or

• It could encrypt the bit 0 twice, under the same key.

An encryption scheme is type-0 secure if no adversary can tell which of these is being done. For
KDM security, however, the game is slightly different. To over-simplify:

• The oracle in the KDM-security encrypts once, under only one key.

• Further, it encrypts either the message, or astringof 0’s of equivalent length.

• However, it is willing to encrypt not just messages from the adversary, but also (more
generally)functions of the secret key.

The first two of these differences make KDM security weaker than type-0 security. Specifically
type-0 security conceals both the length of the plaintext and whether two ciphertext were created
using the same encryption key or different ones. KDM security does not necessarily conceal
either of these things. The last difference, however, is a significant strengthening. As its name
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suggests, KDM security remains strong even when the messages depend on the secret key—
which, as Theorem2.1shows, is not necessarily true for type-0 security.

To provide the full picture, KDM security is defined in terms ofvectorsof keys and functions
over these vectors. It is also defined in terms of oraclesRealk̄ andFakek̄ , which work as follows:

• Suppose that for a fixed security parameterη ∈ N, a vector of keys is given:̄k = {ki ←−
K(1η)}i∈N. (In each run of the key-generation algorithm independent coins are used.) The
adversary can now query the oracles providing them with a pair(j, g), wherej ∈ N and
g : keys∞ → {0, 1}∗ is a constant length, deterministic function:

– The oracleRealk̄ when receiving this input returnsc ←− E(kj, g(k̄));

– The oracleFakek̄ when receiving this same input returnsc ←− E(kj, 0
|g(k̄)|).

The challenge facing the adversary is to decide whether it has interacted with oracleRealk̄ or
oracleFakek̄ . Formally:

Definition 2.13 (Symmetric-KDM Security). Let Π = (K, E ,D) be a symmetric encryption
scheme. Let the two oraclesRealk̄ andFakek̄ be as defined above. We say that the encryption
scheme is(symmetric) KDM-secureif for all PPT adversariesA:

Pr
[
k̄ ←− K(1η) : ARealk̄(1η) = 1

]− Pr
[
k̄ ←− K(1η) : AFakek̄(1η) = 1

] ≤ neg (η)

Remark 2. We note that although all known implementations of KDM-security are in the random-
oracle model, this definition is well-founded even in the standard model. We also note that this
definition is phrased in terms of indistinguishability. One could also imagine analogous defini-
tions phrased in terms of non-malleability, but an exploration of those are beyond the scope of
this dissertation.

We note that KDM-security implies type-3 security:

Definition 2.14 (Type-3 Security).Let Π = (K, E ,D) be a symmetric encryption scheme. We
say that the encryption-scheme istype-3 secureif no PPT adversaryA can distinguish the oracles
E(k, ·) andE(k, 0|·|) ask is randomly generated, that is, for all PPT adversariesA:

Pr
[
k ←− K(1η) : AE(k,·)(1η) = 1

]− Pr
[
k ←− K(1η) : AE(k,0|·|)(1η) = 1

]
≤ neg (η)

In fact, the definition of type-3 encryption is exactly the same as that for KDM-security,
except that the adversary must submit concrete messages to the encryption oracle instead of
functions. But since the functions submitted in KDM security can be constant function that
always produce a single output, the type-3 security ‘game’ is a special case of that for KDM
security.

On the other hand, KDM security does not attempt to conceal the length of the plaintext
(type-1 security) or that two ciphertexts were created with the same key (type-2 security). It will
be impossible, therefore, for KDM security to provide soundness in the classical sense (Defini-
tion 2.11). Nonetheless, a weaker form of soundness can be achieved if the formal model is also
weakened slightly.
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2.2.3 A New Formal Model

In this section, we develop a weaker version of the formal model—one that allows formal en-
cryption to leak partial information about the plaintext and key. One can think of this as a preview
or special case of a later section, where we discuss such weakening in general (Section2.5). In
this section, however, we focus on the partial leakage allowed (in the computational model) by
KDM security: the length of the plaintext, and whether two different ciphertexts were created
using the same key.

To model the leakage of plaintext length, we first need to add the very concept of ‘length’ to
the formal model:

Definition 2.15 (Formal Length). A formal length-function is a function symbol with fresh
letter` satisfying at least the following identities:

• For all blocksB1 andB2, `(B1) = `(B2) iff |B1| = |B2|,
• For all expressionM and key-renaming functionσ, `(M) = `(Mσ),
• If `(M1) = `(N1), `(M2) = `(N2) then`((M1,M2)) = `((N1, N2)), and
• If `(M) = `(N), then for allKi, `({M}Ki

) = `({N}Ki
).

We would like to emphasise that these are the identities that a formal length functionmini-
mally has to satisfy. There may be more. In fact, if we only assume these properties, there is no
hope to obtain completeness. We also remark, that it follows that for any key-renaming function
σ, and expressionM , `(M) = `(Mσ).

Given this, it is straightforward to add the required leakage to the formal model. If patterns
represents those aspects of an expression that can be learned by the adversary, then patterns must
now reveal the plaintext-length and key-names for undecryptable terms:

Definition 2.16 (Pattern (Type-3)).We define theset of patterns, Pat, by the grammar:

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | 2Keys,`(Exp)

The type-3 pattern of an expressionM , denoted bypattern3(M), is derived fromM by replacing
each encryption term{M ′}K ∈ vis (M) (whereK /∈ R-Keys(M)) by 2K,`(M ′).

Note that the only difference between a type-3 pattern and a classical pattern is that an unde-
cryptable term{M}K becomes2K,`(M) (i.e. labelled with the key and length) in type-3 patterns
instead of merely2 in classical patterns.

Our notion of formal equality must be updated as well. For two patternsP andQ, P ∼=3 Q
is defined the following way:

Definition 2.17 (Formal Equivalence (Type-3)).We first introduce the relation=3 between
patterns:

• If P ∈ Blocks∪ Keys, thenP =3 Q iff P andQ are identical.
• If P is of the form2K,`(M ′), thenP =3 Q iff Q is of the form2K,`(N ′), and`(M ′) = `(N ′)

in the sense of Definition2.15.
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• If P is of the form(P1, P2), thenP =3 Q iff Q is of the form(Q1, Q2) whereP1 =3 Q1

andP2 =3 Q2.
• If P is of the form{P ′}K , thenP =3 Q iff Q is of the form{Q′}K whereP ′ =3 Q′.

With this, we say that expressionsM andN areequivalent in the type-3 sense(writtenM ∼=3 N )
if there exists a key-renaming functionσ such thatpattern3(M) =3 pattern3(Nσ). (Since a key-
renaming function replaces all occurrences ofK with σ(K), we note that underσ, 2K,`(M) will
become2σ(K),`(Mσ).)

Lastly, the above change to formal equivalence requires that the notions of soundness and
completeness be similarly altered:

Definition 2.18 (Soundness (Type-3)).We say that an interpretation istype-3 sound, or that an
encryption schemeprovides soundness in the type-3 sense, if the interpretationΦ (resulting from
the encryption scheme) is such that

M ∼=3 N ⇒ [[M ]]Φ ≈ [[N ]]Φ.

for any pair of expressionsM andN .

Definition 2.19 (Completeness (Type-3)).We say that an interpretation istype-3 complete, or
that an encryption schemeprovides completeness in the type-3 sense, if the interpretationΦ
(resulting from the encryption scheme) is such that for any pair of expressionsM andN ,

[[M ]]Φ ≈ [[N ]]Φ ⇒ M ∼=3 N.

2.2.4 Soundness for Key-Cycles

Below, we present our two main soundness results: if an encryption scheme is KDM secure, it
also provides type-3 soundness even in the presence of key-cycles.

Theorem 2.2 (Symmetric KDM Security Implies Soundness).Let Π = (K, E ,D) be a com-
putational symmetric encryption scheme such that|E(k, m,w)| = |E(k, m, w′)| for all k ∈
keys,m ∈ plaintexts and w, w′ ∈ coins. Then, if the length-functioǹ satisfies only the
equalities listed in Definition2.15, andΠ is KDM-secure, thenΠ provides type-3 soundness.

Proof. We first redefine the interpretation of patterns. The only thing we have to change is
the interpretation of a box. Now, the interpretation of a pattern2K,`(M) for a given security
parameterη is given byΦη({0|Φη(M)|}K). That is, the interpretation function used to encrypt a
single 0 under a random key. Now, it encrypts a string of 0s of the same requisite length (length
of Φη(M)), and it encrypts them under the correct keyτ(K).

The proof in this case is a somewhat reduced hybrid argument. In a standard hybrid argument,
like the one Abadi and Rogaway used to prove their soundness result, several patterns are put
betweenM andN ; then, using security, it is proven that soundness holds between each two
consecutive patterns, and therefore soundness holds forM andN . In our case, we first directly
prove that[[M ]]Φ is indistinguishable from[[pattern3(M)]]Φ. Then, since that holds forN too,
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and sincepattern3(M) differs from pattern3(N) only in the name of keys,[[pattern3(M)]]Φ is
indistinguishable from[[pattern3(N)]]Φ, therefore the result follows. KDM security is used when
we show that[[M ]]Φ and[[pattern3(M)]]Φ are indistinguishable.

For an arbitrary (formal) keyK, let ι(K) denote the index ofK. For an expressionM , a set
of formal (unrecoverable) keysS, and a functionτ : Keys \ S → keys, we define a function
fM,S,τ : coinse(M) × keys∞ → strings (wheree(M) is the number of encryptions inM )
inductively in the following way:

• ForM = B ∈ Blocks, let fB,S,τ : keys∞ → strings be defined asfB,S,τ (k̄) = B;

• ForM = K ∈ Keys∩ S, let fK,S,τ : keys∞ → strings be defined asfK,S,τ (k̄) = kι(K);

• ForM = K ∈ Keys∩ S, let fK,S,τ : keys∞ → strings be defined asfK,S,τ (k̄) = τ(K);

• For M = (M1,M2), let f(M1,M2),S,τ : coinse(M1) × coinse(M2) × keys∞ → strings be
defined asf(M1,M2),S,τ (ωM1 , ωM2 , k̄) = [fM1,S,τ (ωM1 , k̄), fM2,S,τ (ωM2 , k̄)];

• For M = {N}K andK ∈ S, let f{N}K ,S,τ : coins × coinse(N) × keys∞ → strings be
defined asf{N}K ,S,τ (ω, ωN , k̄) = E(kι(K), fN,S,τ (ωN , k̄), ω);

• For M = {N}K andK 6∈ S, let f{N}K ,S,τ : coins × coinse(N) × keys∞ → strings be
defined asf{N}K ,S,τ (ω, ωN , k̄) = E(τ(K), fN,S,τ (ωN , k̄), ω).

We note that this function is constant length because the keys are constant-length (for the
sameη) and the length of an encryption only depends on the length of the message andη.

We first prove that[[M ]]Φ ≈ [[pattern3(M)]]Φ. Suppose that[[M ]]Φ 6≈ [[pattern3(M)]]Φ. This
means that there is an adversaryA that distinguishes the two distributions, that is

Pr(x ←− [[M ]]Φη : A(1η, x) = 1)− Pr(x ←− [[pattern3(M)]]Φη : A(1η, x) = 1)

is a non-negligible function ofη. We will show that this contradicts the fact that the system is
(symmetric) KDM-secure. To this end, we construct an adversary that can distinguish between
the oraclesRealk̄ andFakek̄ . From now on, letS = Keys\R-Keys(M). Consider the following
algorithm:

algorithm BF(1η,M)
for K ∈ R-Keys(M) do τ(K) ←− K(1η)
y ←− CONVERT2(M, M)
b ←− A(1η, y)
return b

algorithm CONVERT2(M ′,M) with M ′ v M
if M ′ = K whereK ∈ R-Keys(M) then

return τ(K)
if M = B whereB ∈ Blocks then

return B
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if M ′ = (M1,M2) then
x ←− CONVERT2(M1,M)
y ←− CONVERT2(M2,M)
return [x, y]

if M ′ = {M1}K with K ∈ R-Keys(M) then
x ←− CONVERT2(M1,M)
y ←− E(τ(K), x)
return y

if M ′ = {M1}K with K /∈ R-Keys(M) then
ω ←− coinse(M1)

y ←− F(ι(K), fM1,S,τ (ω, .))
return y

This algorithm applies the distinguisherA(1η, ·) on the distribution[[M ]]Φ whenF is Realk̄ ,
and the distribution of[[pattern3(M)]]Φ whenF is Fakek̄ . So, if A(1η, ·) can distinguish[[M ]]Φ
and [[pattern3(M)]]Φ, thenBF(1η, ·) can distinguishRealk̄ and Fakek̄ . But we assumed that
Realk̄ andFakek̄ cannot be distinguished, so[[M ]]Φ ≈ [[pattern3(M)]]Φ.

In a similar manner, we can show that[[N ]]Φ ≈ [[pattern3(N)]]Φ. Finally, it is easy to see
that [[pattern3(M)]]Φ = [[pattern3(N)]]Φ, because the two patterns differ only by key-renaming.
Hence[[M ]]Φ ≈ [[N ]]Φ.

We conclude our consideration of KDM security by demonstrating what Blacket al. claimed
informally: the notion of KDM security is ‘orthogonal’ to the previous definitions of security.
In particular, we claim that KDM security neither implies nor is implied by type-0 security. The
former is proved directly, Theorem2.4, while the latter is a corollary of previous theorems:

Corollary 2.3. Type-0 security does not imply (symmetric) KDM-security. If there exists an
encryption scheme that is type-0 secure, there exists an encryption scheme which is also type-0
secure but not KDM-secure.

Proof. Suppose that there exists a type-0 secure encryption scheme. By Theorem2.1 there is a
type-0 secure schemeΠ such thatΠ does not satisfy soundness. If all type-0 encryptions schemes
are KDM-secure, thenΠ is as well. By Theorem2.2, this means thatΠ satisfies soundness—a
contradiction.

Theorem 2.4. KDM security does not imply type-0 security. That is, there is an encryption
scheme that is KDM-secure, but not type-0 secure.

Proof. This is easily seen by inspecting the KDM-secure encryption scheme given by Blacket
al. in the random oracle model [BRS02]. Let RO be the random oracle, which implements a
random function from{0, 1}∗ to {0, 1}∞. Let Pad ⊕ M andM ⊕ Pad (whereM ∈ {0, 1}∗
andPad ∈ {0, 1}∞) be the bit-wise exclusive-or ofM and the first|M | bits ofPad . (Note that
|Pad ⊕M | = |M | exactly.) Letη be the security parameter. Then:

• K produces a random bit-stringK ←− {0, 1}η.



2.3. Partial Leakage of Information 29

• The encryption algorithmE , on input(K,M), selects a random bit-stringr ←− {0, 1}η

and returns the pair(r,M ⊕ RO(r||K)).

• D, on input(K,C = (c1, c2)), returnsc2 ⊕ RO (c1||K).

This scheme is not type-0 secure because ciphertexts reveal the length of the plaintext. In par-
ticular, if c is a ciphertext for plaintextm, then|c| = |m| + η. Thus, one can easily distinguish
between an oracle that encrypts the input messagem and an oracle that always encrypts the 1-bit
string0.

2.3 Partial Leakage of Information

In the previous section, we were forced by the definition of KDM security to consider encryption
schemes that (possibly) revealed partial information about the plaintext (in particular its length)
or the key (such as whether two ciphertexts were made using the same one). For the rest of this
discussion, we leave behind the issue of key-cycles and concentrate our attention upon the issues
of such partial leakage. In particular, we will eventually (Section2.5) consider fully general
notions of partial leakage. To motive these results, we first present soundness and completeness
theorems for two specific examples. However, we do not prove them here, because they follow
from the general treatment in Section2.5, where we will return to these examples. In this section,
we will separate the leakage of plaintext-length (type-1 encryption) from the leakage of key-
sharing (type-2 encryption) and consider each separately. (We will also consider information-
theoretic encryption schemes, but these we delay until Section2.4.) In particular, we will show
in this section that soundness can survive such leakage in the computational model if the formal
model is appropriately weakened to match.

2.3.1 Soundness and Completeness for Type-1 Schemes

We start this discussion by considering the case of ‘type-1’ encryption schemes: encryption
schemes which may reveal plaintext-length, but which conceals whether or not two ciphertexts
were created using the same key. (In the terminology of Abadi and Rogaway, type-1 encryption
is message-concealing and which-key concealing, but may be length-revealing.) An equivalent
way to express this security definition is that no adversary should be able to tell whether two
ciphertexts were created using the same key or different (independent) keys, even if the adversary
is allowed to choose the plaintexts, so long as those plaintexts have the same length:

Definition 2.20 (Type-1 Security).Let Π = (K, E ,D) be a symmetric encryption scheme. We
say that the encryption-scheme istype-1 secureif no PPT adversaryA can distinguish the pair of
oracles(E(k, ·), E(k′, ·)) and(E(k, 0|·|), E(k, 0|·|)) ask andk′ are independently generated, that
is, for all PPT adversariesA:

Pr
[
k, k′ ←− K(1η) : AE(k,·),E(k′,·)(1η) = 1

]
−

Pr
[
k ←− K(1η) : AE(k,0|·|),E(k,0|·|)(1η) = 1

]
≤ neg (η)
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Type-1 security does not provide soundness for the logic of Definition2.1. For example, one
can see immediately that{0}K1

∼= {00}K1, but [[{0}K1 ]]Φ 6≈ [[{00}K1 ]]Φ if the encryption scheme
reveals the length of the plaintext.

To show soundness or completeness, patterns must reflect those aspects of an expression that
an adversary can and cannot see. The idea is similar to the one in Definition2.16, but now
“boxes” are indexed with the only properties leaked by type-1 encryption: the formal length of
the plaintext. (Note, however, that the notions of visible-subexpressions, recoverable keys and
formal length remain unchanged.)

Definition 2.21 (Pattern (Type-1)).We define theset of patterns, Pat, by the grammar:

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | 2`(Exp)

The type-1 pattern of an expressionM , denoted bypattern1(M), is derived fromM by replacing
each term{M ′}K ∈ vis (M) (whereK /∈ R-Keys(M)) by 2`(M ′).

We say that two expressionsM andN are type-1 equivalent, and denote it byM ∼=1 N ,
if there exists a key-renaming functionσ such thatpattern1(M) =1 pattern1(Nσ) where=1 is
defined in the following way:1

• If P ∈ Blocks∪ Keys, thenP =1 Q iff P andQ are identical.
• If P is of the form2`(M ′), thenP =1 Q iff Q is of the form2`(N ′), and`(M ′) = `(N ′) in

the sense of Definition2.15.
• If P is of the form(P1, P2), thenP =1 Q iff Q is of the form(Q1, Q2) whereP1 =1 Q1

andP2 =1 Q2.
• If P is of the form{P ′}K , thenP =1 Q iff Q is of the form{Q′}K whereP ′ =1 Q′.

Again, the symbol2`(M ′) in a pattern reveals that some plaintext is encrypted and its length
is `(M ′).

Example 2.2.Let N be the expression

(({0}K8 , {100}K1), ((K7, {({101}K9 , {K8}K5)}K5), {K5}K7)).

We have thatR-Keys(N) = {K5, K7, K8}, and so, in this case,pattern1(N) is

(({0}K8 ,2`(100)), ((K7, {(2`(101), {K8}K5)}K5), {K5}K7)).

DefiningM as in Example2.1, pattern1(M) is

(({0}K6 ,2`({K7}K1
)), ((K2, {(2`(001), {K6}K5)}K5), {K5}K2)).

Now, if we replaceK6 → K8, K2 → K7 andK5 → K5 in M , we have thatM ∼=1 N iff
`(100) = `({K7}K1).

1This notion is well-defined, since renaming a key inside an expressionM does not affect̀(M), as we defined
`(Ki) = `(Kj) for all i, j.
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With these definitions, the following soundness and completeness theorems can be proved.
Since these theorems are simply special cases of the general soundness and completeness theo-
rems in Section2.5, the proofs are deferred until later (Examples2.12and2.22).

Theorem 2.5 (Type-1 Soundness).LetΠ be a type-1 secure encryption scheme such that for all
k ∈ keys,m ∈ plaintexts andw,w′ ∈ coins we have|E(k, m, w)| = |E(k, m, w′)|. Then, if
the length-function satisfies only the equalities defined in Definition2.15, then for anyM andN
expressions such that B-Keys(M) and B-Keys(N) are not cyclic inM andN respectively,

M ∼=1 N implies[[M ]]Φ ≈ [[N ]]Φ.

Otherwise, for arbitrary length-functioǹ (that is, one satisfying possible more equations),
if for all pairs of expressionsM andN , `(M) = `(N) implies that the binary length of[[M ]]Φη

is the same as the binary length of[[N ]]Φη for each security parameterη, then for anyM andN
expressions,

M ∼=1 N implies[[M ]]Φ ≈ [[N ]]Φ.

In addition to soundness, we also demonstrate completeness. If soundness shows that formal in-
distinguishability implies computational indistinguishability, completeness shows the converse.
Rephrased, completeness implies that formaldistinguishability(as opposed toindistinguishability)
implies computational distinguishability. For this to be true, the interpretation function must en-
force a handful of ‘atomic’ distinguishability properties:

Theorem 2.6 (Type-1 Completeness).Let Π be a type-1 secure encryption scheme such that
|E(k, m,w)| = |E(k, m, w′)| for all k ∈ keys, m ∈ plaintexts andw, w′ ∈ coins. We have
that,

[[M ]]Φ ≈ [[N ]]Φ impliesM ∼=1 N

for all M and N pairs of expressions if and only if the following conditions hold: for any
K, K ′, K ′′ ∈ Keys, B ∈ Blocks, M,M ′, N ∈ Exp,

(i) no pair of [[K]]Φ, [[B]]Φ, [[(M, N)]]Φ, [[{M ′}K′ ]]Φ are equivalent with respect to≈,

(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, thenK ′ = K ′′, and

(iii) if [[{M}K ]]Φ ≈ [[{M ′}K′ ]]Φ then`(M) = `(M ′).

Some aspects of this theorem merit further discussion. First, note that the theorem does
not mention key-cycles. Secondly, note that Condition (i) requires that different types of ob-
jects, blocks, keys, pairs and encryption terms should be distinguishable to achieve complete-
ness; this can be ensured by tagging each object with its type, as suggested in [AR02]. Thirdly,
Condition (ii) (which we callweak confusion-freeness) is equivalent to the property of weak
key-authenticity introduced by Horvitz and Gligor [HG03] in the case of type-0 schemes. This
property essentially means that decrypting with the wrong key should be detectable in a proba-
bilistic sense. Finally, condition (iii) requires that encryption of messages with different length
should be detectable. Definition2.20 allows that encryptions of messages of different length
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may be detected but does not enforce it. That suffices for soundness, but completeness requires
that it should be detectable when ciphertexts contain messages of different lengths. A purely
computational condition that implies condition (iii) is the notion ofstrictly length revealing:

Definition 2.22 (Strictly Length Revealing Scheme).Let Π = (K, E ,D) be a symmetric en-
cryption scheme. We say that the encryption-scheme isstrictly length revealingif it is type-1
secure but there exists a PPT adversaryA such that the following function is a non-negligible
function ofη:

Pr
[
k ←− K(1η) : AE(k,·)(1η) = 1

]− Pr
[
k ←− K(1η) : AE(k,06=|·|)(1η) = 1

]

We use06=|·| to denote0n, wheren 6= | · |.

2.3.2 Soundness and Completeness for Type-2 Schemes

Having considered the leakage of plaintext-length in the previous section, we turn to the other to
the kinds of leakage seen in KDM-security: whether or not two ciphertext share a key. However,
we now assume that the plaintext conceals the plaintext-length. (‘Type-2’ in the terminology of
Abadi and Rogaway, as well as message-concealing, length-concealing, and which-key reveal-
ing.) For this type of encryption, no adversary should be able to tell whether a ciphertext contains
a (possibly long) plaintext or the single-bit plaintext 0:

Definition 2.23 (Type-2 Security).Let Π = (K, E ,D) be a symmetric encryption scheme. We
say that the encryption-scheme istype-2 secureif no PPT adversaryA can distinguish the oracles
E(k, ·) andE(k, 0) ask is randomly generated, that is, for all PPT adversariesA:

Pr
[
k ←− K(1η) : AE(k,·)(1η) = 1

]− Pr
[
k ←− K(1η) : AE(k,0)(1η) = 1

] ≤ neg (η)

Again, patterns must be re-defined to reflect all the information about an expression which
may be available to the adversary, but only that information:

Definition 2.24 (Pattern (Type-2)).We define theset of patterns, Pat, by the grammar:

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | 2Keys

The type-2 pattern of an expressionM , denoted bypattern2(M), is derived fromM by replacing
each term{M ′}K ∈ vis (M) (whereK /∈ R-Keys(M)) by 2K .

We say that two expressionsM andN are type-2 equivalent, and denote it byM ∼=2 N ,
if there exists a key-renaming functionσ such thatpattern2(M) =2 pattern2(Nσ) where=2 is
defined in the following way:2

• If P ∈ Blocks∪ Keys, thenP =2 Q iff P andQ are identical.
• If P is of the form2K , thenP =2 Q iff Q is also of the form2K .

2The key-renaming functionσ affects all the occurrences of a keyK, including those occurrences as indexes of
2.
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• If P is of the form(P1, P2), thenP =2 Q iff Q is of the form(Q1, Q2) whereP1 =2 Q1

andP2 =2 Q2.
• If P is of the form{P ′}K , thenP =2 Q iff Q is of the form{Q′}K whereP ′ =2 Q′.

Example 2.3.Let N be the same expression as in Example2.2,

(({0}K8 , {100}K1), ((K7, {({101}K9 , {K8}K5)}K5), {K5}K7)).

We have thatR-Keys(N) = {K5, K7, K8}, and so, in this case,pattern2(N) is

(({0}K8 ,2K1), ((K7, {(2K9 , {K8}K5)}K5), {K5}K7)).

DefiningM as in Example2.1, pattern2(M) is

(({0}K6 ,2K4), ((K2, {(2K3 , {K6}K5)}K5), {K5}K2)).

Now, if we replaceK6 → K8, K4 → K1, K2 → K7, K3 → K9 andK5 → K5 in M , we have
thatM ∼=2 N .

With these definitions, the following soundness and completeness theorems can be proved.
Again, since these theorems are special cases of our general soundness and completeness theo-
rems in Section2.5, the proofs are deferred until later (Examples2.13and2.22).

Theorem 2.7 (Type-2 Soundness).Let M andN be expressions such that B-Keys(M) and B-
Keys(N) are not cyclic inM and N respectively, andΠ a type-2 secure encryption scheme.
Then,

M ∼=2 N implies[[M ]]Φ ≈ [[N ]]Φ.

Theorem 2.8 (Type-2 Completeness).Let Π be a type-2 secure encryption scheme. We have
that,

[[M ]]Φ ≈ [[N ]]Φ impliesM ∼=2 N

for any pairs of expressionsM and N if and only if the following conditions hold: for any
K, K ′, K ′′ ∈ Keys, B ∈ Blocks, M,M ′, N, N ′ ∈ Exp,

(i) no pair of [[K]]Φ, [[B]]Φ, [[(M, N)]]Φ, [[{M ′}K′ ]]Φ are equivalent with respect to≈,

(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, thenK ′ = K ′′,

(iii) if [[({M}K , {M ′}K)]]Φ ≈ [[({N}K′ , {N ′}K′′)]]Φ thenK ′ = K ′′.

The conditions of the completeness theorem are similar to the ones for the type-1 case ex-
cept for condition (iii). This condition requires that encryption with different keys should be
detectable. Definition2.23allows that encrypting with different keys may be detectable, but it
does notrequire it. That suffices for soundness, but such detectionis required for completeness.
It is easily shown that condition (iii) is implied by the purely computational definition of astrictly
key revealingencryption scheme:

Definition 2.25 (Strictly Key Revealing Scheme).Let Π = (K, E ,D) be a symmetric encryp-
tion scheme. We say that the encryption-scheme isstrictly key revealingif it is type-2 secure but
there exists a PPT adversaryA such that the following function is a non-negligible function ofη:

Pr
[
k, k′ ←− K(1η) : AE(k,·),E(k′,·)(1η) = 1

]
− Pr

[
k ←− K(1η) : AE(k,·),E(k,·)(1η) = 1

]



34 Chapter 2. Soundness of Formal Encryption

2.3.3 Soundness and Completeness for Type-3 Schemes

Type-3 encryption schemes (Definition2.14, also called message-concealing, which-key reveal-
ing and length-revealing in the terminology of Abadi and Rogaway) can be thought of as leaking
the information leaked by both type-1 and type-2 schemes. Both soundness and completeness
results follow using the notion of patterns from Definition2.16. As with type-1 and type-2 en-
cryption, completeness requires that it is possible to distinguish ciphertexts that were encrypted
with different keys, and to distinguish ciphertexts for which the plaintexts have different lengths.
That is, the encryption scheme must be both strictly key revealingand strictly length revealing
(Definitions2.25and2.22respectively).

2.4 Information-Theoretic Interpretations: Soundness and Com-
pleteness for One-Time Pad

Besides the computational definition, there are other possible important notions of ‘indistin-
guishability.’ For example, we could say that two distributions are ‘indistinguishable’ if and only
if they areidentical. Such a notion would lead to new (but analogous) notions of soundness and
completeness, and we can explore these new notions using (as a specific encryption scheme) the
One-Time Pad (OTP).

Let strings := {0, 1}∗ with the following pairing function: For any two stringsx, y ∈
strings we can define the pairing ofx andy as[x, y] := 〈x, y, 0, 1|y|〉 where〈 , , ... , 〉 denotes
the concatenation of the strings separated by the commas,1m stands form many1’s, and for any
x ∈ {0, 1}∗, |x| denotes the length of the string. The number of1’s at the end indicate how long
the second string is in the pair, and the0 separates the strings from the1’s. Let blocks be those
strings that end with001. The ending is just a tag, it shows that the meaning of the string is a
block.

Key-Generation. In case of the OTP, the length of the encrypting key must match the length
of the plaintext. Thus, we need a separate key-generation for each length. That is, for each
n > 3, Kn is a random variable over some discrete probability field(ΩK,n, PrK,n) such that its
values are equally distributed overkeysn := {k | k ∈ strings, |k| = n, k ends with 010}. Let
keys :=

⋃∞
4 keysn. Fork ∈ keys, let core(k) denote the string that we get fromk by cutting

the tag010.
Encryption. Let the domain of the encryption function,DomE , be those elements(k, x) ∈

keys × strings, for which |k| = |x| + 3, and letE(k, x) := 〈core(k) ⊕ x, 110〉. The tag110
informs us that the string is a ciphertext. Notice that this encryption is not probabilistic, hence
E(k, x) is not a random variable. Notice also, that the tag of the plaintext is not dropped, that
part is also encrypted.

Decryption. The decryption functionD(k, x) is defined whenever|k| = |x|, and, naturally
the value ofD(k, x) is the first|k| − 3 bits ofk ⊕ x.

Indistinguishability. As we mentioned, let us now call two distributions indistinguishable,
if they are identical, and denote this relation by=d.
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As in the case of type-3 encryption, lengths of the messages are revealed. Therefore, we must
again define thelengthof an expression.

Definition 2.26. We assume that some length functionl : Keys→ {4, 5, ...} is given on the keys
symbols. The length of a block is defined asl(B) := |B|+ 3. We added3 to match the length of
the tag. We define the length function on any expression inExp by induction:

• l((M, N)) := l(M) + 2l(N) + 1,

• l({M}K) := l(M) + 3, if l(M) = l(K)− 3, and

• l({M}K) := 0, if l(M) 6= l(K)− 3.

The valid expressionsare defined as those expressions in which the length of the encrypted
subexpressions match the length of the encrypting key, and, in which no key is used twice to en-
crypt. (This latter condition is necessary to prevent leaking information because of the properties
of the OTP.)

Definition 2.27. We define thevalid expressions for OTPasExpOTP = {M ∈ Exp | M ′ v M
impliesl(M ′) > 0, and each key encrypts at most once inM}.
The interpretation function for the OTP is defined similarly to the other cases, with some mi-
nor changes regarding the tagging of the messages. Also, there is no security parameter in this
encryption scheme, so the interpretation outputs a single random variable for each formal ex-
pression (rather than a family of such variables). We present here the full algorithm:

algorithm INTERPRETATIONOTP(M)
for K ∈ Keys(M) do τ(K) ←− Kl(K)

y ←− CONVERTOTP(M)
return y

algorithm CONVERTOTP(N)
if N = K whereK ∈ Keys then

return τ(K)
if N = B whereB ∈ Blocks then

return 〈B, 100〉
if N = (N1, N2) then

return [CONVERTOTP(N1), CONVERTOTP(N2)]
if N = {N1}K then

return 〈E(τ(K), CONVERTOTP(N1)), 110〉

As in the previous cases, we must again find a suitable equivalence relation for formal expres-
sions. One possibility is to index the boxes again with the encrypting keys. Another possibility
is to label the boxes with the length as well, but in the OTP scheme, the key reveals the length of
the ciphertext. Therefore, we can use the first, that is a simpler possibility. Thus OTP-patterns
are defined as follows:



36 Chapter 2. Soundness of Formal Encryption

Definition 2.28 (Pattern (OTP)). We define theset of patterns, Pat, by the grammar:

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | 2Keys

The OTP pattern of a valid expressionM , denoted bypatternOTP(M), is derived fromM by
replacing each term{M ′}K ∈ vis (M) (whereK /∈ R-Keys(M)) by 2K .

We say that two expressionsM and N are OTP equivalent, and denote it byM ∼=OTP

N , if there exists a length-preserving key-renaming functionσ such thatpatternOTP(M) =2

patternOTP(Nσ) with =2 as in Definition2.24

Then, then following soundness and completeness theorems can be proved. Again, these
theorems are special cases of the general soundness and completeness theorems in Section2.5.
Thus, the proofs will be deferred (Examples2.14and2.23, respectively).

Theorem 2.9 (OTP Soundness).Let M andN be two valid expressions inExpOTP such that
B-Keys(M) and B-Keys(N) are not cyclic inM andN respectively. Then,

M ∼=OTP N implies that[[M ]]Φ and [[N ]]Φ are the same probability distributions.

Theorem 2.10 (OTP Completeness).LetM andN be two valid expressions inExpOTP. Then

if [[M ]]Φ and[[N ]]Φ have the same probability distributions, we have thatM ∼=OTP N.

Note that the completeness theorem for OTP does not contain any side conditions like those
of Theorems2.6and2.8. This is because here, what would have been condition (i) from Theo-
rem2.6is immediate due to the tagging. The natural condition (ii) also follows from the tagging
since decrypting with the wrong key will result in a meaningless text. Lastly, the natural Condi-
tion (iii) is meaningless in this case since we just encrypt at most once with each key.

2.5 A General Treatment for Symmetric Encryption

In this section, we provide a general treatment of soundness and completeness for the Abadi-
Rogaway type logics of formal encryptions. The following contain the cases discussed in the pre-
vious two sections as special cases. In Subsection2.5.1we present a general probabilistic frame-
work for symmetric encryptions, which includes both the computational and the information-
theoretic encryption schemes. Then, in Subsection2.5.2, we show a general way to handle
partial leaking of encryption in the formal view. This will be done essentially via an equivalence
relation on the set of encryption terms, which is meant to express which encryption terms are in-
distinguishable for an adversary. In that section, we also introduce the important notion that we
call propernessof this equivalence relation. This is essential, because this is exactly the property
that will make an Abadi-Rogaway type hybrid argument go through. Finally, in the remaining
subsections of this section, we present the interpretation, the general soundness and complete-
ness results as well as discussions of how the theorems for the type-1, type-2 and OTP cases that
we presented before follow from the general theorems.
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2.5.1 A General Treatment for Symmetric Encryptions

We provide a general probabilistic framework for symmetric encryption, which contains both
the computational and the information-theoretic description as special cases. Keys, plaintexts
and ciphertexts are elements of some discrete setstrings. This is ({0, 1}∗)∞ in the case of
a computational treatment, and it is{0, 1}∗ for the information-theoretic description. The ele-
ments of({0, 1}∗)∞ are sequences in{0, 1}∗, corresponding to a parameterisation by the security
parameter.

A fixed subset,plaintext ⊆ strings represents the messages that are allowed to be en-
crypted. Another subset,keys ⊆ strings is the possible set encrypting keys that corresponds to
the range of the key generation algorithmK. In order to be able to build up longer messages from
shorter ones, we assume that an injectivepairing functionis given:[ . , . ] : strings×strings →
strings. The range of the pairing function will be calledpairs: pairs := Ran[ . , . ]. A symmet-
ric encryption scheme has the following constituents:

Key-generation. Key-generation is represented by a random variableK : ΩK → keys,
over a discrete probability field(ΩK, PrK). In a given scheme, more than one key-generation is
allowed.

Encryption. For a givenk ∈ keys, and a givenx ∈ plaintext, E(k, x) is a random variable
over some discrete probability field(ΩE , PrE). The values of this random variable are instrings
and are denoted byE(k, x)(ω), wheneverω ∈ ΩE .

Decryption. An encryption must be decryptable, so we assume that for eachk ∈ keys, a
functionD : (k, x) 7→ D(k, x) is given satisfyingDk

(E(k, x)(ω)
)

= x for all ω ∈ ΩE and
x ∈ plaintext.

The notion ofindistinguishabilityis important both in case of computational and information-
theoretic treatments of cryptography. It expresses when there is only very small probability to
tell two probability distributions apart.

Indistinguishability. We assume that an equivalence relation calledindistinguishabilityis
defined on distributions overstrings. We will denote this relation by≈. We will also say that
two random variables taking values instrings are equivalent (indistinguishable) if (and only if)
their distributions are equivalent; we will use≈ for denoting this equivalence between random
variables as well. For≈, we require the followings:

(i) Random variables with the same distribution are indistinguishable;

(ii) Constant random variables are indistinguishable if and only if the constants are the same;

(iii) For random variablesF : ΩF → strings andG : ΩG → strings, if F ≈ G, the following
must hold: Ifπi denotes the projection onto one of the components ofstrings× strings,
thenπi ◦ [·, ·]−1 ◦ F ≈ πi ◦ [·, ·]−1 ◦G for i = 1, 2;

(iv) If F ′ : ΩF → strings, G′ : ΩG → strings are also indistinguishable random vari-
ables such thatF andF ′ are independent andG andG′ are also independent, thenωF 7→
[F (ωF ), F ′(ωF )] andωG 7→ [G(ωG), G′(ωG)] are indistinguishable random variables; more-
over, if α, β : strings → strings are functions that preserve≈ (i.e. α ◦ F ≈ α ◦ G
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andβ ◦ F ≈ β ◦ G wheneverF ≈ G), thenωF 7→ [(α ◦ F )(ωF ), (β ◦ F )(ωF )] and
ωG 7→ [(α ◦G)(ωG), (β ◦G)(ωG)] are indistinguishable random variables ifF ≈ G.

Indistinguishability needs to satisfy some further properties under encryption and decryption that
we will specify under the definition of encryption schemes below.

Example 2.4.The simplest example for indistinguishability is that it holds between two random
variables if and only if their distributions are identical.

Example 2.5. The standard notion of computational indistinguishability in [Yao82] is also a
special case of the general definition. In this casestrings = ({0, 1}∗)∞ = strings∞. Ran-
dom variables of computational interest have the formF : ΩF → strings∞ and have inde-
pendent components;i.e., for η ∈ N security parameter, denoting theη’th component ofF by
Fη : ΩF → strings, it is required thatFη andFη′ are independent random variables forη 6= η′.
Indistinguishability then is phrased with the ensemble of probability distributions of the compo-
nents of the random variables.

Definition 2.29. An encryption schemeis a quadrupleΠ = ({Ki}i∈I , E ,D,≈) where{Ki}i∈I

is a set of key-generations for some index setI, E is an encryption,D decrypts ciphertexts
encrypted byE , and≈ is the indistinguishability defined above. We require that for anyi ∈ I, the
probability distribution ofKi be distinguishable from any constant instrings, the distributions
of Ki and ofKj be distinguishable wheneveri 6= j, and also that the distribution of(k, k′) be
distinguishable from the distribution of(k, k) if k andk′ are independently generated:k ←− Ki,
k′ ←− Kj for anyi, j ∈ I. The indistinguishability relation≈, besides satisfying the properties
stated before, needs to be such that ifF andG are random variables taking values instrings,
andKi is a key-generation such that the distribution of[Ki, F ] is indistinguishable from the
distribution of[Ki, G], then:

(i) (ωE , ωK,i, ω) 7→ E(Ki(ωK,i), F (ω)
)
(ωE) and(ωE , ωK,i, ω) 7→ E(Ki(ωK,i), G(ω)

)
(ωE) are

indistinguishable random variables;

(ii) (ωK,i, ω) 7→ D(Ki(ωK,i), F (ω)
)

and (ωK,i, ω) 7→ D(Ki(ωK,i), G(ω)
)

are also indistin-
guishable random variables.

Here the probability overΩKi
× ΩF is the joint probability ofKi andF , which are here not

necessarily independent. Similarly forG.

2.5.2 Equivalence of Expressions

In their treatment, Abadi and Rogaway defined equivalence of expressions via replacing encryp-
tion terms encrypted with non-recoverable keys in an expression by a box; two expressions then
were declared equivalent if once these encryption terms were replaced, the obtainedpatterns
looked the same up tokey-renaming. This method implicitly assumes, that an adversary cannot
distinguish any undecryptable terms. However, if we want to allow leakage of partial informa-
tion, we need to modify the notion of equivalence.
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Before introducing our notion of equivalence of expressions, we postulate an equivalence
notion≡K on the set of keys, and another equivalence,≡C on the set ofvalid encryption terms.
The wordvalid, defined precisely below, is meant for those encryption terms (and expressions)
that “make sense”. Then, the equivalence on the set of valid expressions will be defined with the
help of≡K and≡C.

The reason for postulating equivalence on the set of keys is that we want to allow many
key-generation processes in the probabilistic setting. We therefore have to be able to distinguish
formal keys that were generated by different key-generation processes. Therefore, we assume
that an equivalence relation≡K is given on the set of keys such that each equivalence class
contains infinitely many keys. LetQKeys := Keys

/≡K.

Definition 2.30 (Key-Renaming Function). A bijection σ : Keys → Keys is called key-
renaming function, if σ(K) ≡K K for all K ∈ Keys. For any expressionM , Mσ denotes
the expression obtained fromM by replacing all occurrences of keysK in M by σ(K).

Definition 2.31. We define thesupportof a key-renaming functionσ, and denote it bysupp(σ),
as the subset ofKeyssuch thatσ(K) 6= K.

We say that two key-renaming functionsσ andτ arecompatibleif for all keysK ∈ supp(σ)∩
supp(τ) we have thatσ(K) = τ(K).

The setExp is often too big to suit our purposes. For example, sometimes we require that
certain messages can be encrypted with certain keys only. We therefore define the set of valid
expressions:

Definition 2.32. A set ofvalid expressionsis a subsetExpV of Exp such that:

(i) all keys and all blocks are contained inExpV ;

(ii) if M ∈ ExpV thensub(M) ⊂ ExpV and any number of pairs of elements insub(M) are
also inExpV ;

(iii) for any key-renaming functionσ, M ∈ ExpV iff Mσ ∈ ExpV .

Given a set of valid expressions, the set ofvalid encryption termsis EncV := Enc∩ ExpV .

Equivalence of valid expressions is meant to incorporate the notion of security into the model:
we want two expressions to be equivalent when they look the same to an adversary. If we think
that the encryption is so secure that no partial information is revealed, then all undecryptable
terms should look the same to an adversary. If partial information, say repetition of the encrypting
key, or length is revealed, then we have to adjust the notion of equivalence accordingly. We
do this by introducing an equivalence relation on the set of valid encryption terms in order to
capture which ciphertexts an adversary can and cannot distinguish; in other words, what partial
information (length, key, etc...) can an adversary retrieve from the ciphertext.

Hence, we will assume that there is an equivalence relation,≡C given on the set of valid
encryption terms, with the property that for anyM, N ∈ EncV andσ key-renaming function,
M ≡C N if and only if Mσ ≡C Nσ. LetQEnc := EncV

/≡C.
Since we required thatM ≡C N ∈ EncV if and only if Mσ ≡C Nσ wheneverσ is a

key-renaming function,σ induces a renaming onQEnc, which we also denote byσ.
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Example 2.6 (Length-Revealing).In Section2.3.1two encryption terms were considered to be
indistinguishable for an adversary if and only if they had the same length. In this case, we define
≡C so that it equates encryption terms with the same length, and hence an element ofQEnc will
contain all encryption terms that have a specific length.

Example 2.7 (Which-Key Revealing).In Section2.3.2we considered the situation when an
adversary can recognise that two encryption terms were encrypted with different keys. For this
case, we will need to define≡C so that two encryption terms are equivalent if and only if they
are encrypted with the same key.

Definition 2.33 (Formal Logic of Symmetric Encryption). A formal logic for symmetric en-
cryption is a triple∆ = (ExpV ,≡K,≡C) whereExpV is a set of valid expressions,≡K is an
equivalence relation onKeys, and≡C is an equivalence relation onEncV ; we require the ele-
ments ofQKeys to be infinite sets, and that for anyσ key renaming function relative toQKeys,

(i) if M ∈ Exp, thenM ∈ ExpV if and only if Mσ ∈ ExpV ;

(ii) if M, N ∈ EncV , thenM ≡C N if and only if Mσ ≡C Nσ;

(iii) replacing an encryption term within a valid expression with another equivalent valid en-
cryption term results in a valid expression.

To define the equivalence of expressions, we first assign to each valid expression an element
in the set ofpatterns, Pat, defined the following way:

Definition 2.34 (Pattern). We define the set ofpatterns, Pat, by the grammar:

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | ¤QEnc

The pattern of a valid expressionM , denoted bypattern(M), is obtained fromM by replacing
each undecryptable term{M ′}K v M (K /∈ R-Keys(M)) by 2µ({M ′}K), whereµ({M ′}K) ∈
QEnc denotes the equivalence class containing{M ′}K .

Definition 2.35 (Equivalence of Expressions).We say that two valid expressionsM andN
areequivalent, and denote it byM ∼= N , if there exists a key-renaming functionσ such that
pattern(M) = pattern(Nσ), where for any patternQ, Qσ denotes the pattern obtained by re-
naming all the keys and the box-indexes (which are equivalence classes inQEnc) in Q with σ.

Example 2.8. In the case when the elements ofQEnc contain encryption terms encrypted with
the same key, Example2.7, there is a one-to-one correspondence betweenQEnc andKeys, and
therefore we can index the boxes with keys instead of the elements inQEnc: 2K , K ∈ Keys.
Then ifN is the same expression as in Example2.3, the pattern according to the above definition
is the same as we had in that example. In that exampleM andN are equivalent according to the
definition of equivalence above.
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Proper Equivalence of Ciphers

In order to make the soundness and completeness proofs work, we need to have some restrictions
on≡C; without any restrictions, the proofs will never work. The condition that we found the
most natural for our purposes is what we callproper equivalence, defined below. This condition
will make soundness work. For completeness, besides proper equivalence, we need to assume
something for the relationship of≡C and≡K. We call our assumptionindependence, and it is
defined in Definition2.37. Let us start by defining the setµkey, for eachµ ∈ QEnc, as

µkey := {K ∈ Keys | there is a valid expressionM such that{M}K ∈ µ}.

Definition 2.36 (Proper Equivalence of Ciphers).We say that an equivalence relation≡C on
EncV is proper, if for any finite set of keysS, if µ ∈ QEnc contains an element of the form{N}K

with K /∈ S, we have that:

1. if |µkey| is finite thenµ also contains an elementC such thatKeys(C)∩S = ∅, andK 6v C;

2. if |µkey| = ∞ thenµ also contains an elementC such thatKeys(C) ∩ (S ∪ {K}) = ∅.

In other words, ifµ contains an element encrypted with a keyK not in S, thenµ has a
representative in which no key ofS appears, and in whichK may only appear as an encrypting
key, but not as a subexpression, or in the case of a class with infinitely many encrypting keys
there is an element in which no keys fromS ∪ {K} appear. In fact, we show in Proposition2.11
that the cardinality of the setµkey is equal to either 1 or∞.

Example 2.9. If ≡C denotes the equivalence of Example2.7 (i.e. two ciphers are equivalent
iff they have the same encrypting key, hence|µkey| = 1), then it is clearly proper, since if
{M}K ∈ µ, andK /∈ S, thenC = {K ′}K works for anyK ′ /∈ S; there is such aK ′, since we
assumed that there are infinitely many keys.C = {B}K (B ∈ Blocks) is also a good choice
sinceBlocks is not empty.

Example 2.10.If ≡C denotes the equivalence of Example2.6, then it is clearly proper (|µkey| =
∞). If {M}K ∈ µ, K /∈ S, thenC = {M ′}K′ is a good choice whereC is constructed
by assigning to each key in{M}K , a new keyK ′′ not in S ∪ {K}. We can do this since we
assumed that there are infinitely many keys. Then, since key-renaming does not change the
length, `(M) = `(M ′), andµ contains all encryption terms of the same length,C ∈ µ and
properness follows.

The following propositions will be useful for proving our general soundness and complete-
ness results.

Proposition 2.11. Let ∆ = (ExpV ,≡K,≡C) be such that≡C is proper. Then, the equivalence
relation≡C is such that for any equivalence classµ ∈ QEnc, µkey has either one, or infinitely
many elements.
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Proof. Let µ ∈ QEnc, and assume that there are more than one encrypting key inµkey (but |µkey|
finite), that is, there are two different keysK andK1 such that{M}K , {M1}K1 ∈ µ for some
valid expressionsM andM1. Since≡C is proper and{M1}K1 ∈ µ, if we considerS = {K}
(K1 6= K thusK1 6∈ S) thenµ has an element of the form{M ′}K′ in which no key ofS appears
and in whichK1 may only appear as an encrypting key, but not as a subexpression. In particular
we have that

K 6∈ Keys(M ′) andK 6= K ′. (2.1)

Since we assumed that each equivalence class inQKeys contains infinitely many elements (recall
Definition2.33), there is a keyL 6= K such thatL ≡K K, and

L /∈ Keys({M}K) ∪ Keys({M ′}K′). (2.2)

Then, definingσ to do nothing else but to switch the keysL andK, we have using (2.2) that

{M}Kσ = {Mσ}L

and (by (2.1) and (2.2))
{M ′}K′σ = {M ′}K′ .

But, since{M}K ≡C {M ′}K′, we have (by definition of formal logic) that

{M}Kσ ≡C {M ′}K′σ

that is
{Mσ}L ≡C {M ′}K′ .

Since{M ′}K′ ∈ µ, it must hold that{Mσ}L ∈ µ. Therefore, there are infinitely many encrypt-
ing keys inµ since there are infinitely many choices forL.

Proposition 2.12. Let ∆ = (ExpV ,≡K,≡C) be such that≡C is proper. Ifσ is a key-renaming
function (relative to≡K), then for anyµ ∈ QEnc, |µkey| = |σ(µ)key|.
Proof. If |µkey| = ∞, then|σ(µ)key| = ∞, since for any{M}K ∈ µ, {M}Kσ = {Mσ}σ(K) ∈
σ(µ). Sinceσ is a bijection, and since anyµ contains either only one or infinitely many elements,
the claim follows.

The meaning of the next proposition is that if≡C is proper, then given a set of valid ciphers
C = {{Ni}Li

}n
i=1 such that none of the encrypting keys are inS, and if µ1, ...µl are all the

equivalence classes of the elements inC, then it is possible to choose a representative of each
of µj, denoted byCµj

, such that no key of S occurs in any ofCµj
, none of theLi’s occur as

a subexpression in anyCµj
, and no key occurs in two ofCµj

unless the corresponding two
equivalence classes both have only the same, single encrypting key.

Proposition 2.13.Let∆ = (ExpV ,≡K,≡C) be such that≡C is proper. LetC = {{Ni}Li
}n

i=1 be
a set of valid encryption terms, andS a finite set of keys withLi /∈ S (i ∈ {1, ..., n}). Letµ(C)
denote the set of all equivalence-classes with respect to≡C of all elements inC. Then, for each
ν ∈ µ(C), there is an elementCν ∈ ν such that:



2.5. A General Treatment for Symmetric Encryption 43

(i) Keys(Cν) ∩ S = ∅
(ii) Li 6v Cν for all i ∈ {1, ..., n}
(iii) if ν 6= ν ′, |νkey| 6= ∞ and |ν ′key| 6= ∞, then Keys(Cν) ∩ Keys(Cν′) 6= ∅ if and only if

νkey = ν ′key = {K} for some keyK, and in this case

1. Keys(Cν) ∩ Keys(Cν′) = {K},
2. Cν andCν′ are both of the form{·}K with the sameK, and

3. K 6v Cν , K 6v Cν′.

(iv) if ν 6= ν ′ and either|νkey| = ∞ or |ν ′key| = ∞, then Keys(Cν) ∩ Keys(Cν′) = ∅.
Proof. Observe, that ifµi denotes the equivalence class of{Ni}Li

in QEnc, thenν ∈ µ(C) if and
only if ν = µi for somei ∈ {1, ...n}. Proof goes by induction.

The statement is clearly true ifn = 1, since≡C is proper.
Suppose now that the result is true forn − 1. Let {N1}L1, {N2}L2,..., {Nn}Ln be valid

expressions, and letS be a set of keys such thatLi /∈ S. Without loss of generality, we can
assume, that the numbering is such that there is anl, 1 ≤ l ≤ n, such that|(µi)key| = 1 if i ≤ l
and|(µi)key| = ∞ if i > l.

Case 1: Let us first assume thatl = n, i.e., |(µi)key| = 1 for all 1 ≤ i ≤ n, and that there is an
m ∈ {1, ..., n− 1} such thatLn = Lm. Since the statement is assumed to be true forn− 1, we
have that for the family of encryption termsC′ = {{Ni}Li

}n−1
i=1 and the setS we can chooseCµi

for all i ≤ n− 1 such that conditions (i′), (ii ′), (iii ′) and (iv′) hold for these , that is,

(i′) Keys(Cµi
) ∩ S = ∅ for all 1 ≤ i ≤ n− 1,

(ii ′) Li 6v Cµj
for all 1 ≤ i, j ≤ n− 1, and

(iii ′) if µi 6= µj, |(µi)key| 6= ∞ and|(µj)key| 6= ∞, thenKeys(Cµi
) ∩ Keys(Cµj

) 6= ∅ if and only
if (µi)key = (µj)key = {K} for some keyK, and in that case

1. Keys(Cµi
) ∩ Keys(Cµj

) = {K},
2. Cµi

andCµj
are both of the form{·}K with the sameK, and

3. K 6v Cµi
, K 6v Cµj

.

(iv′) if µi 6= µj and either|(µi)key| = ∞ or |(µj)key| = ∞, thenKeys(Cµi
) ∩ Keys(Cµj

) = ∅.
We can immediately discard (iv′) since we suppose that|(µi)key| = 1 for all 1 ≤ i ≤ n.

Suppose now thatµn = µi for somei ≤ n − 1, then there is nothing to prove,Cµn = Cµi
has

already been chosen and so (i), (ii) and (iii) are obviously satisfied by IH.
If there is no suchi, then consider

Sn−1 :=

((
n−1⋃
i=1

Keys(Cµi
) ∪ {Li}

)
\ {Ln}

)
∪ S.
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Since≡C is proper (usingSn−1 and{Nn}Ln ∈ µn), there is aC ∈ µn such thatKeys(C) ∩
Sn−1 = ∅ andLn 6v C. Let us defineCµn = C. Then:

(i) Keys(C) ∩ S = ∅ follows from the fact thatKeys(C) ∩ Sn−1 = ∅ andS ⊆ Sn−1;

(ii) Li 6v Cµj
for all 1 ≤ i, j ≤ n since:

(a) Li 6v Cµj
, for all 1 ≤ i, j ≤ n− 1 by (ii′),

(b) Ln 6v Cµj
, 1 ≤ j ≤ n− 1 because we assumed thatLn = Lm andLm 6v Cµj

by (ii′),

(c) Li 6v C, for all Li 6= Lm such that1 ≤ i ≤ n − 1 (remember thatLn = Lm) since
Li ∈ Sn−1 andKeys(C) ∩ Sn−1 = ∅, and

(d) Ln 6v C by the way thatC was chosen (henceLm 6v C).

(iii) (a) for all 1 ≤ i, j ≤ n− 1 it is true by (iii′);

(b) Suppose now thatµn 6= µk andKeys(C) ∩ Keys(Cµk
) 6= ∅ for some1 ≤ k ≤ n− 1.

If we combine these with the fact thatKeys(C) ∩ Sn−1 = ∅, we need to have that

Keys(C) ∩ Keys(Cµk
) = {Ln}.

It is now easy to see from the equation above thatC andCµk
are both of the form

{·}Ln . For that notice that by (ii.d) just proved above,Ln 6v C and by (ii.a)Ln 6v
Cµk

. The only thing left to show is that(µn)key = (µk)key = {Ln}. This comes
straightforward from the fact thatC andCµk

are both of the form{·}Ln and from the
fact that|(µi)key| = 1 for all 1 ≤ i ≤ n. Combining these we have

(µn)key = (µk)key = {Ln}.

The converse is very simple. Suppose that(µn)key = (µk)key = {Ln}. Since
C ∈ µn andCµk

∈ µk we have that both are of the form{·}Ln and thusKeys(C) ∩
Keys(Cµk

) 6= ∅. The rest follows as above.

(iv) Verified since by hypothesis we suppose that|(µi)key| = 1 for all 1 ≤ i ≤ n.

Case 2: Suppose now thatl = n, but there is nom ∈ {1, ..., n− 1} such thatLn = Lm. Since
the result is true forn−1, we have that for the family of encryption termsC′ = {{Ni}Li

}n−1
i=1 and

the setS ′ = S ∪ {Ln} (note thatLi 6∈ S ′ for all i ≤ n− 1) we can chooseCµi
for all i ≤ n− 1

such that conditions (i′), (ii ′), (iii ′) and (iv′) hold for these , that is,

(i′) Keys(Cµi
) ∩ (S ∪ {Ln}) = ∅ for all 1 ≤ i ≤ n− 1,

(ii ′) Li 6v Cµj
for all 1 ≤ i, j ≤ n− 1, and

(iii ′) if µi 6= µj, |(µi)key| 6= ∞ and|(µj)key| 6= ∞, thenKeys(Cµi
) ∩ Keys(Cµj

) 6= ∅ if and only
if (µi)key = (µj)key = {K} for some keyK;
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(iv′) if µi 6= µj and either|(µi)key| = ∞ or |(µj)key| = ∞, thenKeys(Cµi
) ∩ Keys(Cµj

) = ∅.
Again, if µn = µi for somei < n, then there is nothing to prove, letCµn = Cµi

and note that
(i) and (iii) are obviously satisfied, and (ii) (Ln 6v Cµj

, for all 1 ≤ j ≤ n, andLi 6v Cµn for all
1 ≤ i ≤ n − 1) follows from (i′) and (ii′) respectively. Again (iv) is also true since we suppose
that|(µi)key| = 1 for all 1 ≤ i ≤ n.

If there is no suchi, then consider

Sn−1 =

(
n−1⋃
i=1

Keys(Cµi
) ∪ {Li}

)
∪ S.

By properness (usingSn−1 and{Nn}Ln ∈ µn), and sinceLn 6∈ Sn−1 (by (i′), assumptionLn 6= Li

for all i < n, and by hypothesis of the propositionLn /∈ S), there is aC ∈ µn such that
Keys(C) ∩ Sn−1 = ∅, andLn 6v C. Let us defineCµn = C. Then:

(i) follows from (i′) and from the fact thatKeys(C) ∩ Sn−1 = ∅;
(ii) is true, since:

(a) Li 6v Cµj
, for all 1 ≤ i, j ≤ n− 1 by (ii′),

(b) Ln 6v Cµj
, for all 1 ≤ j ≤ n− 1 by (i′),

(c) Li 6v C for 1 ≤ i ≤ n− 1 because by propernessKeys(C) ∩ Sn−1 = ∅, and

(d) Ln 6v C because of properness.

(iii) follows, because

(a) for all 1 ≤ i, j ≤ n− 1 it is true by (iii′), and

(b) for the other case it holds since by propernessKeys(C)∩Sn−1 = ∅ and thusKeys(C)∩
Keys(Cµi

) = ∅ for all 1 ≤ i ≤ n− 1.

(iv) Verified since by hypothesis we suppose that|(µi)key| = 1 for all 1 ≤ i ≤ n.

Case 3: Suppose now thatl < n, but there ism ∈ {1, ..., n − 1} such thatLn = Lm. Since
the result is assumed to be true forn − 1, we have that for the family of encryption terms
C′ = {{Ni}Li

}n−1
i=1 and the setS we can chooseCµi

for all i ≤ n − 1 such that conditions (i′),
(ii ′), (iii ′) and (iv′) hold for these , that is,

(i′) Keys(Cµi
) ∩ S = ∅ for all 1 ≤ i ≤ n− 1,

(ii ′) Li 6v Cµj
for all 1 ≤ i, j ≤ n− 1, and

(iii ′) if µi 6= µj, |(µi)key| 6= ∞ and|(µj)key| 6= ∞, thenKeys(Cµi
) ∩ Keys(Cµj

) 6= ∅ if and only
if (µi)key = (µj)key = {K} for some keyK;

(iv′) if µi 6= µj and either|(µi)key| = ∞ or |(µj)key| = ∞, thenKeys(Cµi
) ∩ Keys(Cµj

) = ∅.
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Again, suppose now thatµn = µi for somei ≤ n − 1, then there is nothing to prove,
Cµn = Cµi

has already been chosen and so (i), (ii), (iii) and (iv) are obviously satisfied by IH.
If there is no suchi, then consider

Sn−1 :=

((
n−1⋃
i=1

Keys(Cµi
) ∪ {Li}

)
\ {Ln}

)
∪ S.

Since≡C is proper (usingSn−1 and{Nn}Ln ∈ µn, |(µn)key| = ∞), there is aC ∈ µn such
thatKeys(C) ∩ (Sn−1 ∪ {Ln}) = ∅. Then:

(i) Keys(C) ∩ S = ∅ follows from the fact thatKeys(C) ∩ (Sn−1 ∪ {Ln}) = ∅ andS ⊆
(Sn−1 ∪ {Ln});

(ii) Li 6v Cµj
for all 1 ≤ i, j ≤ n since:

(a) Li 6v Cµj
, for all 1 ≤ i, j ≤ n− 1 by (ii′),

(b) Ln 6v Cµj
, 1 ≤ j ≤ n− 1 because we assumed thatLn = Lm andLm 6v Cµj

by (ii′),

(c) Li 6v C, for all Li 6= Lm such that1 ≤ i ≤ n − 1 (remember thatLn = Lm) since
Li ∈ Sn−1 andKeys(C) ∩ Sn−1 = ∅, and

(d) Ln 6v C becauseKeys(C) ∩ (Sn−1 ∪ {Ln}) = ∅ (henceLm 6v C).

(iii) note that if|(µi)key| 6= ∞ and|(µj)key| 6= ∞ then1 ≤ i, j ≤ l < n and thus by HI (iii)
holds.

(iv) (a) for the casel ≤ j ≤ n− 1 and1 ≤ i ≤ n− 1, Keys(Cµj
) ∩ Keys(Cµi

) = ∅ holds by
IH;

(b) it is only left to show that for all1 ≤ i ≤ n − 1, Keys(Cµn) ∩ Keys(Cµi
) = ∅.

This is true because by definitionKeys(Cµn) ∩ (Sn−1 ∪ {Ln}) = ∅ andKeys(Cµi
) ⊆

(Sn−1 ∪ {Ln}).

Case 4: The proof of the remaining case,l < n, i.e., |(µi)key| = ∞ for l < i ≤ n, and
there is nom ∈ {1, ..., n − 1} such thatLn = Lm is a combination of the proofs of Case 2
and Case 3. Since the result is true forn − 1, we have that for the family of encryption terms
C′ = {{Ni}Li

}n−1
i=1 and the setS ′ = S ∪{Ln} (note thatLi 6∈ S ′ for all i ≤ n− 1) we can choose

Cµi
for all i ≤ n− 1 such that conditions (i′), (ii ′), (iii ′) and (iv′) hold for these , that is,

(i′) Keys(Cµi
) ∩ (S ∪ {Ln}) = ∅ for all 1 ≤ i ≤ n− 1,

(ii ′) Li 6v Cµj
for all 1 ≤ i, j ≤ n− 1, and

(iii ′) if µi 6= µj, |(µi)key| 6= ∞ and|(µj)key| 6= ∞, thenKeys(Cµi
) ∩ Keys(Cµj

) 6= ∅ if and only
if (µi)key = (µj)key = {K} for some keyK;

(iv′) if µi 6= µj and either|(µi)key| = ∞ or |(µj)key| = ∞, thenKeys(Cµi
) ∩ Keys(Cµj

) = ∅.
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Again, if µn = µi for somei < n, then there is nothing to prove, letCµn = Cµi
and note that

(i), (iii) and (iv) are obviously satisfied, and (ii) (Ln 6v Cµj
, for all 1 ≤ j ≤ n, andLi 6v Cµn for

all 1 ≤ i ≤ n− 1) follows from (i′) and (ii′) respectively.
If there is no suchi, then consider

Sn−1 =

(
n−1⋃
i=1

Keys(Cµi
) ∪ {Li}

)
∪ S.

By properness (usingSn−1 and{Nn}Ln ∈ µn, |(µn)key| = ∞), and sinceLn 6∈ Sn−1 (by (i′),
assumptionLn 6= Li for all i < n, and by hypothesis of the propositionLn /∈ S), there is a
C ∈ µn such thatKeys(C) ∩ (Sn−1 ∪ {Ln}) = ∅. Let us defineCµn = C. Then:

(i) follows from (i′) and from the fact thatKeys(C) ∩ Sn−1 = ∅;
(ii) is true, since:

(a) Li 6v Cµj
, for all 1 ≤ i, j ≤ n− 1 by (ii′),

(b) Ln 6v Cµj
, for all 1 ≤ j ≤ n− 1 by (i′),

(c) Li 6v C for 1 ≤ i ≤ n− 1 because by propernessKeys(C) ∩ Sn−1 = ∅, and

(d) Ln 6v C because by definition ofC, Keys(C) ∩ (Sn−1 ∪ {Ln}) = ∅.
(iii) note that if|(µi)key| 6= ∞ and|(µj)key| 6= ∞ then1 ≤ i, j ≤ l < n and thus by HI (iii)

holds.

(iv) (a) for the casel ≤ j ≤ n− 1 and1 ≤ i ≤ n− 1, Keys(Cµj
) ∩ Keys(Cµi

) = ∅ holds by
IH;

(b) it is only left to show that for all1 ≤ i ≤ n− 1, Keys(Cµn) ∩ Keys(Cµi
) = ∅. This is

true because by definitionKeys(Cµn) ∩ (Sn−1 ∪ {Ln}) = ∅ andKeys(Cµi
) ⊆ Sn−1.

Given setsC andS as in the conditions of the proposition, letR(C, S) denote the nonempty
set

R(C, S) :=

{
{Cν}ν∈µ(C)

∣∣∣∣
Cν ∈ ν, and{Cν}ν∈C andS satisfy conditions
(i), (ii), (iii), and (iv) of Proposition2.13

}

Another useful property satisfied by all common logics, and that we will need for the com-
pleteness result is the following:

Definition 2.37 (Independent≡K and≡C). We say that≡K and≡C are independent, if for any
finite set of keysS, and any finite set of ciphersC such that no key inS appears in any element
of C, given any key-renaming functionσ, there is a key renamingσ′ for which σ′(K) = K
wheneverK ∈ S, and for allC ∈ C, Cσ ≡C Cσ′.

In other words,≡K and≡C are independent, if for any finite set of keysS, and any finite
set of ciphersC such that no key inS appears in any element ofC, it is possible to alter any
key-renaming functionσ such that the altered function leaves all the elements inS unchanged,
whereas onC it does the same thing as the originalσ. We will need this property for the general
completeness theorem.



48 Chapter 2. Soundness of Formal Encryption

2.5.3 Interpretation

The idea of the interpretation is to describe messages that are built from blocks of strings and keys
via pairing and encryption. To each valid formal expressionM , the interpretation assigns a ran-
dom variableΦ(M) taking values instrings. We do not give one specific interpreting function
though, we will just say that a functionΦ is an interpretation if it satisfies certain properties. We
assume, that a functionφ is fixed in advance, which assigns to each formal key a key-generation
algorithm. If Φ(B) ∈ strings (constant random variable) is given for blocks, then, the rest of
Φ is determined the following way: First, run the key-generation algorithm assigned byφ for
each key inKeys(M). Then, using the outputs of these key-generations, translate the formal
expressions according to the following rules: for each key, use the output of the corresponding
key-generation. For blocks, just useΦ(B). For each pair, apply[·, ·] to the interpretations of
the expressions inside the formal pair. For each formal encryption, run the encryption algorithm
using as key the bitstring that was output by the key generation, to encrypt the interpretation of
the formal expression inside the formal encryption. The randomness ofΦ(M) comes from the
initial key-generation, and from running the encryption algorithm independently for each formal
encryption. We define below this notion of interpretation. We motivate it with the following
example:

Example 2.11.For M = (({0}K10 , K5), {K10}K5), the interpretation isΦ(M) : (ΩE × ΩE) ×
(Ωφ(K5) × Ωφ(K10)) → strings, whereΦ(M)(ω1, ω2, ω3, ω4) is

[
[E(φ(K10)(ω4), Φ(0))(ω1), φ(K5)(ω3)], E(φ(K5)(ω3), φ(K10)(ω4))(ω2)

]
.

There are four instances of randomness, two coming from the generation of keys by the key-
generation algorithm (forK5 and forK10), and the other two from the two encryptions({0}K10)
and({K10}K5).

Definition 2.38 (Interpretation of Formal Expressions). Let Π = ({Ki}i∈I , E ,D,≈) be a
general symmetric encryption scheme with some index setI, with {(ΩKi

, PrKi
)}i∈I denoting the

probability fields for key generation, and with(ΩE , PrE) denoting the probability field for the
randomness of encryption. LetExpV be a set of valid expressions. For each valid expressionM ,
let the probability space(ΩM , PrM) be defined recursively as

(ΩK , Pr K) := ({ω0},1{ω0}) for K ∈ Keys;

(ΩB, Pr B) := ({ω0},1{ω0}) for B ∈ Blocks;

(Ω(M,N), Pr (M,N)) := (ΩM × ΩN , Pr M ⊗ Pr N);

(Ω{M}K
, Pr {M}K

) := (ΩE × ΩM , Pr E ⊗ Pr M).

Where({ω0},1{ω0}) is just the trivial probability-space with one elementary event,ω0 only; the
tensor product stands for the product probability. Suppose that a functionφ : Keys→ {Ki}i∈I

is given assigning abstract keys to key generation algorithms, such thatφ(K) = φ(K ′) if and
only if K ≡K K ′. Let ι : {1, .., |Keys(M)|} → Keys(M) be a bijection enumerating the keys in
Keys(M). Let

(ΩKeys(M), Pr Keys(M)) :=(
Ωφ(ι(1)) × ...× Ωφ(ι(|Keys(M)|)), Pr φ(ι(1)) ⊗ · · · ⊗ Pr φ(ι(|Keys(M)|))

)
.
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The function(M,M ′) 7→ (ΦM(M ′) : ΩM ′ × ΩKeys(M) → strings) defined wheneverM ′ v M ,
is calledan interpretation function, if it satisfies the following properties:

ΦM(B)(ω0, ω) = ΦN(B)(ω0, ω
′) for all M , N valid expressions,B ∈ Blocks, B v M ,

B v N , and arbitraryω ∈ ΩKeys(M), ω′ ∈ ΩKeys(N). Let Φ(B) := ΦM(B).

ΦM(K)(ω0, (ω1, ..., ω|Keys(M)|)) = φ(K)(ωι−1(K)) for K ∈ Keys(M), with ωj ∈ Ωφ(ι(j)).

ΦM((M ′,M ′′))((ω′, ω′′), ω) = [ΦM(M ′)(ω′, ω), ΦM(M ′′)(ω′′, ω)] for all ω′ ∈ ΩM ′, ω′′ ∈
ΩM ′′ , andω ∈ ΩKeys(M) if (M ′,M ′′) v M .

ΦM({M ′}K)((ωE , ω′), ω) = E(ΦM(K)(ω0, ω), ΦM(M ′)(ω′, ω))(ωE) for all ωE ∈ ΩE ,
ω′ ∈ ΩM ′, ω ∈ ΩKeys(M) if {M ′}K v M .

Let Φ(M) := ΦM(M), and let[[M ]]Φ denote the distribution ofΦ(M).

2.5.4 Soundness

An interpretation assigns a random variableΦ(M) (and the distribution[[M ]]Φ of Φ(M)) to a
formal valid expressionM . On the set of valid expressions the equivalence∼= equates expres-
sions that a formal adversary supposedly cannot distinguish, whereas the equivalence≈ equates
random variables (and distributions) that a probabilistic adversary is not supposed to be able to
distinguish. The question is, how the formal and the probabilistic equivalence are related through
the interpretation. We say that soundness holds ifM ∼= N implies [[M ]]Φ ≈ [[N ]]Φ, whereas we
say that completeness holds if[[M ]]Φ ≈ [[N ]]Φ impliesM ∼= N .

The key to a soundness theorem is to have enough boxes in the definition of formal equiva-
lence,i.e., there should be enough elements inQEnc. It is clear that in the extreme case, when
the equivalence on encryption terms,≡C, is defined so that two encryption terms are equivalent
iff they are the same, then soundness holds trivially for all interpretations; but this would be
completely impractical, it would assume a formal adversary that can see everything inside every
encryption. It is also immediate, that if soundness holds with a given≡C (and a given interpreta-
tion), and≡′C is such that for any to encryption termsM andN , M ≡′C N impliesM ≡C N (ı.e.
≡′C has more boxes), then, keeping the same interpretation, soundness holds with the new≡′C as
well. Hence, in a concrete situation, the aim is to introduce enough boxes to achieve soundness,
but not too many, to sustain practicality. One way to avoid having too many boxes is to require
completeness: we will see later, that obtaining completeness requires that we do not have too
many boxes.

The following theorem claims the equivalence of two conditions. It is almost trivial that con-
dition (i) implies condition (ii). The claim that (ii) implies (i) can be summarised the following
way: if soundness holds for pairs of valid expressionsM andM ′ with a special relation between
them (described in (ii)), then soundness holds for all expressions (provided that they do not have
encryption cycles). In other words, ifM ∼= M ′ implies [[M ]]Φ ≈ [[M ′]]Φ for certain specified
pairsM andM ′, thenM ∼= N implies [[M ]]Φ ≈ [[N ]]Φ for any two pairs of valid expressionsM
andN .

For the definition ofR(C, S), see Section2.5.2.
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Theorem 2.14.Let ∆ = (ExpV ,≡K,≡C) be a formal logic for symmetric encryption such≡C

is proper and for eachM ∈ ExpV , B-Keys(M) is not cyclic inM . LetΠ = ({Ki}i∈I , E ,D,≈)
be a general encryption scheme,Φ an interpretation ofExpV in Π. Then the following conditions
are equivalent:

(i) Soundness holds forΦ: M ∼= N , impliesΦ(M) ≈ Φ(N).

(ii) For anyC = {{Ni}Li
}n

i=1 set of valid encryption terms, andS finite set of keys withLi /∈ S
(i ∈ {1, ..., n}), there is an element{Cν}ν∈µ(C) of R(C, S) such that the followings hold:

if
{{Nij}K

}l

j=1
⊂ C andM ∈ ExpV are such that

1. {Ni1}K , {Ni2}K , ..., {Nil}K v M ,

2. R-Keys(M) ⊆ S, and

3. K does not occur anywhere else inM ,

4. all visible undecryptable encryption terms inM are elements ofC ∪ {Cν}ν∈µ(C),

then, if we denote byM ′ the expression obtained by replacing inM each{Nij}K with
Cµ({Nij

}K), we have that[[M ]]Φ ≈ [[M ′]]Φ.

Proof. The proof of this theorem is motivated by the soundness proof in [AR02]. The idea of the
proof is the following: Starting from two acyclic expressionsM0 = M ∼= N = N0, we create
expressionsM1, ..., Mb andN1, ..., Nb′ such thatMi+1 is obtained fromMi via a replacement of
encryption terms as described in condition (ii). Acyclicity ensures that the encrypting key of the
replaced encryption terms will not occur anywhere else. Similarly forNi+1 andNi. We do this
so thatMb andNb′ will differ only in key renaming. Then, by condition (ii),[[Mi+1]]Φ ≈ [[Mi]]Φ,
and[[Ni+1]]Φ ≈ [[Ni]]Φ. But, [[Mb]]Φ = [[Nb′ ]]Φ, and therefore the theorem follows.

Now in more detail. Condition (ii) follows from (i) easily: For any set{Cµ({Nij
}K)}l

i=1

provided by Proposition2.13, the encrypting key ofCµ({Nij
}K) is not contained inS hence it

is not recoverable key ofM . Therefore, while computing the pattern ofM ′, Cµ({Nij
}K) will

be replaced by the box2µ({Nij
}K), which is the same box as the one that replaces{Nij}K in M

when the pattern ofM is computed. HenceM ∼= M ′, and therefore, since soundness is assumed,
andB-Keys(M ′) is not cyclic inM ′, we have

[[M ]]Φ ≈ [[M ′]]Φ.

In order to prove that (i) follows from (ii), consider two equivalent valid expressionsM and
N such thatM ∼= N . Then, by definition, there exists a bijectionσ onKeys(preserving≡K such
thatpattern(M) = pattern(Nσ). This means that the “boxes” occurring inpattern(M) must oc-
cur inpattern(Nσ) and vice-versa. Also, the subexpressions ofpattern(M) and ofpattern(Nσ)
outside the boxes must agree as well. Hence,

R-Keys(M) = R-Keys(Nσ) = R-Keys(N)σ.

Let L1, L2, . . . , Lb (Li 6= Lj if i 6= j) denote the keys inB-Keys(M), and letL′1, L
′
2, . . . , L

′
b′

(L′i 6= L′j if i 6= j) denote the keys inB-Keys(N)σ. B-Keys(M) andB-Keys(N) (and therefore
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B-Keys(Nσ) as well) are not cyclic by hypothesis, so without loss of generality, we can assume
that theLi’s and theL′i’s are numbered in such a way thatLi encryptsLj (andL′i encryptsL′j)
only if i < j (for a more detailed argument about this, see [AR02]; intuitively this means that
those keys inB-Keys(M) that are deeper inM have a higher number).

Consider now the set of expressions that are subexpressions ofM or N and have the form
{M ′}Li

or {N ′}L′i, and also, the setS. Condition (ii) then provides the set with elements of the
form Cµ({M ′}Li

) andCµ({N ′}L′
i
).

Let M0 = M . Let M1 be the expression obtained fromM0 by replacing all subexpressions
in M0 of the form{M ′}L1 by Cµ({M ′}L1

) given by the assumption. Let thenMi, i ≥ 2, be the
expression obtained fromMi−1 by replacing all subexpressions inMi−1 of the form{M ′}Li

by
Cµ({M ′}Li

). We do this for alli ≤ b and it is easy to see that inMb replacing the subexpressions
of the formCµ({M ′}Li

) by 2µ({M ′}Li
) for all i, we arrive atpattern(M).

Note that inMi−1, Li can only occur as an encrypting key. The reason for this is that ifLi

is a subexpression ofM , then it has to be encrypted with some non-recoverable key, otherwise
Li would be recoverable; moreover, it has to be encrypted with some key inB-Keys(M) because
a subexpression ofM is either recoverable or ends up in a box when we constructpattern(M).
Now, the element inB-Keys(M) that encryptsLi has to be anLj with j < i. But, all subexpres-
sions inM of the form{M ′}Lj

were already replaced byCµ({M ′}Lj
) when we constructedMj.

According to the properties listed in proposition2.13, Li may only appear inCµ({M ′}Lj
) as the

encrypting key, and thenLi = Lj, a contradiction. SoLi cannot appear inMi−1 in any other
place than an encrypting key. Observe as well, thatR-Keys(Mi) = R-Keys(M).

From assumption (ii), it follows then that[[Mi−1]]Φ ≈ [[Mi]]Φ, for all i, 1 ≤ i ≤ b. Hence,

[[M ]]Φ = [[M0]]Φ ≈ [[Mb]]Φ. (2.3)

Carrying out the same process forNσ through(Nσ)0, (Nσ)1, ...,(Nσ)b′ we arrive at

[[(Nσ)]]Φ = [[(Nσ)0]]Φ ≈ [[(Nσ)b′ ]]Φ. (2.4)

Since we supposed thatM ∼= N , that is,pattern(M) = pattern(Nσ), and thereforeMb =
pattern(M) and(Nσ)b′ = pattern(Nσ), we have

[[Mb]]Φ = [[(Nσ)b′ ]]Φ. (2.5)

Then, it is clearly true that
[[N ]]Φ = [[Nσ]]Φ (2.6)

because permuting the keys inN does not have any effect in the distributions. Putting together
Equations (2.3), (2.4), (2.5) and (2.6) the soundness result follows:

[[M ]]Φ ≈ [[N ]]Φ.
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Remark 3. The reader might ask why we do not have a similar general theorem for key-cycles
and KDM-like security. The reason is that this general soundness theorem tells us in which
conditions the several steps of the Abadi-Rogaway hybrid argument can be carried out. One of
the conditions is that by doing one step of replacement, we must obtain equivalent interpretations,
provided that we have the appropriate security notion. However, in our theorem using KDM
security to solve the key-cycles issue, there is only one step of replacement! All the replacements
of undecryptable terms is done at once. Therefore, in a general theorem (without assuming a
specific security level), the condition of the theorem would have to be exactly what we would
want to prove.

Example 2.12 (Type-1 Soundness).The soundness theorem we presented earlier for type-1
encryption schemes is a special case of the theorem above. In this caseExpV = Exp; the
equivalence relation≡C is as in Example2.6, which is proper as we mentioned in Example2.10;
and the equivalence relation≡K is trivial here, all keys are equivalent. The elementsµ ∈ QEnc are
in one-to-one correspondence with the possible length, so the patterns that we obtain this way are
essentially the same what we defined in Section2.3.1, and the equivalence of expressions will be
∼=1 that we also defined there. In order to see that condition (ii) of the general soundness theorem
is satisfied for type-1, we will use the following equivalent definition of type-1 secure encryption
schemes: we can also say that an encryption-scheme istype-1 secureif no PPT adversaryA can
distinguish the pair of oracles(E(k, ·, ·, 0), E(k′, ·, ·, 0)) and(E(k, ·, ·, 1), E(k, ·, ·, 1)) ask andk′

are independently generated, that is, for all PPT adversariesA:

Pr
[
k, k′ ←− K(1η) : AE(k,·,·,0),E(k′,·,·,0)(1η) = 1

]
−

Pr
[
k ←− K(1η) : AE(k,·,·,1),E(k,·,·,1)(1η) = 1

] ≤ neg (η)

where the oracleE(k, ·, ·, 0), upon the submission of two messages with equal lengths encrypts
the first, and the oracleE(k, ·, ·, 1) encrypts the second.

To show that condition (ii) of Theorem2.14holds, we first have to choose{Cν}ν∈µ(C) for
a given setC = {{Ni}Li

}n
i=1. We can choose any family{Cν}ν∈µ(C) such that all theCν are

encrypted with the same key, let’s call itL0, that is not present in any of the{Ni}Li
(neither in

M ). This is possible, because, as it is easy to check,νkey = Keys for all ν ∈ QEnc. Then, letM
be as in condition (ii). We need to show that if{{Nij}L}l

j=1 ⊆ C and if we denote byM ′ the
expression obtained fromM by replacing each{Nij}L with Cµ({Nij

}L), then[[M ]]Φ ≈ [[M ′]]Φ.
Suppose that[[M ]]Φ 6≈ [[M ′]]Φ, which means that there is an adversaryA that is able to distin-

guish the two distributions, that is

Pr[x ←− [[M ]]Φη : A(1η, x) = 1]− Pr[x ←− [[M ′]]Φη : A(1η, x) = 1]

is a non-negligible function ofη. We will show that this contradicts type-1 security. To this
end, we construct an adversary that can distinguish between the two pair of oracles above. This
adversary is the following probabilistic algorithm that access to the oraclesf andg:

algorithm Bf,g(1η,M)
for K ∈ Keys(M) \ {L,L0} do τ(K) ←− K(1η)
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y ←− CONVERT2(M)
b ←− A(1η, y)
return b

algorithm CONVERT2(N)
if N = K whereK ∈ Keys then

return τ(K)
if N = B whereB ∈ Blocks then

return B
if N = (M1,M2) then

x ←− CONVERT2(M1)
y ←− CONVERT2(M2)
return [x, y]

if N = {M1}L then
x ←− CONVERT2(M1)
y ←− CONVERT2(Mν) (where Cµ({M1}L) = {Mν}L0)
z ←− f(x, y)
return z

if N = {M1}L0 then
x ←− CONVERT2(M1)
y ←− g(x, x)
return y

if N = {M1}K (K 6∈ {L,L0}) then
x ←− CONVERT2(M1)
y ←− E(τ(K), x)
return y

Note that the algorithm CONVERT2 does almost the same as the algorithm CONVERT in Fig-
ure 2.1, except that while CONVERT carries out all the necessary encryptions, CONVERT2
makes the oracles carry out the encryptions forL andL0. Therefore, in the case, when the pair of
oracles(f, g) is (E(k, ·, ·, 0), E(k′, ·, ·, 0)), then CONVERT2(M) will be a random sample from
[[M ]]Φη , whereas if the pair of oracles used is(E(k, ·, ·, 1), E(k, ·, ·, 1)), then CONVERT2(M)
will be a random sample from[[M ′]]Φη . Thus,

Pr
[
k, k′ ←− K(1η) : BE(k,·,·,0),E(k′,·,·,0)(1η,M) = 1

]
= Pr[x ←− [[M ]]Φη : A(1η, x) = 1]

and

Pr
[
k ←− K(1η) : BE(k,·,·,1),E(k,·,·,1)(1η,M) = 1

]
= Pr[x ←− [[M ′]]Φη : A(1η, x) = 1]

But, according to our assumption,[[M ]]Φ and[[M ′]]Φ can be distinguished, that is,

Pr[x ←− [[M ]]Φη : A(1η, x) = 1]− Pr[x ←− [[M ′]]Φη : A(1η, x) = 1]
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is a non-negligible function ofη and so, there is an adversaryBf,g(1η, ·) such that

Pr
[
k, k′ ←− K(1η) : BE(k,·,·,0),E(k′,·,·,0)(1η, M) = 1

]
−

Pr
[
k ←− K(1η) : BE(k,·,·,1),E(k,·,·,1)(1η,M) = 1

]

is also a non-negligible function ofη. This implies that our scheme cannot be type-1 secure,
which contradicts the assumption. Hence, we cannot have[[M ]]Φ 6≈ [[M ′]]Φ. Hence, condition (ii)
of the general soundness theorem is satisfied, so soundness holds for the type-1 case.

Example 2.13 (Type-2 Soundness).The soundness theorem we presented earlier for type-2
encryption schemes is also a special case of the theorem above. In this caseExpV = Exp; the
equivalence relation≡C is as in Example2.7, which is proper as we mentioned in Example2.9;
and the equivalence relation≡K is trivial here, all keys are equivalent. The elementsµ ∈ QEnc

are in one-to-one correspondence with the keys, so we can sayQEnc ≡ Keys, and thus the boxes
are labelled with keys. In this caseΦ gives an interpretation in the computational setting. Then
for a setC = {{Ni}Li

}n
i=1 as in condition (ii) of the theorem, we can takeCLi

:= {0}Li
, and

then condition (ii) is satisfied, because the following proposition holds:

Proposition 2.15. Consider an expressionM , and a keyL ∈ Keys(M). Suppose that for some
expressionsM1,M2, ..., Ml ∈ Exp, {M1}L, {M2}L, ..., {Ml}L v M , and assume also thatL
does not occur anywhere else inM . Then, denoting byM ′ the expression that we get fromM by
replacing each of{Mi}L that are not contained in any ofMj (j 6= i) by {0}L, [[M ]]Φ ≈ [[M ′]]Φ
holds when the expressions are interpreted with a type-2 encryption scheme.

Proof. We can assume, without loss of generality, that{Mi}L is a subexpression of{Mj}L

only if i < j. Suppose that[[M ]]Φ 6≈ [[M ′]]Φ, which means that there is an adversaryA that
distinguishes the two distributions, that is

Pr(x ←− [[M ]]Φη : A(1η, x) = 1)− Pr(x ←− [[M ′]]Φη : A(1η, x) = 1)

is a non-negligible function ofη. We will show that this contradicts type-2 security. To this
end, we construct an adversary that can distinguish between the oraclesE(k, ·) andE(k, 0). This
adversary is the following probabilistic algorithm that access to the oraclef :

algorithm Bf (1η,M)
for K ∈ Keys(M) \ {L} do τ(K) ←− K(1η)
y ←− CONVERT2(M)
b ←− A(1η, y)
return b

algorithm CONVERT2(N)
if N = K whereK ∈ Keys then

return τ(K)
if N = B whereB ∈ Blocks then



2.5. A General Treatment for Symmetric Encryption 55

return B
if N = (N1, N2) then

x ←− CONVERT2(N1)
y ←− CONVERT2(N2)
return [x, y]

if N = {N1}L then
x ←− CONVERT2(N1)
y ←− f(x)
return y

if N = {N1}K (K 6= L) then
x ←− CONVERT2(N1)
y ←− E(τ(K), x)
return y

Note that the algorithm CONVERT2 does almost the same as the algorithm CONVERT in Fig-
ure2.1, except that while CONVERT carries out all necessary encryptions, CONVERT2 makes
the oracles carry out the encryptions forL. Therefore, in the case, when the oraclef is E(k, ·),
then CONVERT2(M) will be a random sample from[[M ]]Φη , whereas if the oracle used is
E(k, 0), then CONVERT2(M) will be a random sample from[[M ′]]Φη . Thus,

Pr
[
k ←− K(1η) : BE(k,·)(1η,M) = 1

]
= Pr[x ←− [[M ]]Φη : A(1η, x) = 1]

and

Pr
[
k ←− K(1η) : BE(k,0)(1η,M) = 1

]
= Pr[x ←− [[M ′]]Φη : A(1η, x) = 1]

But, according to our assumption,[[M ]]Φ and[[M ′]]Φ can be distinguished, that is,

Pr[x ←− [[M ]]Φη : A(1η, x) = 1]− Pr[x ←− [[M ′]]Φη : A(1η, x) = 1]

is a non-negligible function ofη and so, there is an adversaryBf (1η, ·) that can distinguish the
oraclesE(k, ·) andE(k, 0), for randomly generated keysk. This implies that our scheme cannot
be type-2 secure, which contradicts the assumption. Hence, we cannot have[[M ]]Φ 6≈ [[M ′]]Φ.

Hence, condition (ii) of the general soundness theorem is satisfied, so soundness holds for
the type-2 case.

Example 2.14 (Soundness for One-Time Pad).In order to see that the formal treatment of
Section sec:OTP is a special case of the general formalism, take≡C so that two encryption terms
are equivalent, iff (again) the encryption terms have the same encrypting key. The equivalence
of keys,≡K is defined with the help of a length-functionl on the keys: two keys are equivalent
iff they have the same length. The boxes will again be indexed by the encrypting keys. Then
for a setC = {{Ni}Li

}n
i=1 as in condition (ii), takeCLi

:= {0l(Li)−3}Li
(where0l(Li)−3 means

l(Li)−3 many0’s). It is not hard to check that within this setting, condition (ii) of the soundness
theorem is satisfied, which is an immediate consequence of the following proposition:
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Proposition 2.16. Consider a valid expressionM ∈ ExpOTP, and a keyK0 ∈ Keys(M). Sup-
pose that for some expressionM0, {M0}K0 is a subexpression ofM , and assume also thatK0

does not occur anywhere else inM . Then, denoting byM ′ the expression that we get fromM by
replacing{M0}K0 with {0l(K0)−3}K0 (where0l(K0)−3 denotes as string consisting ofl(K0) − 3
many0’s), the following is true whenΦ is the interpretation for OTP:

[[M ]]Φ = [[M ′]]Φ. (2.7)

Proof. The basic properties of the OTP ensure thatΦ({M0}K0) is evenly distributed over the set
of l(K0) long strings ending with110, no matter whatM0 is. So the distribution ofΦ({M0}K0)
agrees with the distribution ofΦ({0l(K0)−3}K0). Also, sinceK0 is assumed not to occur anywhere
else,ΦM(K0) is independent of the interpretation of the rest of the expressionM , and therefore,
Φ({M0}K0) andΦ({0l(K0)−3}K0) are both independent of the interpretation of the rest of the
expression. Hence, replacingΦ({M0}K0) with Φ({0l(K0)−3}K0) will not effect the distribution.

2.5.5 Parsing Process

The technique that we present in this chapter will be very useful in the course of proving our
completeness results. The idea can be summarised as follows: Given a sample elementx ←−
[[M ]]Φ, x is built from blocks and randomly generated keys which are paired and encrypted. Some
of the keys that were used for encryption whenx was built might be explicitly contained inx,
and in this case, using these keys, we can decrypt those ciphers that were encrypted with these
revealed keys. The problem is though, that looking atx, it might not be possible to tell where
blocks, keys, ciphers and pairs are in the string of bits, since we did not assume in general that
we tag strings as we did for OTP. However, and we will exploit this fact repeatedly in our proofs,
if we know thatx was sampled from[[M ]]Φ for a fixed, known expressionM , then by looking at
M , we can find inx the locations of blocks, keys, ciphers and pairs, and we can also tell from
M , where the key decrypting a certain cipher is located. On the following couple of pages, we
present a machinery that, using the form of an expressionM , extracts from anx ←− [[M ]]Φ
everything that is possible via decryption and depairing, and distributes the extracted elements
over a special Cartesian product of copies ofstrings.

Throughout this section, we assume that∆ = (ExpV ,≡K,≡C) and an interpretationΦ in a
general symmetric encryption schemeΠ = ({Ki}i∈I , E ,D,≈) is given.

In this chapter we will often use the notion ofsubexpression occurrenceof/in M . This
means a subexpression together with its position inM . The reason for this distinction is that
a subexpression can occur several times inM , and we want to distinguish these occurrences.
But, to avoid cumbersome notation, we will denote the subexpression occurrence just as the
subexpression itself. We start by defining the notion of 0-level subexpression occurrences of an
expressionM :

Definition 2.39 (Level 0 Subexpression Occurrences).For an expressionM , let us calllevel 0
subexpression occurrencesall those subexpression occurrences inM that are not encrypted. Let
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sub0(M) denote the set of all level 0 subexpression occurrences inM . We writeN v0 M if N
is a level 0 subexpression occurrence ofN in M .

For an elementx ←− [[M ]]Φ, the first thing to do is to extract everything that is not encrypted,
which means that we have to break up all pairs inx, and replace them with mathematical pairs.
This process reveals the unencrypted blocks, keys and ciphers inx (i.e., the computational or
statistical realisations of the 0-level subexpression occurrences).

Definition 2.40 (Blowup Function). For each valid expressionM , we define theblowup func-
tionB(M), onstrings inductively as follows:

B(K)x := x for K key

B(B)x := x for B block

B((M1,M2))x := (B(M1)⊕ B(M2)) ◦ [·, ·]−1(x)

B({N}K)x := x.

WhereB(M1)⊕ B(M2) denotes the function(x, y) 7→ (B(M1)x,B(M2)y).

The elementB(M)x is an element ofT0(M), which we define inductively the following way:

Definition 2.41 (Associated 0-Tree).The0-tree associatedto a pair of expressionsN andM
wheneverN v0 M , will be denoted byT0(N,M), and we define it inductively as follows:

T0(K,M) := strings

T0(B,M) := strings

T0((M1,M2),M) := T0(M1,M)× T0(M2,M)

T0({M ′}K ,M) := strings

Let T0(M) := T0(M, M).

We remind the reader that we do not identify(strings×strings)×strings with strings×
(strings× strings).

Note also that for expressionsN v0 M ′ andN v0 M , we have thatT0(N,M ′) = T0(N,M).
Nevertheless, we includedM in the definition ofT0 since for higher order trees, which we shall
define later, theM in the second argument will make a difference.

Example 2.15.For the expression

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

sub0(M) =

=





{0}K6 , {{K7}K1}K4 , K2,
{{001}K3 , {K6}K5)

}
K5

, {K5}K2 ,
(
{0}K6 , {{K7}K1}K4

)
,

(
K2,

{
({001}K3 , {K6}K5)

}
K5

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

)
,M





,
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and
T0(M) =

(
strings× strings

)
×

((
strings× strings

)× strings
)
.

Blocks, keys and ciphers are replaced bystrings, pairs are replaced by×. An elementx sampled
from [[M ]]Φ looks like [ [

c1 , c2

]
,

[ [
k , c3

]
, c4

] ]

wherec1 is a sample from[[{0}K6 ]]Φ, c2 is a sample from[[{{K7}K1}K4 ]]Φ, k is a sample from
[[K2]]Φ, c3 is a sample from[[

{
({001}K3 , {K6}K5)

}
K5

]]Φ, andc4 is a sample from[[{K5}K2 ]]Φ.
When we apply the blow-up function to this elementx, we obtain

( (
c1 , c2

)
,

( (
k , c3

)
, c4

) )

which is an element ofT0(M).

Proposition 2.17.For an expressionM , if x ←− [[M ]]Φ, thenB(M)(x) ∈ T0(M).

Proof. Immediate from the definitions ofB andT0.

Perhaps it is even clearer if we label the copies ofstrings in T0(M) with the formal expres-
sions that they belong to:

T ′
0 (K,M) := stringsK

T ′
0 (B,M) := stringsB

T ′
0 ((M1,M2),M) := T ′

0 (M1,M)× T ′
0 (M2,M)

T ′
0 ({M ′}K ,M) := strings{M ′}K

.

In our example,

T ′
0 (M, M) =

(
s{0}K6

× s{{K7}K1
}K4

)
×

((
sK2 × s{({001}K3

,{K6}K5
)}K5

)× s{K5}K2

)
,

where we useds as a shorthand forstrings.
In the previous example,c4 is a random sample from[[{K5}K2 ]]Φ, and the function that

projects onto the last copy ofstrings in T0(M), namely, ontostrings{K5}K2
, extractsc4 from

the blow-up. Similarly, projecting onto the other copies ofstrings, we extract samples form
[[{0}K6 ]]Φ, [[{{K7}K1}K4 ]]Φ etc. To implement this idea in the general situation, we define what
we can call the “0-Get Function”G0(N, M) for an expressionM and a subexpression occurrence
N , wheneverN is not encrypted inM . Forx ←− [[M ]]Φ, the purpose ofG0(N,M) is to extract
from B(M)x the sample of[[N ]]Φ that was used for computingx. The precise definition is the
following:
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Definition 2.42 (0-Get Function). For subexpression occurrencesN v0 N ′ v0 M , we define
the0-get function associatedto the triple (N,N ′,M ), G0(N, N ′,M) : T0(N

′,M) → T0(N,M)
inductively inN ′ as follows:

G0(N,N, M) := idT0(N,M)

G0(N, (M1,M2),M) :=

{ G0(N,M1,M) ◦ π1
T0(M1,M)×T0(M2,M) if N occurs inM1,

G0(N,M2,M) ◦ π2
T0(M1,M)×T0(M2,M) otherwise

We defineG0(N,M) := G0(N, M, M).

Example 2.16.In the previous example,

G0

({0}K6 ,M
)
, G0

({{K7}K1}K4 ,M
)

: T0(M) → strings

G0

({0}K6 ,M
)(

(x1, x2), ((x3, x4), x5)
)

= x1,

G0

({{K7}K1}K4 ,M
)(

(x1, x2), ((x3, x4), x5)
)

= x2,

etc; that is,G0

({0}K6 ,M
)

does the projection ontostrings{0}K6
, G0

({{K7}K1}K4 ,M
)

does the

projection ontostrings{{K7}K1
}K4

, etc.

Observe, that for two expressionsM andN , if T0(M) = T0(N), then for anyM ′ ∈ sub0(M),
there is a uniqueN ′ ∈ sub0(N) such thatG0(M

′,M) = G0(N
′, N). This motivates the following

definition:

Definition 2.43 (Same Position of Subexpression Occurrences).For two expressionsM and
N , if T0(M) = T0(N), we say thatM ′ ∈ sub0(M) andN ′ ∈ sub0(M) are in the same position
at level 0, if

G0(M
′,M) = G0(N

′, N).

Let
Γ0(N,M) : sub0(M) → sub0(N)

denote the unique bijection such that

G0(M
′,M) = G0(Γ0(N, M)M ′, N)

for all M ′ ∈ sub0(M).

Example 2.17.Let N = ((0, 0), ((0, 0), 0). Then, ifM denotes the expression from the previous
examples,T0(N) = T0(M). Enumerating the0’s in N , we get the subexpression occurrences
01 = 0, 02 = 0, 03 = 0, 04 = 0 and05 = 0, with N = ((01, 02), ((03, 04), 05). We have that:

Γ0(N, M){0}K6 = 01

Γ0(N, M){{K7}K1}K4 = 02

Γ0(N, M)K2 = 03

Γ0(N, M)
{
({001}K3 , {K6}K5)

}
K5

= 04

Γ0(N, M){K5}K2 = 05

Γ0(N, M)
(
{0}K6 , ({{K7}K1}K4

)
= (01, 02)

etc.
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For an expressionM , let CM denote the set of all those subexpression occurrences inM
which are ciphers encrypted by recoverable keys, i.e.,

CM = {{M ′}K v M | {M ′}K ∈ vis (M) and K ∈ R-Keys(M)}.
We emphasise that in the previous definition we are referring to subexpression occurrences, that
is, if an encryption term is encrypted with a recoverable key occurs twice inM , then it will be
listed twice inCM . Since we assume that the elements of this set are encrypted by recoverable
keys, it is possible to decrypt these elements one after the other, using only information contain-
ing M . Therefore, it is possible to enumerate the elements of this set in an order in which we
can decrypt them by taking keys fromM , decrypting what is possible with these keys and hence
revealing more keys and then decrypting again with those keys etc. Let the total number of this
set be denoted byc(M). Then

CM = {C1, C2, ..., Cc(M)}.
Note that this enumeration is not unique. Also, note that the numbering does not mean that you
can decrypt the ciphers only in this order. LetCi

key denote the key that is used in the encryption
Ci and letCi

text denote the encrypted expression.

Example 2.18.In our example, the only possible way to enumerate is

C1 = {K5}K2

C2 =
{
({001}K3 , {K6}K5)

}
K5

C3 = {K6}K5

C4 = {0}K6 .

Now, to each expressionM , we associate the “1-Decrypting Function”D1(M). It acts on
T0(M) and works as follows: for anyt ∈ T0(M), the functionD1(M) extractsG0(C

1, M)t from
stringsC1, G0(C

1
key,M)t from stringsC1

key
, and with the latter decrypts the former if that is

possible (namely, if they are of the right form: the former a cipher and the latter a key). The result
is then broken into mathematical pairs, and what we get this way is put in the last component of
the setstrings × {0} × T0(C

1
text), while G0(C

1
key,M)t goes into the first component. That is,

the following element is created:
(
G0(C

1
key,M)t , 0 , B(Ci

text)
(
D(G0(C

1
key,M)t,G0(C

1,M)t
) ) )

.

If
(G0(C

1
key,M)t,G0(C

1,M)t
)

/∈ DomD, thenD1(M) outputs(0, 0, 0). The rest ofT0(M)
is left untouched. We warn the reader for the similarity of notations between the decryption
algorithm of the encryption schemeD(·, ·), and the 1-Decrypting functionD1(·). This notation
is convenient asDi(M) is the function that decrypts the ciphers encrypted with recoverable keys
at level-i. We will always index this functions with the respective indexi to avoid confusions.

Let us introduce the notation

T C1

0 (M) =
{
t ∈ T0(M)

∣∣ (G0(C
1
key,M)t,G0(C

1,M)t
) ∈ DomD

}
.

Then,
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Definition 2.44 (1-Decrypting Function). For expressionsN v0 M , we define the function
D1(N,M) onT0(M) inductively as follows: Lett ∈ T0(M). Then

D1(K,M)t := G0(K,M)t

D1(B,M)t := G0(B,M)t

D1({M ′}K , M)t := G0({M ′}K ,M)t if K /∈ R-Keys(M)

D1((M1,M2),M)t :=
(D1(M1,M)t , D1(M2,M)t

)

D1(C
j,M)t :=

:=





(
G0(C

1
key,M)t, 0,B(C1

text)
(D(G0(C

1
key, M)t,G0(C

1,M)t)
))

if t ∈ T C1

0 (M) and j = 1

(0, 0, 0) if t 6∈ T C1

0 (M) and j = 1
G0(C

j,M)t if j > 1

We introduce the notationD1(M) := D1(M, M), this is what we will be interested in.

We remark, that it is not important how we defineD1(C
1,M)t whent 6∈ T C1

0 (M), we will
not need that. We chose(0, 0, 0) just for convenience.

Example 2.19.In our running example we have

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
.

With the choiceC1 = {K5}K2, we obtain

D1(M)
(
(x1, x2), ((x3, x4), x5)

)
=





((
x1, x2

)
,
(
(x3, x4),

(
x3, 0,B({K5}K2)(D(x3, x5))

)))

if (x3, x5) ∈ DomD(
(x1, x2), ((x3, x4), (0, 0, 0)

)
otherwise

The target set ofD0(M) is naturally notT0(M), because instead of the copy ofstrings
corresponding toC1 we now have a set of the formstrings × 0 × T0(C

1
text). We will call this

new setT1(M), and so we extend the definition ofT0 to higher order, up toTc(M)(M). First we
need the following:

Definition 2.45 (Level i Subexpression Occurrences).We will say that a subexpression oc-
currenceN v M is level i with respect toCM , and denote this relation byN vi M , if the
occurrenceN is not in the occurrenceCj wheneveri < j. Let subi(M) denote the set of leveli
subexpression occurrences.

Notice, that the leveli subexpression occurrences are all those which are revealed onceC1,
C2, ... ,C i are decrypted.
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Definition 2.46 (Associatedi-Tree). We inductively define thei-tree associatedto a pair of
expressionsN vi M , and denote it byTi(N, M):

Ti(K,M) ::= strings

Ti(B,M) := strings

Ti((M1,M2),M) := Ti(M1,M)× Ti(M2,M)

Ti(C
j,M) :=

{
strings× {0} × Ti(C

j
text,M) if j ≤ i

strings otherwise

Ti−1({M ′}K ,M) := strings for K 6∈ R-Keys(M)

Let Ti(M) := Ti(M, M).

Note that we only “open” the encryptions performed with the keys inR-Keys(M) and at each
stepi we only open theCj such thatj ≤ i.

Fact 2.47.For any expressionsM andN , we have thatTi(M) ∩ Ti(N) = ∅ or Ti(M) = Ti(N).

Similarly, we need to defineGi(N,M) andDi(M) for 0 < i ≤ c(M). The first one projects
onto the copy ofstrings in Ti(M) that corresponds toN , and the second maps an element in
Ti−1(M) into Ti(M) decrypting the string corresponding toCi with the appropriate key.

Definition 2.48 (i-Get Function). For subexpression occurrencesN vi M , N ′ vi M (0 ≤
i ≤ c(M)) such thatN occurs inN ′, we define the mapi-get-function associatedto the triple
(N,N ′,M ), Gi(N, N ′,M) : Ti(N

′,M) → Ti(N, M) inductively as follows:

Gi(N, N, M) := idTi(N,M)

Gi(N, (M1,M2),M) :=

{ Gi(N,M1,M) ◦ π1
Ti(M1,M)×Ti(M2,M) if N v M1

Gi(N,M2,M) ◦ π2
Ti(M1,M)×Ti(M2,M) otherwise

Gi(N, Cj,M) := Gi(N,Cj
text,M) ◦ π3

Ti(C
j
key,M)×{0}×Ti(C

j
text,M)

, for j ≤ i, N 6= Cj

Define
Gi(N,M) := Gi(N, M, M).

Definition 2.49 (Same Position of Subexpression Occurrences).For two expressionsM and
N , if Ti(M) = Ti(N), we say thatM ′ ∈ subi(M) andN ′ ∈ subi(M) are in the same position at
leveli, if

Gi(M
′,M) = Gi(N

′, N).

Let
Γi(N, M) : subi(M) → subi(N)

denote the unique bijection such that

Gi(M
′,M) = Gi(Γi(N, M)M ′, N)

for all M ′ ∈ subi(N).
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Let

T Ci

i−1(M) =
{
t ∈ Ti−1(M)

∣∣ (Gi−1(C
i
key,M)t,Gi−1(C

i,M)t
) ∈ DomD

}
.

Definition 2.50 (i-Decrypting Function). For expressionsN vi−1 M and1 ≤ i ≤ c(M), we
define the mapDi(N,M) : Ti−1(M) → Ti(N, M) inductively as follows: Lett ∈ Ti−1(M)

Di(K, M)t := Gi−1(K,M)t

Di(B, M)t := Gi−1(B,M)t

Di({M ′}K ,M)t := Gi−1({M ′}K ,M)t if K /∈ R-Keys(M)

Di((M1, M2),M)t := (Di(M1,M)t,Di(M2, M)t)

Di(C
j,M)t :=

=





(
Gi−1(C

j
key,M)t, 0,Di(C

j
text, M)) if j < i(

Gi−1(C
i
key,M)t, 0,B(Ci

text)
(D(Gi−1(C

i
key,M)t,Gi−1(C

i,M)t)
))

, t ∈ T Ci

i−1(M), j = i

(0, 0, 0) if t 6∈ T Ci

i−1(M) and j = i
Gi−1(C

j,M)t if j > i

Let
D(M) := Dc(M)(M) ◦ ... ◦ D1(M) ◦ B(M)

The composition of functionsDi(M) (in order) decrypt all the ciphers that are encrypted with
recoverable keys. At the end,D(M) decrypts all ciphers encrypted with recoverable keys upon
an input from sampling[[M ]]Φ.

Example 2.20.In our on-going example,

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

If y is a sample from[[M ]]Φ, thenD(M)y has the form
((

(y6, 0, 0), y1

)
,

((
y2,

(
y5, 0, (y3, (y5, 0, y6))

))
,
(
y2, 0, y5

))
)

,

Wherey2, y5, y6 are outcomes of the key-generation algorithmsKφ(K2), Kφ(K5), Kφ(K6) respec-
tively, y1 is an undecryptable sample element from[[{{K7}K1}K4 ]]Φ, andy3 is an undecryptable
sample from[[{001}K3 ]]Φ. Moreover,(y6, 0, 0) indicates that the keyy6 encrypts the plaintext0,
(y2, 0, y5) indicates that the keyy2 encrypts the plaintexty5 (which is also a key), and so on.

The following lemma essentially claims that if the interpretation is such that conditions (i)
and (ii) below hold, then for any two valid expressionsM andN , the distribution ofD(M)x,
wherex is sampled from[[M ]]Φ (letD(M)([[M ]]Φ) denote this distribution), is indistinguishable
from the distribution ofD(N)y, wherey is sampled from[[N ]]Φ whenever[[M ]]Φ ≈ [[N ]]Φ.

For a functionf on strings, let f([[M ]]Φ) denote the probability distribution off(x) asx is
sampled from[[M ]]Φ.
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Lemma 2.18. Let ∆ = (ExpV ,≡K,≡C) be a formal logic for symmetric encryption, and letΦ
be an interpretation ofExpV in Π = ({Ki}i∈I , E ,D,≈). Suppose that this realisation satisfies
the following properties for anyK, K ′, K ′′ ∈ Keys, B ∈ Blocks, M, M ′, N ∈ ExpV :

(i) no pair of [[K]]Φ, [[B]]Φ, [[(M, N)]]Φ, [[{M ′}K′ ]]Φ are equivalent with respect to≈; that is,
keys, blocks, pairs, ciphers are distinguishable.

(i) If [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, thenK ′ = K ′′.

Let M andN be valid formal expressions. LetCM = {C1
M , ...C

c(M)
M } be an enumeration of all

ciphers encrypted by recoverable keys inM such that they can be decrypted in this order. Then,
[[M ]]Φ ≈ [[N ]]Φ implies thatc(M) = c(N), andCN = {C1

N , ..., C
c(N)
N } can be enumerated in the

order of decryption such thatΓc(M)(N,M)Ci
M = Ci

N . Moreover, with this enumeration ofCN ,
Di(M) = Di(N), and

D(M)([[M ]]Φ) ≈ D(N)([[N ]]Φ)

Proof. Let M andN be expressions such that[[M ]]Φ ≈ [[N ]]Φ. Since we assumed condition (i)
and since the equivalence≈ is assumed to be invariant under depairing, the pairs that are not
encrypted inM and inN must be in the same positions, and soB(M) = B(N) must hold. Since
the blow-up function is obtained by repeated application of the inverse of the pairing function,
projecting and coupling,

B(M)([[M ]]Φ) ≈ B(N)([[N ]]Φ). (2.8)

As mentioned in Proposition2.17, if x is sampled from[[M ]]Φ, thenB(M)x ∈ T0(M). Therefore,

T0(M) = T0(N).

SinceT0(M) = T0(N), there is a unique bijection

Γ0(N, M) : sub0(M) → sub0(N)

that satisfies
G0(M

′,M) = G0(Γ0(N,M)M ′, N).

Let C1
M = {C1

M,text}C1
M,key

andL1 := Γ0(N, M)C1
M,key. L1 must be a key for the following

reason:
(G0(C

1
M,key,M) ◦ B(M))([[M ]]Φ) ≈ (G0(C

1
M,key,M) ◦ B(M))([[N ]]Φ),

since we again apply the same function,G0(C
1
M,key,M) ◦ B(M) on [[M ]]Φ and [[N ]]Φ, and this

function is made up of depairing, projecting and coupling. But, for the left hand side we clearly
have

(G0(C
1
M,key,M) ◦ B(M))([[M ]]Φ) = [[C1

M,key]]Φ,

and for the right hand side,

(G0(C
1
M,key, M) ◦ B(M))([[N ]]Φ) = (G0(L1, N) ◦ B(N))([[N ]]Φ) = [[L1]]Φ.
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Therefore, by assumption (i)L1 must be a key. Similarly,

(G0(C
1
M ,M) ◦ B(M))([[M ]]Φ) ≈ (G0(C

1
M ,M) ◦ B(M))([[N ]]Φ).

The left-hand side equals[[C1
M ]]Φ, hence we need to have an interpretation of a cipher on the right

too, implying that for someN ′ expression andL key,

Γ0(N,M)C1
M = {N ′}L

and hence
G0(C

1
M ,M) = G0({N ′}L, N). (2.9)

Then, according to the foregoing,
(G0(C

1
M,key,M),G0(C

1
M ,M)

) ◦ B(M)) =
(G0(L1, N),G0({N ′}L, N)

) ◦ B(N),

and therefore,
((G0(C

1
M,key,M),G0(C

1
M ,M)

) ◦ B(M)
)(

[[M ]]Φ
) ≈

((G0(L1, N),G0({N ′}L, N)
) ◦ B(N)

)(
[[N ]]Φ

)
.

But, the left-hand side equals[[(C1
M,key, C

1)]]Φ, whereas the right-hand side is[[(L1, {N ′}L)]]Φ, so
we have

[[(C1
M,key, C

1
M)]]Φ ≈ [[(L1, {N ′}L)]]Φ.

By assumption (ii) then,L = L1 follows, becauseC1
M = {C1

M,text}C1
M,key

. But then we can
choose the first element ofCN to be the occurrence{N ′}L1, and with this choice,

D1(M) = D1(N).

Therefore
D1(M)(B(M)([[M ]]Φ)) ≈ D1(N)(B(N)([[N ]]Φ)),

and therefore,
T1(M) = T1(N),

becauseD1(M)(B(M)([[M ]]Φ)) gives a distribution onT1(M), andD1(N)(B(N)([[N ]]Φ)) gives
a distribution onT1(N).

An argument similar to the one above shows that

D2(M) = D2(N).

Namely, there is a unique bijection

Γ1(N, M) : sub1(M) → sub1(N)

satisfying
G1(M

′,M) = G1(Γ1(N,M)M ′, N).
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Then, just as we proved forL1, L2 := Γ1(N, M)C2
key must be a key, and

Γ1(N,M)C2 = {N ′′}L2

for someN ′′ expression, implying that

D2(M) = D2(N).

And so on. So

Dc(M)(M) ◦ ... ◦ D1(M)(B(M)([[M ]]Φ)) ≈ Dc(M)(N) ◦ ... ◦ D1(N)(B(N)([[N ]]Φ)),

since the functions applied on[[M ]]Φ and [[N ]]Φ are the same, and they are made up only of
depairing, projecting, coupling and decrypting. Then,c(M) ≤ c(N). Reversing the role ofM
andN in the argument, we get thatc(N) ≤ c(M), and soc(M) = c(N). Hence,

D(M) = D(N),

and
D(M)([[M ]]Φ) = D(N)([[N ]]Φ).

We illustrate our proof with the following example:

Example 2.21.Suppose again, that

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

and assume that conditions (i) and (ii) of the lemma are satisfied. Suppose thatN is also a valid
expression such that[[M ]]Φ ≈ [[N ]]Φ. Let

C1
M = {K5}K2

C2
M =

{
({001}K3 , {K6}K5)

}
K5

C3
M = {K6}K5

C4
M = {0}K6 .

M is a pair of two expressions:M = (M1, M2). Then, since[[(M1,M2)]]Φ = [[N ]]Φ, condition (i)
of the lemma ensures thatN must be a pair too:N = (N1, N2). Then, since

[[M1]]Φ = π1
strings×strings

◦ [·, ·]−1([[M ]]Φ),

and
[[N1]]Φ = π1

strings×strings
◦ [·, ·]−1([[N ]]Φ)
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(whereπ1
strings×strings

denotes projection onto the first component ofstrings × strings), and
since≈ is assumed to be preserved by depairing and projecting, it follows that

[[M1]]Φ ≈ [[N1]]Φ.

Therefore, sinceM1 is a pair,N1 must be a pair too. We recursively apply this argument and
this way we conclude, that the non-encrypted pairs inM are in the same position as the non-
encrypted pairs inN , hence

B(M) = B(N).

It also follows then, that

T0(M) =
(
strings× strings

)
×

((
strings× strings

)× strings
)

= T0(N).

At this point, we know thatN has the form

N =
((

N3, N4

)
,
(
(N5, N6), N7

))

Now, we tookC1
M to be{K5}K2, the corresponding string, which is a cipher, is located in the last

component ofT0(M). The key string that decrypts this cipher is located in the third component
of T0(M). Hence

G0(C
1
M ,M) = π5

T0(M)

and
G0(C

1
M,key,M) = π3

T0(M).

But then, sinceπi
T0(M) preserves≈, it follows that

π3
T0(M)(B(M)([[M ]]Φ)) ≈ π3

T0(M)(B(N)([[N ]]Φ)),

and
π5
T0(M)(B(M)([[M ]]Φ)) ≈ π5

T0(M)(B(N)([[N ]]Φ)).

It is also true that
π3
T0(N) = G0(N5, N).

But
G0(C

1
M,key,M)(B(M)([[M ]]Φ)) = [[K2]]Φ,

and
G0(N5, N)(B(N)([[N ]]Φ)) = [[N5]]Φ,

so
[[N5]]Φ ≈ [[K2]]Φ,

and hence, by the assumption (i) of the lemma, it follows thatN5 must also be a key, let us denote
it with L1. Similarly,

π5
T0(N) = G0(N7, N),
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but then
[[N7]]Φ ≈ [[{K5}K2 ]]Φ,

and thereforeN7 must be a cipher:N7 = {N ′}L for some expressionN ′ and keyL. To get that
L = L1, consider

(π3
T0(M), π

5
T0(M)) ◦ B(M)([[M ]]Φ) = [[(K2, {K5}K2)]]Φ

and
(π3
T0(N), π

5
T0(N)) ◦ B(N)([[N ]]Φ) = [[(L1, {N ′}L)]]Φ.

From this, since the left-hand sides are equivalent, we conclude that

[[(K2, {K5}K2)]]Φ ≈ [[(L1, {N ′}L)]]Φ,

which means by condition (ii) of the lemma that

L = L1.

Therefore, if we defineC1
N as{N ′}L, then these terms and the keys that decrypt them are also in

the same position, so
D1(M) = D1(N).

Remember from example2.19, thatD1(M) = D1(N) does the following:

D1(M)
(
(x1, x2), ((x3, x4), x5)

)
=





((
x1, x2

)
,
(
(x3, x4),

(
x3, 0,B({K5}K2)(D(x3, x5))

)))

if (x3, x5) ∈ DomD(
(x1, x2), ((x3, x4), (0, 0, 0)

)
otherwise,

so if x is sampled from[[M ]]Φ or [[N ]]Φ, thenD1(M)(B(M)x) = D1(N)(B(N)x) has the form

((
x1, x2

)
,
(
(x3, x4),

(
x3, 0, x6

)))
,

and

T1(M) = T1(N) =
(
strings×strings

)
×

((
strings×strings

)×(
strings×{0}×strings

))

Then, we continue this process until we show thatD4(M) = D4(N).

2.5.6 Completeness

We finally present our completeness result. Condition (ii) is equivalent to what the authors in
[HG03] call weak key-authenticity. Observe, that the issue of key-cycles never rise throughout
the proof.
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The proof consists of two separate parts. In the first, it is shown that conditions (i) and (ii)
imply that if M andN are valid expressions and[[M ]]Φ ≈ [[N ]]Φ, then there is a key-renaming
σ, such that apart from the boxes, everything else in the patterns ofM andNσ is the same, and
the boxes in the two patterns must be in the same positions. Moreover, condition (iii) implies
that picking any two boxes of the pattern ofNσ, there is a key-renamingσ1 such that applying
it to the indexes of these boxes, we obtain the corresponding boxes in the pattern ofM . Then
the theorem follows, if we prove that using these pairwise equivalences of the boxes, we can
construct aσ′ that leaves the keys ofNσ outside the boxes untouched, and it maps the indexes
of all the boxes ofNσ into the indexes of the boxes ofM .

Theorem 2.19. Let ∆ = (ExpV ,≡K,≡C) be a formal logic for symmetric encryption, such
that≡C is proper and that≡K and≡C are independent. LetΦ be an interpretation inΠ =
({Ki}i∈I , E ,D,≈). Completeness forΦ holds, if and only if the following conditions are satis-
fied: For anyK, K ′, K ′′ ∈ Keys, B ∈ Blocks, M, M ′, N ∈ ExpV ,

(i) no pair of [[K]]Φ, [[B]]Φ, [[(M, N)]]Φ, [[{M ′}K′ ]]Φ is equivalent with respect to≈; that is,
keys, blocks, pairs, encryption terms are distinguishable,

(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, thenK ′ = K ′′,

(iii) for any two pairs of valid encryption terms({M1}L1 , {M2}L2) and({N1}L′1 , {N2}L′2), we
have that

[[({M1}L1 , {M2}L2)]]Φ ≈ [[({N1}L′1 , {N2}L′2)]]Φ

implies
({M1}L1 , {M2}L2)

∼= ({N1}L′1 , {N2}L′2).

Proof. The only if part is trivial. In order to prove the if part, consider two expressionsM andN
such that[[M ]]Φ ≈ [[N ]]Φ. By condition (i) and (ii), Lemma2.18is applicable, so,c(M) = c(N),

D(M)([[M ]]Φ) ≈ D(N)([[N ]]Φ),

and
Tc(M)(M) = Tc(N)(N).

In each entry ofTc(M)(M) andTc(N)(N), the distribution corresponds either to the interpretation
of a key, or of a block, or of an undecryptable cipher (i.e. one that corresponds to a box). Natu-
rally, the same blocks must be in the same positions ofTc(M)(M) andTc(N)(N), because the dis-
tributions ofD(M)([[M ]]Φ) andD(N)([[N ]]Φ) are indistinguishable, and because of condition (i).
Hence, the patterns ofM andN contain the same blocks in the same positions. Moreover, since
D(M)([[M ]]Φ) andD(N)([[N ]]Φ) are indistinguishable, the entries inTc(M)(M) and inTc(N)(N)
containing strings sampled from key generation must be in the same places because of (i) again.
Furthermore, the indistinguishability ofTc(M)(M) andTc(N)(N) also implies that repetitions of
a key generation outcome must occur in the same positions ofTc(M)(M) andTc(N)(N) as well.
(This is a consequence of the properties of key-generation in definition2.29.) Therefore the key
symbols in the patterns ofM andN change together, so it is possible to rename the recoverable
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keys ofN (with a≡K preserving functionσ so that the keys in the pattern ofNσ are the same
as the keys in the pattern ofM .

Since the distributions ofD(M)([[M ]]Φ) andD(N)([[N ]]Φ) are indistinguishable, condition
(i) implies that the undecryptable ciphers occur in exactly the same entries inTc(M)(M) and
Tc(N)(N). This means, that in the pattern ofM andN , the boxes appear in the same position.
This together with the conclusions of the previous paragraph means, that apart from the boxes,
everything else in the pattern ofM and ofNσ must be the same. By replacingN with Nσ, we
can assume from now on that the recoverable keys ofN andM are identical, and that the pattern
of M andN are the same outside the boxes. Therefore, we only have to show that there is a key
renamingσ′ that carries the boxes ofN into the boxes ofM without changing the recoverable
keys.

Suppose that there arel boxes altogether in the pattern ofM (and hence in the pattern ofN ).
Let {M1}L1, {M2}L2,...,{Ml}Ll

be thel undecryptable terms inM that turn into boxes (inM )
and{N1}L′1, {N2}L′2, ...,{Nl}L′l the corresponding undecryptable terms inN . We denote byµi

andνi the equivalence classes of{Mi}Li
and{Ni}L′i, respectively, with respect to≡C. Then, as

we showed above, we have that fori, j ≤ l, i 6= j,

[[({Mi}Li
, {Mj}Lj

)]]Φ ≈ [[({Ni}L′i , {Nj}L′j)]]Φ

holds sinceD(M)([[M ]]Φ) andD(N)([[N ]]Φ) are indistinguishable, and thus, by condition (iii),

({Mi}Li
, {Mj}Lj

) ∼= ({Ni}L′i , {Nj}L′j).

So, by definition of∼= , there exists a key-renamingσi,j such that

(2µi
,2µj

) = (2σi,j(νi),2σi,j(νj)),

that is, there exists a key-renamingσi,j such that

µi = σi,j(νi) andµj = σi,j(νj). (2.10)

Consider now the classC = {{Ni}L′i}l
i=1. Since we assumed by hypothesis that≡C is proper,

by Proposition2.13(usingS = R-Keys(N) and noticing thatL′k 6∈ R-Keys(N)) we have that for
eachνk, equivalence class of{Nk}L′k , there is a representativeCνk

such that:

(i) Keys(Cνk
) ∩ R-Keys(N) = ∅,

(ii) L′m 6v Cνk
for all m ∈ {1, 2, . . . , l},

(iii) if νk1 6= νk2, |(νk1)key| 6= ∞ and|(νk2)key| 6= ∞, thenKeys(Cνk1
) ∩ Keys(Cνk2

) 6= ∅ if and
only if (νk1)key = (νk2)key = {K} for some keyK, and in that case

1. Keys(Cνk1
) ∩ Keys(Cνk2

) = {K},
2. Cνk1

andCνk2
are both of the form{·}K , and

3. K 6v Cνk1
, K 6v Cνk2

.
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(iv) if νk1 6= νk2 and either|(νk1)key| = ∞ or |(νk2)key| = ∞, thenKeys(Cνk1
) ∩ Keys(Cνk2

) =
∅.

We now define the key-renaming functionτ that leaves the recoverable keys ofM (andN )
untouched but that maps the boxes in the pattern ofN to the corresponding boxes in the pattern
of M . This definition is done by induction.

Induction Basis:Let us start by definingτ2.3 Since we assumed that≡C and≡K are inde-
pendent, it is possible to modifyσ1,2 such that the resulting renaming functionτ2 that we get
leaves

S2 =

(
l⋃

i=3

Keys(Cνi
) ∪ R-Keys(N)

)
\ (Keys(Cν1) ∪ Keys(Cν2))

untouched and is such that

τ2(ν1) = σ1,2(ν1) andτ2(ν2) = σ1,2(ν2).

If we combine the previous equations with (2.10) we have that

τ2(ν1) = σ1,2(ν1) = µ1

and
τ2(ν2) = σ1,2(ν2) = µ2.

Induction Hypothesis:Suppose now that we have definedτk in a such a way thatτk leaves
the keys in

Sk =

(
l⋃

i=k+1

Keys(Cνi
) ∪ R-Keys(N)

)
\

(
k⋃

i=1

Keys(Cνi
)

)
, (2.11)

untouched and is such that
τk(νi) = µi for all i ≤ k.

Inductive Step:There are two cases. First suppose thatνk+1 = νi for somei ≤ k. In this
case, we defineτk+1 = τk. It is obvious thatτk+1 leaves the keys of

Sk+1 =

(
l⋃

i=k+2

Keys(Cνi
) ∪ R-Keys(N)

)
\

(
k+1⋃
i=1

Keys(Cνi
)

)
,

untouched and is such that
τk+1(νi) = µi for all i ≤ k + 1,

sinceCνk+1
= Cνi

andνk+1 = νi.
In the other case, suppose thatνk+1 6= νi for all i ≤ k. Consider now the substitutionσj,(k+1)

with j ≤ k. By (2.10) we have that

µj = σj,(k+1)(νj)

3We define the base case asn = 2 to avoid some cumbersome notation.
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and
µk+1 = σj,(k+1)(νk+1). (2.12)

Since≡C and≡K are independent, considering

S =

(
l⋃

i=1

Keys(Cνi
) ∪ τk

(
l⋃

i=1

Keys(Cνi
)

)
∪ R-Keys(N)

)
\ Keys(Cνk+1

)

andC = {Cνk+1
}, we have that it is possible to modifyσj,(k+1) to σ∗ such that

σ∗(K) = K for all K ∈ S

and
σ∗(νk+1) = σj,(k+1)(νk+1).

Using (2.12), we can rewrite the previous equation as

σ∗(νk+1) = σj,(k+1)(νk+1) = µk+1.

Thus, we have two substitutions,τk andσ∗ such that

τk(νi) = µi for all i ≤ k (2.13)

and
σ∗(νk+1) = µk+1. (2.14)

Our goal now is to combine these two substitutions into one substitutionτk+1 such that

τk+1(νi) = µi for all i ≤ k + 1, (2.15)

and that leaves untouched the keys in

Sk+1 =

(
l⋃

i=k+2

Keys(Cνi
) ∪ R-Keys(N)

)
\

(
k+1⋃
i=1

Keys(Cνi
)

)
. (2.16)

We can immediately notice that by definition,τk only changes the keys in
(⋃k

i=1 Keys(Cνi
)
)

(recall (2.11)) and thatσ∗ only alters the keys inKeys(Cνk+1
), thus ensuring (2.16). We also

notice that from (2.13) and (2.14), (2.15) follows. So, if it is possible to “merge” the two substi-
tutions, the result follows. We do this by showing that the two substitutions are compatible. We
show that if both substitutions change the value of one keyK, then they change it to the same
value, that is, we show that if for a keyK, τk(K) 6= K andσ∗(K) 6= K thenτk(K) = σ∗(K).

Suppose that bothτk andσ∗ change the value of a keyK ′. Then, by the definition of the two
substitutions,

K ′ ∈
(

k⋃
i=1

Keys(Cνi
)

)
∩ Keys(Cνk+1

),
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that is
K ′ ∈ Keys(Cνi

) ∩ Keys(Cνk+1
), (2.17)

for somei ∈ {1, . . . , k}. By the way we constructed the representativesCνk
we have that for any

two different equivalence classesνk1 andνk2,

Keys(Cνi
) ∩ Keys(Cνk+1

) = ∅
(whenever|(νi)key| = ∞ or |(νk+1)key| = ∞) or

Keys(Cνk1
) ∩ Keys(Cνk2

) 6= ∅ if and only if (νk1)key = (νk2)key = {K},
and in that case

Keys(Cνk1
) ∩ Keys(Cνk2

) = {K}.
Applying these results to (2.17) we have that

(νi)key = (νk+1)key = {K ′}. (2.18)

Since{Ni}L′i ∈ νi and{Nk+1}L′k+1
∈ νk+1, we have thatL′i ∈ (νi)key andL′k+1 ∈ (νk+1)key, and

using (2.18) it follows that
K ′ = L′i = L′k+1. (2.19)

We just proved that the only key that bothτk and σ∗ change at the same time isK ′ so we
just need to prove that they change it to the same value (in order to be compatible), that is,
τk(K

′) = σ∗(K ′).
By (2.18) we have that|(νk+1)key| = 1 and so, using Proposition2.12and (2.14) it follows

that
|(µk+1)key| = |σ∗((νk+1)key)| = 1.

Since{Mk+1}Lk+1
∈ µk+1, we have thatLk+1 ∈ (µk+1)key. So, from the previous equation and

(2.18) it follows that
σ∗(K ′) = σ∗(L′k+1) = Lk+1. (2.20)

If we apply the same reasoning toνi andτk, again by (2.18) we have that|(νi)key| = 1 and
so, using Proposition2.12and (2.13) it follows that

|(µi)key| = |τk((νi)key)| = 1.

Since{Mi}Li
∈ µi, we have thatLi ∈ (µi)key. So, from the previous equation and (2.18) it

follows that
τk(K

′) = τk(L
′
i) = Li. (2.21)

Now consider the substitutionσi,(k+1). By (2.10) we have that

µi = σi,(k+1)(νi) andµk+1 = σi,(k+1)(νk+1).

Using (2.18) and Proposition2.12it follows that

|(µi)key| = |σi,(k+1)((νi)key)| = 1 and|(µk+1)key| = |σi,(k+1)((νk+1)key)| = 1.
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As said before,Li ∈ (µi)key, L′i ∈ (νi)key, Lk+1 ∈ (µk+1)key andL′k+1 ∈ (νk+1)key and so

σi,(k+1)(L
′
i) = Li andσi,(k+1)(L

′
k+1) = Lk+1.

Combining this with (2.19), sinceL′i = L′k+1, we have that

Li = Lk+1 (2.22)

and so by (2.21), (2.22), and (2.20)

τk(K
′) = Li = Lk+1 = σ∗(K ′).

Thus for any keyK ′ such that bothτk andσ∗ change the value, they are compatible. We then
defineτk+1 as

τk+1(K) =

{
σ∗(K) if K ∈ Keys(Cνk+1

)
τk(K) otherwise

.

Note that by definition ofτl, it does not change the keys inSl = R-Keys(N) \
(⋃l

i=1 Keys(Cνi
)
)

but, by properness, we have thatKeys(Cνi
) ∩ R-Keys(N) = ∅ for all 1 ≤ i ≤ l which implies

thatτl does not change the keys inR-Keys(N).
The substitutionτ that satisfies the required properties, i.e., that leaves the recoverable keys

of M andN untouched, but maps the boxes of the pattern ofN into the corresponding boxes in
the pattern ofM , is defined asτl (l is the number of boxes in the pattern ofM ) and that is what
we needed to complete the proof.

Remark 4. Observe, that condition (iii) of the theorem is trivially satisfied when there is only
one box, that is, when all encryption terms are equivalent under≡C. Also, if completeness holds
for a certain choice of≡C, then, if≡′C is such thatM ≡C N impliesM ≡′C N—i.e. when≡′C
results fewer boxes—then completeness holds for≡′C as well. Therefore, we can say, that the
key to completeness is not to have too many boxes.

Example 2.22 (Completeness for Type-1 and Type-2 Encryption Schemes).The complete-
ness part of our earlier theorems for type-1 and type-2 encryption schemes are clearly special
cases of this theorem, because the formal language we introduced for these schemes were such
that≡C is proper and≡K and≡C are independent, and the conditions of the theorems are anal-
ogous.

Example 2.23 (Completeness for One-Time Pad).The formal logic for OTP that we presented
in Section2.4 is such that≡C is proper and≡K and≡C are independent. Furthermore, con-
dition (i) of Theorem2.19 is satisfied due to the tagging we presented in Section2.4. Condi-
tion (ii) is also satisfied because of the tagging: the reason ultimately is that decrypting with
the wrong key will sometimes result invalid endings. Condition (iii) is also satisfied, since the
pairs of encryption terms must be encrypted with different keys (in OTP, we cannot use the
keys twice), and the equivalence[[({M1}L1 , {M2}L2)]]Φ ≈ [[({N1}L′1 , {N2}L′2)]]Φ implies that the
corresponding lengths in the two encryption terms must be the same:l({M1}L1) = l({N1}L′1)
andl({M2}L2) = l({N2}L′2) which implies(¤l({M1}L1

),¤l({M2}L2
)) = (¤l({N1}L′1

),¤l({N2}L′2
)).

Therefore,({M1}L1 , {M2}L2)
∼= ({N1}L′1 , {N2}L′2). In conclusion, the formal logic introduced

in Section2.4 is complete.
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2.6 Related Work

Work intended to bridge the gap between the cryptographic and the formal models started with
several independent approaches, including the work of Lincoln, Mitchell, Mitchell, and Sce-
drov [LMMS98], Canetti [Can01], Pfitzmann, Schunter and Waidner [PSW00, PW00], and
Abadi and Rogaway [AR02]. There are other works such as the one from Guttman, Thayer,
and Zuck [GTZ01] aim at the same results but consider specific models or specific properties,
specifically consider strand spaces and information-theoretically secure authentication.

A process calculus for analysing security protocols in which protocol adversaries may be ar-
bitrary probabilistic polynomial-time processes is introduced in [LMMS98]. In this framework,
which provides a formal treatment of the computational model, security properties are formu-
lated as observational equivalences. Mitchell, Ramanathan, Scedrov, and Teague [MRST06] use
this framework to develop a form of process bisimulation that justifies an equational proof system
for protocol security.

The approach by Pfitzmann, Schunter and Waidner [PSW00, PW00] starts with a general
reactive system model, a general definition of cryptographically secure implementation by sim-
ulatability, and a composition theorem for this notion of secure implementation. This work is
based on definitions of securefunctionevaluation,i.e., the computation of one set of outputs
from one set of inputs [GL91, MR91, Bea91, Can00]. The approach was extended from syn-
chronous to asynchronous systems in [PW01, Can01], which are now known as thereactive
simulatability framework[PW01, BPW] and theuniversal composability framework[Can01]. A
detailed comparison of the two approaches may be found in [DKMR05].

The first soundness result of a formal model under active attacks has been achieved by
Backes, Pfitzmann and Waidner [BPW03] within the reactive simulatability framework. Their
result comprises arbitrary active attacks and holds in the context of arbitrary surrounding inter-
active protocols and independently of the goals that one wants to prove about the surrounding
protocols; in particular, property preservation theorems for the simulatability have been proved,
e.g., for integrity and secrecy [BI03, BP05]. While the original result in [BPW03] considered
public-key encryption and digital signatures, the soundness result was extended to symmetric
authentication and to symmetric encryption in [BPW05] and [BP04b], respectively.

Another way of trying to bridge the gap between the two models, the one that we follow
in this work, was proposed by Abadi and Rogaway [AR02]. In this framework, formal terms
with nested operations are considered specifically for symmetric encryption, the adversary is re-
stricted to passive eavesdropping, and the security goals are formulated as indistinguishability of
terms. They show that sufficiently strong cryptography enforced computational soundness for a
notion of formal equivalence. From this, many other results followed: Abadi and Jürjens [AJ01]
extend this result from terms to more general programs. Bana [Ban04] and Ad̃ao, Bana, and Sce-
drov [ABS05] extend the original Abadi-Rogaway result to weaker encryption schemes, while
Laud and Corin [LC03] do the same for composite keys. These two extensions are orthogonal:
the former extends the applicability of the result to other encryption schemes (e.g., encryption
schemes that reveal the length of the underlying plaintext) while the latter extends the set of
expressions of the symbolic model.

Herzog, Liskov, and Micali [HLM03] demonstrate soundness for non-malleability proper-
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ties, and Herzog [Her04] later shows that this soundness for non-malleability is in fact implied
by soundness of indistinguishability. The extension of this trace-based approach to active adver-
saries was done by Micciancio and Warinschi [MW04b] where they show soundness for mutual-
authentication properties in the presence of active adversaries. This result is a simpler abstraction
than [BPW03] and thus it only addresses a restricted class of protocols.

This trace-based approach, in spite of more restrictive, still allows some extensions such as
Micciancio and Panjwani [MP05], soundness of a group-key distribution protocol in the presence
of a CPA-secure scheme, Cortier and Warinschi [CW05], use of automated tools to prove that
symbolic integrity and secrecy proofs are sound with respect to the computational model in
the case of protocols that use nonces, signatures, asymmetric encryption and allow ciphertext
forwarding.

Another extension to asymmetric encryption, but still under passive attacks, is in [HLM03].
Asymmetric encryption under active attacks is considered in [Her02] in the random oracle model.
Laud [Lau04] has subsequently presented a cryptographic underpinning for a formal model of
symmetric encryption under active attacks. His work enjoys a direct connection with a formal
proof tool, but it is specific to certain confidentiality properties and restricts the surrounding
protocols to straight-line programs in a specific language.

Recently, there has been concurrent and independent work on linking symbolic and cryp-
tographic secrecy properties. Cortier and Warinschi [CW05] have shown that symbolically se-
cret nonces are also computationally secret,i.e., indistinguishable from a fresh random value
given the view of a cryptographic adversary. Backes and Pfitzmann [BP05] and Canetti and
Herzog [CH06] have established new symbolic criteria that suffice to show that a key is crypto-
graphically secret. Backes and Pfitzmann formulate this as a property preservation theorem from
the formal model to a concrete implementation while Canetti and Herzog link their criteria to
ideal functionalities for mutual authentication and key exchange protocols.

The first cryptographically sound security proofs of the Needham-Schroeder-Lowe protocol
have been presented concurrently and independently in [BP04a] and [War03]. While the first pa-
per conducts the proof within a deterministic, symbolic framework, the proof in the second paper
is done from scratch in the cryptographic approach; on the other hand, the second paper proves
stronger properties and further shows that chosen-plaintext-secure encryption is insufficient for
the security of the protocol.

Impagliazzo and Kapron [IK03] suggest a formal logic for reasoning about probabilistic poly-
nomial-time indistinguishability. Datta, Derek, Mitchell, Shmatikov, and Turuani [DDM+05]
describe a cryptographically sound formal logic for proving protocol security properties without
explicitly reasoning about probability, complexity, or the actions of a malicious attacker.

Regarding completeness, Micciancio and Warinschi [MW04a] show that a sufficiently strong
encryption scheme enforces completeness for indistinguishability properties, and later Horvitz
and Gligor [HG03] strengthened this result by giving an exact characterisation of the compu-
tational requirements on the encryption scheme under which completeness holds. Later, it was
shown by Bana [Ban04] and Ad̃aoet al.[ABS05] that completeness also holds for a more general
class of (weaker) encryption systems.

We stress that none of the aforementioned soundness results hold in the presence of key-
cycles. The problem of soundness in the presence of key-cycles was already addressed by
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Laud [Lau02]. Laud’s solution provides soundness in the presence of key-cycles, but does so
by weakening the notion of formal equivalence. It is assumed that key-cycles somehow always
‘break’ the encryption and the formal adversary is strengthened so as to be always able to ‘see’
inside the encryptions of a key-cycle. Soundness in the presence of key-cycles naturally holds
under this assumption, but we feel that the price paid is too high. Formal equivalence should re-
flect the ability of the formal adversary to distinguish messages, which should in turn reflect the
actual extent to which the computational adversary can distinguish messages. It is often unrea-
sonable from a cryptographer’s point of view toa priori assume that the computational adversary
can break all key-cycles. We therefore propose, in this work, to demonstrate soundness in the
presence of key-cycles not by weakening encryption in the formal model, as suggested by Laud,
but by strengthening it in the computational one.

2.7 Conclusions and Further Work

We have studied expansions of the Abadi-Rogaway logic of indistinguishability for formal cryp-
tographic expressions, considering and solving two weaknesses of the original result.

The first of these weakness was the problem of soundness in the presence of key-cycles.
Computational soundness for expressionswithout key-cycles was proved in Abadi and Rog-
away [AR02] under the assumption that a computational encryption scheme satisfies a strong
version of semantic security (type-0). We have considered a modification of their logic in the
case of encryption schemes both which-key revealing and message-length revealing. In the pres-
ence of key-cycles, we have proved that the computational soundness property follows from the
key-dependent message (KDM) security proposed by Blacket al. [BRS02]. As far as we know,
this is the first time that in order to achieve soundness, the computational model is strengthened
instead of the formal model weakened. We have also shown that the computational soundness
property neither implies nor is implied by type-0 security, and thus the original Abadi-Rogaway
result could not have been demonstrated for key-cycles using the security notions described in
their work.

(We also show in AppendixB that the above results can be extended to the public-key set-
ting. In particular we show that the soundness property holds for arbitrary messages (even with
key-cycles) in the presence of a KDM-secure encryption scheme, and that the computational
soundness property neither implies nor is it implied by security against chosen ciphertext attack,
CCA-2. This is in contrast to many previous results where forms of soundness are implied by
CCA-2 security.)

The other weakness of the original Abadi-Rogaway result addressed in this dissertation con-
cerned the possibility of leakage of information by an encryption scheme. As said before, the
original result assumed a very strong notion of security (type-0) which is not actually achieved
by many encryption schemes. Thus, one might wonder if a similar result might be derived
for weaker schemes. We have showed that for symmetric encryption, subtle differences be-
tween security definitions can be faithfully reflected in the formal symbolic setting. We have
introduced a general probabilistic framework which includes both the computational and the
information-theoretic encryption schemes as special cases. We have established soundness and
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completeness theorems in this general framework, as well as new applications to specific settings:
an information-theoretic interpretation of formal expressions in One-Time Pad, and also com-
putational interpretations in type-1 (length-revealing), type-2 (which-key revealing) and type-3
(which-key and length revealing) encryption schemes based on computational complexity.

Our work presents several directions for future research. Independently of any soundness
considerations, several questions about KDM security remain unanswered. This is no known
implementation of KDM security in the standard model, although there are several natural can-
didates (e.g.,Cramer-Shoup [CS98]). Conversely, there remains to be found a natural (i.e.,non-
constructed) example of an encryption scheme which is secure in the sense of type-0 (or CCA-2)
but is not KDM-secure. Further, even the constructed examples fail to provide KDM security
only when presented with key-cycles of length 1. It may in fact be possible that type-0/CCA-2
security implies KDM security when all key-cycles are of length 2 or more.

With regard to soundness in the presence of key-cycles, it seems desirable to extend our
results from the passive-adversary setting to that of the active adversary. Also, our results do
not completely explore all ‘gaps’ between the two models. We show that the relationship be-
tween the formal and computational models requires more than type-0/CCA-2 security. While
it demonstrates that KDM security is also necessary, it does not show it to be sufficient—even
when conjoined with CCA-2 security (asymmetric encryption). That is, this investigation is not
complete; it is more than likely that additional properties will be revealed as soundness is more
fully explored.

Also, one might consider various expansions of the formal setting that would allow addi-
tional operations such asxor, pseudorandom permutations, or exponentiation. Soundness and
completeness such richer formal settings would, of course, need exploration. In particular, the
definition of patterns appears to be rather subtle in such richer settings. We would also like to
understand how our methods fit with the methods of [Mau02].

Lastly, one might consider exploring partial leakage in the setting of asymmetric encryp-
tion. One might also extend our methods and investigate formal treatment of other cryptographic
primitives. It would be interesting to see if our methods could be combined with the methods of
[BPW03, Can01].



Chapter 3

Process Algebras for Studying Security

Process Algebras have been widely used in the study of security of concurrent systems [Mil89,
Low95, Low96, AG99, Mil99, AF01, AFG02, BAF05]. In spite of their success in proving
security of cryptographic protocols, mainly secrecy and authenticity properties, all these are
stated in the so called Dolev-Yao Model, hence no real cryptographic guarantees are achieved.

Another approach is to supplement process calculi with concrete probabilistic or polynomi-
al-time semantics [LMMS98]. Unavoidably, reasoning on processes becomes more difficult.

In this Chapter, we present a process calculus that enjoys both the simplicity of an abstract
symbolic model and a concrete (sound and complete) implementation that achieves strong cryp-
tographic guarantees. Our calculus is a variant of the pi calculus with high level security prim-
itives; it provides name mobility, reliable messaging and authentication primitives, but neither
explicit cryptography nor probabilistic behaviours.

Taking advantage of concurrency theory, it supports simple reasoning, based on labelled
transitions and observational equivalence. We precisely define its concrete implementation in a
computational setting. Our implementation relies on standard cryptographic primitives, compu-
tational security definitions (CCA2 for encryption [RS91], CMA for signing [GMR88], recalled
in AppendixA), and networking assumptions. It also combines typical distributed implemen-
tation mechanisms such as abstract machines, marshaling and unmarshaling, multiplexing, and
basic communications protocols.

We establish general completeness results in the presence of active probabilistic polynomial-
time adversaries, for both trace properties and observational equivalences, essentially showing
that high level reasoning accounts for all low-level adversaries.

We illustrate our approach by coding security protocols and establishing their computational
correctness by simple formal reasoning.

This Chapter is organised as follows: In Section3.1, we start by describing the low-level
target model as the constraints imposed by this will drive the design of the high-level language.
In Section3.2, we present our high-level language and semantics, and in Section3.3 we define
and illustrate our notion of high-level equivalence. Section3.4 is devoted to applications. We
encode anonymous forwarders in our language and exhibit an example of an electronic payment
protocol. We give also as an example the encoding of an initialisation protocol, that is, given any
systemS that possibly shares names and certificates among principals, we can always find an
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initial systemS◦ where principals share no information, such that there is a transition fromS◦

to S. Section3.5describes our concrete implementation, and in Section3.6we state our results.
We conclude this Chapter with the discussion of related work, Section3.7and pointing out some
future directions in which this work may be extended, Section3.8.

3.1 Low-Level Target Model

Before presenting our language design and implementation, we specify the target systems. We
do this, as the design of our language is, in part, driven by the target model. We want to be
as abstract as possible, but at the same time we need to faithfully abstract the properties of the
computational implementation.

As an example, we want our high-level environments to have the same capabilities as the low-
level adversaries, that are probabilistic polynomial-time (PPT) cryptographic algorithms. We fol-
low the conservative assumption that an adversary controls all network traffic: it can intercept,
delay, or even block permanently any communication between principals. For that, we cannot
guarantee message delivery, nor implement private channels that prevent traffic analysis. Reflect-
ing this in the high-level semantics implies that the simple pi-calculus rulec〈M〉.P | c(x).Q →
P |Q{M/x}, which models silent communication is too abstract for our purposes. (ConsiderP
andQ two processes that are implemented in two separate machines connected by a public net-
work, and even ifc is a restricted channel, the adversary can simply block all communications.)

We consider systems that consist of a finite number of principalsa, b, c, e, u, v, . . . ∈ Prin.
Each principala runs its own program, written in our high-level language and executed by the
PPT machineMa defined in Section3.5. Each machineMa has two wires,ina andouta, rep-
resenting a basic network interface. When activated, the machine reads a bitstring fromina,
performs some local computation, then writes a bitstring onouta and yields. The machine em-
beds probabilistic algorithms for encryption, signing, and random-number generation—thus the
machine outputs are random variables. The machine is also parameterised by a security parame-
terη ∈ N—intuitively, the length for all keys—thus these outputs are ensembles of probabilities.

Some of these machines may be corrupted, under the control of the attacker; their implemen-
tation is then unspecified and treated as part of the attacker. We leta, b, c ∈ H with H ⊂ Prin
range over principals that comply with our implementation, and letM = (Ma)a∈H describe our
whole system. We denote bye a principal controlled by the adversary (e ∈ Prin \H) and byu, v
an arbitrary principal inPrin. Of course, whena interacts withu ∈ Prin, its implementationMa

does not know whetheru ∈ H or not.
The adversary,A, is a PPT algorithm that controls the network, the global scheduler, and

some compromised principals. At each moment, only one machine is active: whenever an ad-
versary delivers a message to a principal, the machine for this principal is activated, runs until
completion, and yields an output to the adversary. We have then the following definition:

Definition 3.1 (Run). We define arun of A andM with security parameterη ∈ N as follows:

1. key materials, with security parameterη, are generated for every principala ∈ Prin;
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2. everyMa is activated with1η, the keys fora, and the public keys for allu ∈ Prin;

3. A is activated with1η, the keys fore ∈ Prin \ H, and the public keys fora ∈ H;

4. A performs a series of low-level exchanges of the form:

(a) A writes a bitstring on wireina and activatesMa for somea ∈ H;

(b) upon completion ofMa, A reads a bitstring onouta;

5. A returns a bitstrings, writtens ←− A[M].

We keepη implicit whenever possible.

At each Step4, the adversaryA can choosea and compute the bitstring written onina from
any previously-received materials, including principal keys and bitstrings collected from previ-
ous exchanges.

By design, our low-level runs do not render attacks based on timed properties, such as for
instance any observation of the time it takes for each machine to reply. Although the risk of
quantitative traffic analysis may be significant, it can be mitigated independently, for instance by
sending messages according to a fixed schedule. We leave this discussion outside the scope of
this dissertation.

To study the security properties of these runs, we compare systems that consist of machines
running on behalf of the same principalsH ⊆ Prin, but with different internal programs and
states. Intuitively, two systems are equivalent when no PPT adversary, starting with the informa-
tion normally given to the principalse ∈ Prin \H, can distinguish between their two behaviours,
except with negligible probability, DefinitionA.1. This notion is calledcomputational indis-
tinguishability and was introduced by Goldwasser and Micali [GM84]. We state it here in a
different but equivalent way.

Definition 3.2 (Low-Level Equivalence).Two systemsM0 andM1 are indistinguishable, written
M0 ≈ M1, if for all PPT adversariesA:

|Pr[1 ←− A[M0]]− Pr[1 ←− A[M1]]| ≤ neg (η) .

Our goal is to develop a simpler, higher-level semantics that entails indistinguishability.

3.2 A Distributed Calculus with Principals and Authentica-
tion

We now present our high-level language. We successively define terms, patterns, processes,
configurations, and systems. We then give their operational semantics. Although some aspects
of the design are unusual, the resulting calculus is still reasonably abstract and convenient for
distributed programming.
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3.2.1 Syntax and Informal Semantics

Definition 3.3 (Names, Terms, Patterns).Let Prin be a finite set ofprincipal identities. Let
Name be a countable set ofnamesdisjoint fromPrin. Letf range over a finite number of function
symbols, each with a fixed arityk ≥ 0. We definetermsandpatternsby the following grammar:

V, W ::= Terms
x, y variable
m,n ∈ Name name
a, b, e, u, v ∈ Prin principal identity
f(V1, . . . , Vk) constructed term (whenf has arityk)

T, U ::= Patterns
?x variable (bindsx)
T as ?x alias (bindsx to the term that matchesT )
V constant pattern
f(T1, . . . , Tk) constructed pattern (whenf has arityk)

As usual in process calculi, names and principal identities are atoms, which may be compared
with one another but otherwise do not have any structure. Constructed terms represent structured
data, much like algebraic data types in ML or discriminated unions in C. They can represent
constants and tags (whenk = 0), tuples, and formatted messages. As usual, we writetag and
(V1, V2) instead oftag() andpair(V1, V2).

Patterns are used for analysing terms and binding selected subterms to variables. For instance,
the pattern(tag, ?x) matches any pair whose first component istag and bindsx to its second
component. We write for a variable pattern that binds a fresh variable.

Definition 3.4 (Local Processes).Local processesrepresent the active state of principals, and
are defined by the following grammar:

P, Q,R ::= Local processes
V asynchronous output
(T ).Q input (bindsbv(T ) in Q)
∗(T ).Q replicated input (bindsbv(T ) in Q)
match V with T in Q else Q′ matching (bindsbv(T ) in Q)
νn.P name restriction (“new”, bindsn in P )
P |P ′ parallel composition
0 inert process

The asynchronous outputV is just a pending message; its data structure is explained below.
The input(T ).Q waits for an output that matches the patternT then runs processQ with the
bound variables ofT substituted by the matching subterms of the output message. The repli-
cated input∗(T ).Q behaves similarly but it can consume any number of outputs that matchT
and fork a copy ofQ for each of them. The match process runsQ if V matchesT , and runs
Q′ otherwise. The name restriction creates a fresh namen then runsP . Parallel composition
represents processes that run in parallel, with the inert process0 as unit.
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Free and bound names and variables for terms, patterns, and processes are defined as usual:
x is bound inT if ?x occurs inT ; n is bound inνn.P ; x is free inT if it occurs inT and is not
bound inT . An expression is closed when it has no free variables; it may have free names.

Definition 3.5 (Local Contexts).A local contextis a process with a hole instead of a subprocess.
We say that a context is anevaluation contextwhen the hole replaces a subprocessP or P ′ in the
grammar of Definition3.4. If it replaces a subprocessQ or Q′ we call it aguarded context.

Our language features two forms of authentication, represented as two constructorsauth and
cert of arity 3 plus well-formed conditions on their usage in processes.

Definition 3.6 (Authenticated Messages, Certificates).Authenticated messagesbetween prin-
cipals are represented as terms of the formauth(V1, V2, V3), writtenV1:V2〈V3〉, whereV1 is the
sender,V2 the receiver, andV3 the content. We letM andN range over messages. The message
M is froma (respectivelyto a) if a is the sender (respectively the receiver) ofM .

Certificatesissued by principals are represented as terms of the formcert(V1, V2, V3), written
V1{V2}V3, whereV1 is the issuer,V2 the content, andV3 the label.

Labels in certificates reflect cryptographic signature values in their implementation. They are
often unimportant (and omitted), since our processes use a constant label0 in their certificates
and ignore labels (using) in their certificate patterns. Nonetheless, they are necessary because
the standard definition of security for signatures (CMA-security, DefinitionA.6) does not exclude
the possibility that the attacker produce different signature values for certificates with identical
issuer and content. If we do not include labels in our definition of high-level certificates, we
could be excluding attacks.

Example 3.1.Consider a protocol where adversarial principale receives a certificatecert1 from
a, forges a second certificatecert2 using some malleability property of the signing scheme, and
then forwardscert1 to b andcert2 to c.

If later e receivescert i from d, he may discover part of the topology of the network, asi = 1
if d is connected tob andi = 2 if d is connected toc. If the attack to the protocol depends upon
the knowledge of the network, we have an attack.

If we do not account for this possibility in our high-level semantics, that is, use different
labels for different certificates, we could never capture this attack as the received certificate bye
would be equivalent regardless ofi = 0 or i = 1.

Although both authenticated messages and certificates provide some form of authentication,
authenticated messages are delivered at most once, to their designated receiver, whereas cer-
tificates can be freely copied and forwarded within messages. Hence, certificates conveniently
represent transferable credentials and capabilities. They may be used, for instance, to code de-
centralised access-control mechanisms.

Example 3.2. As an example,a:b〈Hello〉 is an authentic message froma to b with content
Hello, a constructor with arity 0, for whichb (and onlyb) can verify that it is coming froma

a{b, Hello} is a certificate signed bya with the same subterms that can be sent, received,
and verified by any principal.
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We letφ(V ) be the set of certificates included inV and letφ(V )X ⊆ φ(V ) be those certifi-
cates issued byu ∈ X. For instance, we have

φ(a
{
0, b{1}, c{2}}){a,b} =

{
b{1}, a

{
0, b{1}, c{2}}}

Definition 3.7 (Well Formed Process).Let P be a local process. We say thatP is well-formed
for a ∈ Prin when:

1. any certificate inP that includes a variable or a bound name is of the forma{V2}0;

2. no pattern inP binds any certificate label; and

3. no pattern used for input inP matches any authenticated message froma.

Condition 1 states that the process may produce new certificates only with issuera; in addi-
tion, the process may contain previously-received certificates issued by other principals. (We do
not restrict certificate patterns—a pattern that tests a certificate not available toa will never be
matched.) Condition 2 restricts access to labels, so that labels only affect comparisons between
certificates. Condition 3 prevents that authenticated messages sent byP be read back by some
local input.

Finally, we are now able to define configurations and systems. Aconfigurationis an assembly
of running principals, each with its own local state, plus an abstract record of the messages
intercepted by the environment and not forwarded yet to their intended recipients. Asystem
is a top-level configuration plus an abstract record of the environment’s knowledge, as a set of
certificates previously issued and sent to the environment by the principals inC.

Definition 3.8 (Configurations, Systems).Configurationsandsystemsare defined by the fol-
lowing grammar:

C ::= configurations
a[Pa] principala with local statePa

M/i intercepted messageM with indexi
C |C ′ distributed parallel composition
νn.C name restriction (“new”, bindsn in C)

S ::= systems
Φ ` C configurationC exporting certificatesΦ

and satisfy the following well-formed conditions:

• In configurations, intercepted messages have distinct indicesi and closed contentM ; prin-
cipals have distinct identitiesa and well-formed local processesPa.

• In systems, letH be the set of identities for all defined principals, calledcompliant prin-
cipals; intercepted messages are froma to b for somea, b ∈ H with a 6= b; Φ is a set of
closed certificates with label0 such thatφ(Φ)H = Φ.
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3.2.2 Operational Semantics

We define our high-level semantics in two stages: local reductions between processes, then global
labelled transitions between systems and their (adverse) environment. Processes, configurations,
and systems are considered up to renaming of bound names and variables.

Local Reductions

We start by definingstructural equivalence. It represents structural rearrangements for local
processes. Intuitively, these rearrangements are not observable (although this is quite hard to
implement).

Definition 3.9 (Structural Equivalence for Processes).Structural equivalence, written P ≡
P ′, is defined as the smallest congruence such that:

P ≡ P | 0
P |Q ≡ Q |P
P |(Q |R) ≡ (P |Q) |R
(νn.P ) |Q ≡ νn.(P |Q) whenn /∈ fn(Q)
νm.νn.P ≡ νn.νm.P
νn.0 ≡ 0

Definition 3.10 (Local Reductions, Stable Processes).Local reduction step, writtenP → P ′,
represents internal computation between local processes, and is defined as the smallest relation
such that

(LCOMM) (T ).Q |Tσ → Qσ
(LREPL) ∗(T ).Q |Tσ → Qσ | ∗(T ).Q
(LM ATCH) match Tσ with T in P else Q → Pσ
(LNOMATCH) match V with T in P else Q → Q whenV 6= Tσ for anyσ

(LPARCTX)
P → Q

P |R → Q |R

(LNEWCTX)
P → Q

νn.P → νn.Q

(LSTRUCT)
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

whereσ ranges over substitutions of closed terms for the variables bound inT .
The local processP is stablewhen it has no local reduction step, writtenP 6→. We write

P ³ Q whenP →∗≡ Q andQ 6→.

System Transitions

We define a labelled transition semantics for configurations, then for systems. Each labelled
transition, writtenS

γ−→ S ′, represents a single interaction with the adversary. We letα andβ
range over input and output labels (respectively from and to the adversary), letγ range over
labels, and letϕ range over series of labels. We writeS

ϕ−→ S ′ for a series of transitions with
labelsϕ. We also rely on structural equivalence for configurations,
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Definition 3.11 (Structural Equivalence for Configurations). Structural equivalence for con-
figurations, writtenC ≡ C ′, is defined as the smallest congruence such that:

C ≡ C ′ | 0 C |C ′ ≡ C ′ |C C |(C ′ |C ′′) ≡ (C |C ′) |C ′′

νm.νn.C ≡ νn.νm.C (νn.C) |C ′ ≡ νn.(C |C ′) whenn /∈ fn(C ′)
νn.a[P ] ≡ a[νn.P ]

Definition 3.12 (Labels).Labelsare defined by the following grammar:

α ::= input labels
(M) input of messageM
(i) forwarding of intercepted messagei

β ::= output labels
νn1 . . . nk.M output of messageM (n1, . . . , nk ∈ fn(M))
νi.a:b interception of messagei from a to b (a, b ∈ H)

γ ::= single label
α + β input or output label

ϕ ::= series of transition labels
γ∗

We letinput(ϕ) be the series of input labels inϕ.

Definition 3.13 (Labelled Transitions for Configurations). Labelled transitions for configura-
tionsare defined by the following rules:

(CFGOUT)
u 6= a

a[a:u〈V 〉 |Q]
a:u〈V 〉−−−→ a[Q]

(CFGIN)
u:a〈V 〉 |P ³ Q u 6= a

a[P ]
(u:a〈V 〉)−−−−→ a[Q]

(CFGBLOCK)
C

b:a〈V 〉−−−→ C ′ i not inC

C | a[P ]
νi.b:a−−−→ C ′ | a[P ] | b:a〈V 〉/i

(CFGFWD)
C

(M)−−→ C ′

C |M/i
(i)−→ C ′

(CFGPRINCTX)
C

γ−→ C ′ γ not from/toa

C | a[P ]
γ−→ C ′ | a[P ]

(CFGMSGCTX)
C

γ−→ C ′ i not inγ

C |M/i
γ−→ C ′ |M/i

(CFGOPEN)
C

β−→ C ′ n free inβ

νn.C
νn.β−−→ C ′

(CFGNEWCTX)
C

γ−→ C ′ n not inγ

νn.C
γ−→ νn.C ′

(CFGSTR)
C ≡ D D

γ−→ D′ D′ ≡ C ′

C
γ−→ C ′

Rules (CFGOUT) and (CFGIN) represent “intended” interactions with the environment, as
usual in an asynchronous pi calculus. They enable local processes for anya ∈ H to send mes-
sages to other principalsu, and to receive their messages. The transition label conveys the com-
plete message content.

Rules (CFGBLOCK) and (CFGFWD) reflect the actions of an active attacker that intercepts
messages exchanged between compliant principals, and selectively forwards those messages. In
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contrast with the (COMM) rule of the pi calculus, they ensure that the environment mediates all
communications between principals. The label produced by (CFGBLOCK) signals the message
interception; the label conveys partial information on the message content that can intuitively
be observed from its wire format: the environment learns that an opaque message is sent by
b with intended recipienta. In addition, the whole intercepted message is recorded within the
configuration, using a fresh indexi. Later on, when the environment performs an input with
label (i), Rule (CFGFWD) restores the original message and consumesM/i; this ensures that
any intercepted message is delivered at most once.

The local-reduction hypothesis in Rule (CFGIN) demands that all local reductions triggered
by the received message be immediately performed, leading to some updated stable processQ.
Intuitively, this enforces a transactional semantics for local steps, and prevents any observation
of their transient internal state. (Otherwise, the environment may for instance observe the order
of appearance of outgoing messages.) On the other hand, any outgoing messages are kept within
Q; the environment can obtain all of them via rules (CFGOUT) and (CFGBLOCK) at any time,
since those outputs commute with any subsequent transitions.

The rest of the rules for configurations are standard closure rules with regards to evaluation
contexts and structural rearrangements: Rule (CFGOPEN) is the scope extrusion rule of the pi
calculus that opens the scope of a restricted name included in a message sent to the environment;
this rule does not apply to intercepted messages. Rule (CFGPRINCTX) deals with principal
a defined in the configuration; conditionγ not from a excludes inputs from the environment
that would forge a message froma, whereas conditionγ not toa excludes outputs that may be
transformed by Rule (CFGBLOCK).

Finally, we have a pair of top level rules that deal with the attacker knowledge:

Definition 3.14 (Labelled Transitions for Systems).Labelled transitions for systemsare de-
fined by the following rules:

(SYSOUT)
C

β−→ C ′

Φ ` C
β−→ Φ ∪ φ(β)H ` C ′

(SYSIN)
C

α−→ C ′ φ(α)H ⊆M(Φ)

Φ ` C
α−→ Φ ` C ′

whereH is the set of principals defined inC andM(Φ) = {a{V }` : a{V }0 ∈ Φ} is the set of
certificates the attacker might produce fromΦ (see AppendixA for the motivation for this rule).

Rule (SYSOUT) filters every outputβ and adds toΦ the certificates included inβ. Rule
(SYSIN) filters every inputα, and checks that the certificates included inα can be produce from
the certificates inΦ.

Our main results are expressed usingnormal transitionsbetween systems.

Definition 3.15 (Stable Systems, Normal Transitions).We say that the systemS is stablewhen
all local processes ofS are stable andS has no output transition. (Informally,S is waiting for
any input from the environment.)

We say that a series of transitionsS
ϕ−→ S ′ is normalwhen every input transition is followed

by a maximal series of output transitions leading to a stable system, that is,ϕ = ϕ1ϕ2 . . . ϕn

whereϕi = αiβ̃i for i = 1..n, andS = S0
ϕ1−→ S1

ϕ2−→ S2 . . .
ϕn−→ Sn = S ′ for some stable

systemsS0, . . . , Sn.



88 Chapter 3. Process Algebras for Studying Security

Intuitively normality states that each principals outputs all his messages and stays idle until
he receives a new input.

Compositionality

By design, our semantics is compositional, as its rules are inductively defined on the structure
of configurations. For instance, we obtain that interactions with a principal that is implicitly
controlled by the environment are at least as expressive as those with any principal explicited
within the system.

If we haveC | a[P ]
α−→ C ′ | a[P ′], then we also haveC◦ β−→ C ′◦, whereC◦ and C ′◦ are

obtained fromC andC ′, respectively, by erasing the state associated witha: any intercepted
messagesM/i from a or toa; and any certificate inΦ issued bya. This compositional property
yields useful congruence properties for observational equivalence on configurations.

3.2.3 An Abstract Machine for Local Reductions

In preparation to the description of a concrete machineMa that executesa’s local processPa, we
derive a simple algorithm for local reductions. In contrast with our non-deterministic reduction
semantics, the algorithm relies on partial normal forms instead of structural equivalence, and it
carefully controls the creation of fresh names (to be implemented as random-number generation);
it also relies on an explicit scheduler and is otherwise deterministic.

A processP is in normal form fora when it is a closed well-formed process such that every
subprocess of the formmatch V with T in Q else Q′ or νn.Q appears only under an input
or a replicated input—intuitively, all name creations and matchings are guarded. LetP be in
normal form fora. Up to the structural laws for parallel composition,P ≡ M |L |G whereM is
a parallel composition of messages sent to other principals,L is a parallel composition of other
(local) messages, andG is a parallel composition of inputs and replicated inputs. Concretely, we
may representP as a triple of multisets forM , L, andG.

A scheduleris a deterministic algorithm on(L,G) that selects an instance of Rule (LCOMM)
or (LREPL) for an output ofL and an input (or replicated input) ofG, if any, and otherwise reports
completion. The reduction algorithm repeatedly calls the scheduler, performs the selected reduc-
tion step, then normalises the resulting process by applying Rules (LM ATCH) and (LNOMATCH)
and lifting name restrictions to the top level (possibly after a renaming). This yields a local pro-
cess of the formνñ.(M ′ |L′ |G′) whereñ collect all new name restrictions in evaluation context.
By induction on the length of the derivation, one easily check thatP ³ Q if and only if, for
some scheduler, the algorithm returnsñ andP ′ in normal form such thatQ ≡ νñ.P ′.

A configuration is in normal form when all restrictions are grouped at top-level and every
local process is in normal form. Our local reduction strategy can be extended to configurations
in normal forms as follows: we perform local reductions as detailed above, then lift any resulting
restrictions to the top level of the configuration up to structural equivalence (usinga[νñ.P ′] ≡
νñ.a[P ′]).
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3.3 High-Level Equivalences and Safety

Now that we have defined labelled transitions that capture our attacker model and implementation
constraints, we can apply standard definitions and proof techniques from concurrency theory to
reason about systems. Our computational soundness results are useful (and non-trivial) inasmuch
as transitions are simpler and more abstract than low-level adversaries. In addition to trace
properties (used, for instance, to express authentication properties as correspondences between
transitions), we consider equivalences between systems.

Intuitively, two systems are equivalent when their environment observes the same transitions.
Looking at immediate observations, we say that two systemsS1 andS2 have the same labels
when, ifS1

γ−→ S ′1 for someS ′1 (and the name exported byγ are not free inS2), thenS2
γ−→ S ′2 for

someS ′2, and vice versa. More generally, bisimilarity demands that this remains the case after
matching transitions:

Definition 3.16 (Bisimilarity). The relationR on systems is a labelled simulation when, for
all S1 R S2, if S1

γ−→ S ′1 (and the names exported byγ are not free inS2) thenS2
γ−→ S ′2 and

S ′1 R S ′2. Labelled bisimilarity, written', is the largest symmetric labelled simulation.

In particular, ifΦ ` C ' Φ′ ` C ′ thenC andC ′ define the same principals, intercepted-
message indices, and exported certificates (M(Φ) = M(Φ′)).

We also easily verify some congruence properties: our equivalence is preserved by addition
of principals, deletion of intercepted messages, and deletion of certificates.

Lemma 3.1. 1. If Φ ` C1 ' Φ ` C2, thenΦ ∪ Φa ` C1 | a[P ] ' Φ ∪ Φa ` C2 | a[P ] for any
certificatesΦa issued bya such that the systems are well-formed andφH(P ) ⊆ Φ.

2. If Φ ` νñ1.(C1 |M1/i) ' Φ ` νñ2.(C2 |M2/i), thenΦ ` νñ1.C1 ' Φ ` νñ2.C2.

3. If Φ ∪{V } ` C1 ' Φ ∪{V } ` C2 andV 6∈ φ(Φ), thenΦ ` C1 ' Φ ` C2.

Proof. The proof is by bisimulation. We detail the proof of Property1 of the lemma—the proofs
for the other two properties are similar but simpler. For fixedH ⊂ Prin anda ∈ Prin \ H, we let
R be the relation defined by: ifΦ ` C1 ' Φ ` C2, then

Φ? ` νñ.(C1 | a[P ] |Ca) R Φ? ` νñ.(C2 | a[P ] |Ca)

for any names̃n, configurationsC1, C2 that define the principalsb ∈ H, local processP , parallel
compositionCa of intercepted messages froma or to a, and sets of certificatesΦ andΦ? such
that the systems are well-formed and

φH(Φ?) ∪ φH(P ) ∪ φH(Ca) ⊆ Φ (3.1)

We show thatR is a labelled simulation by case analysis on the transitions of any systems
related byR, of the form

S1 = Φ? ` νñ.(C1 | a[P ] |Ca)
γ−→ S ′1 = Φ′

? ` νñ′.(C ′
1 | a[P ′] |C ′

a)
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Assuming thatS1 R S2, we establish the existence of a matching transition

S2 = Φ? ` νñ.(C2 | a[P ] |Ca)
γ−→ S ′2 = Φ′

? ` νñ′.(C ′
2 | a[P ′] |C ′

a)

such thatS ′1 R S ′2. We deal with outputs (Rule (SYSOUT)), then inputs (Rule (SYSIN)).

• γ = νi.a:b. The transition uses Rule (CFGBLOCK) with index i fresh inS1 andb ∈ H to

intercept an output produced by Rule (CFGIN): a[P ]
νm̃.a:b〈V 〉−−−−−→ a[P ′]. Up to renaming, we

assume that the names̃m are fresh. The indexi is also fresh inS2.

To obtain a matching transition withS ′1 R S ′2, we use thisP ′, we letC ′
a = Ca | a:b〈V 〉/i,

ñ′ = ñ, m̃, and we leave the other parameters unchanged:C ′
1 = C1, C ′

2 = C2, Φ′ = Φ,
andΦ′

? = Φ?. Property (3.1) is preserved becauseφ(P ′) ⊆ φ(P ).

• γ = νm̃.a:e〈V 〉 for somee /∈ H ∪ {a}. The transition also uses Rule (CFGIN): we have

a[P ]
νm̃′.a:b〈V 〉−−−−−−→ a[P ′] for some fresh names̃m′. Letm̃′′ = fn(V )∩ñ. We havẽn = ñ′]m̃′′

andm̃ = m̃′ ] m̃′′.

To obtain a matching transition withS ′1 R S ′2, we useP ′ and ñ′, we let Φ′
? = Φ? ∪

φH∪{a}(V ) and we leaveΦ′, C1, and C2 unchanged. Property (3.1) is preserved, as
φH∪{a}(V ) = φH(V ) ∪ φ{a}(V ) andφH(V ) ⊆ φH(P ) ⊆ Φ.

• γ = νi.b : a for someb ∈ H. The transition uses Rule (CFGBLOCK) with index i fresh

in S1 andb ∈ H to intercept an output produced by Rule (CFGOUT): C1
νm̃b:a〈V 〉.−−−−−→ C ′

1 for
some fresh names̃m.

By Rule (SYSOUT), we haveΦ ` C1
νm̃b:a〈V 〉.−−−−−→ Φ′ ` C ′

1 whereΦ′ = Φ ∪ φH(V ).

By bisimilarity hypothesisΦ ` C1 ' Φ ` C2, we obtainC ′
2 such thatΦ ` C2

νm̃b:a〈V 〉.−−−−−→
Φ′ ` C ′

2 andΦ′ ` C ′
1 ' Φ′ ` C ′

2.

To obtain a matching transition withS ′1 R S ′2, we useC ′
1, C ′

2, Φ′, we letC ′
a = Ca | b:a〈V 〉

andñ′ = ñ, m̃, and we leaveΦ? andP unchanged.

• γ = νm̃.b:e〈V 〉.
Similarly, the transition uses (CFGOUT): Φ ` C1

νm̃′b:a〈V 〉.−−−−−−→ Φ′ ` C ′
1 whereΦ′ = Φ ∪

φH(V ) and, by bisimulation hypothesis, we obtainC ′
2 such thatΦ ` C2

νm̃b:a〈M〉.−−−−−−→ Φ′ ` C ′
2

with Φ′ ` C ′
1 ' Φ′ ` C ′

2.

To obtain a matching transition andS ′1 R S ′2, we useC ′
1, C ′

2, Φ′, ñ′ = ñ, m̃ and we
leaveCa, Φ?, andP unchanged. Property (3.1) is preserved, sinceφH(φ{a}(M)) ⊆ Φ by
hypothesis.

• γ = (e:u〈V 〉). We haveφH∪{a}(V ) ⊆ Φ? by Rule (SYSIN) andφH(Φ?) ⊆ Φ by Prop-
erty (3.1), soφH(V ) ⊆ Φ. Up to a renaming of̃n, we assume that the names ofV do not
clash withñ. We distinguish two subcases:
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– if u = a, thena[P ]
γ−→ a[P ′] by Rule (CFGIN).

We useP ′ and leave the other parameters unchanged. Property (3.1) is preserved:
φH(P ) ⊆ Φ also by Property (3.1), soφH(P ′) ⊆ Φ by definition of local reductions
andP well-formed fora.

– otherwise,u = b for someb ∈ H, andΦ ` C1
γ−→ Φ ` C ′

1 by Rule (CFGIN).

By bisimulation hypothesis, we obtainC ′
2 such thatΦ ` C2

γ−→ Φ ` C ′
2 andΦ `

C ′
1 ' Φ ` C ′

2.

We useC ′
1 andC ′

2, and leave the other parameters unchanged.

• γ = (i). We similarly conclude in each of the following subcases:M/i to a; Ca defines
M/i from a; or C1 definesM/i.

Finally,R is symmetric by construction, henceR ⊆ ', andR contains the systems related
by the lemma for̃n = ∅, Φ? = Φ, andCa = 0.

Bounding processes

As we quantify over all local processes, we must at least bound their computational power. In-
deed, our language is expressive enough to code Turing machines and, for instance, one can
easily write a local process that receives a high-level encoding of the security parameterη (e.g.
as a series ofη messages) then delays a message output by2η reduction steps, or even imple-
ments an ‘oracle’ that performs some brute-force attacks using high level implementations of
cryptographic algorithms.

Similarly, we must restrict non-deterministic behaviours. Process calculi often feature non-
determinism as a convenience when writing specifications, to express uncertainty as regards the
environment. Sources of non determinism include local scheduling, hidden in the associative-
commutative laws for parallel composition, and internal choices. Accordingly, abstract proper-
ties and equivalences typically only consider the existence of transitions—not their probability.
Observable non-determinism is problematic in a computational cryptographic setting, as for in-
stance a non-deterministic process may be used as an oracle to guess every bit of a key in linear
time.

In order to bound the complexity of processes (mainly the complexity of reductions) we de-
fine a functiond·e that computes the high-level structural size of systems, labels and transitions.

This is done by structural induction, with for instancedS β−→ S ′e = dSe + dβe + dS ′e + 1. As

for input labels we have that the complexity ofS
(α)−−→ S ′ accounts also for the internal reductions

performed during the transition, that is,dS (α)−−→ S ′e = dSe+dαe+dS ′e+du:a〈V 〉 |P ³ Qe+1,
wherea[P ] is defined inS anda[Q] is defined inS ′. We omit the rest of the details as they are
straightforward.

Definition 3.17 (Safe Systems).A systemS is polynomialwhen there exists a polynomialpS

and a constantc such that, for anyϕ, if S
ϕ−→ S ′ thendS ϕ−→ S ′e ≤ pS(dinput(ϕ)e), anddβe ≤ c

for all output labelsβ in ϕ.
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A systemS is safewhen it is polynomial and, for anyϕ, if S
ϕ−→ S1 andS

ϕ−→ S2 thenS1 and
S2 have the same labels.

Hence, starting from a safe process, a series of labels fully determines any further observa-
tion. Safety is preserved by all transitions, and also uniformly bounds (for example) the number
of local reductions, new names, and certificates.

These restrictions are serious, but they are also easily established when writing simple pro-
grams and protocols. (Still, it would be interesting to relax them, maybe using a probabilistic
process calculus.) Accordingly, our language design prevents trivial sources of non-determinism
and divergence (e.g. with pattern matching on values, and replicated inputs instead of full-fledged
replication); further, most internal choices can be coded as external choices driven by the inputs
of our abstract environment.

We can adapt usual bisimulation proof techniques to establish both equivalences and safety:
instead of examining all series of labelsϕ, it suffices to examine single transitions for the systems
in the candidate relation.

Lemma 3.2 (Bisimulation Proof). LetR be a reflexive labelled bisimulation such that, for all
related systemsS1 R S2, if S1

γ−→ S ′1 andS2
γ−→ S ′2, thenS ′1 R S ′2.

Polynomial systems related byR are safe and bisimilar.

Proof. By induction ofϕ, we show thatS1 R S2 andSi
ϕ−→ S ′i for i = 1, 2 impliesS ′1 R S ′2.

Equivalences with Message Authentication; Strong Secrecy and Authentication

We illustrate our definitions using basic examples of secrecy and authentication stated as equiv-
alences between a protocol and its specification (adapted from [AFG00]). Consider a principala
that sends a single message. In isolation, we have the equivalencea[a:b〈V 〉] ' a[a:b〈V ′〉] if and

only if V = V ′, since the environment observesV on the label of the transitiona[a:b〈V 〉] a:b〈V 〉−−−→
a[0]. Consider now the system

S(V, W ) = a[a:b〈V,W 〉] | b[(a:〈?x, 〉).P ],

with an explicit process for principalb that receivesa’s message and, assuming the message is
a pair, runsP with the first element of the pair substituted forx. For any termsW1 andW2,
we haveS(V,W1) ' S(V, W2). This equivalence states the strong secrecy ofW , since its value
cannot affect the environment. The system has two transitions

S(V, W )
νi.a:b−−−→ (i)−→ a[0] | b[P{V/x}]

interleaved with inputs from anye ∈ Prin \ {a, b}. Further, the equivalence

S(V, W ) ' a[a:b〈〉] | b[(a:〈 〉).P{V/x}]
captures both the authentication ofV and the absence of observable information onV andW in
the communicated message, since the protocolS(V, W ) behaves just like another protocol that
sends a dummy message instead ofV, W .
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Equivalences with Certificates

Let Φ = {a{m}}—that is, assumea has issued a single certificate. We have

Φ ` a[(e:〈a{n}〉).P ] ' Φ ` a[] (3.2)

Φ ` a[a:b〈a{n}〉 |(e:〈a{n}〉).P ] | b[] ' Φ ` a[a:b〈0〉] | b[] (3.3)

Φ ` a[(e:〈a{x}〉).P ] ' Φ ` a[(e:〈a{ }〉).P{m/x}] (3.4)

These three equations rely on the impossibility for the adversary to forge any certificate froma
with another content. Similar equations also hold if the input is performed by another principal
(as long asa does not issue any other certificate), and even if the attacker can choose arbitrary
valuesV andW instead of the namesm andn, as long asV 6= W . Conversely, consider the
system

S[ ] = Φ ` a[(e:〈a{m} as sig , a{m} as sig ′〉).match sig with sig ′ in 0 else [ ]]

Since signatures are malleable, the else branch is reachable. Take as an example, an input labelled
(e:a〈a{m}0, a{m}1〉, hence in generalS[P ] 6' S[Q].

3.4 Applications

We present three coding examples within our language, dealing with anonymous forwarders,
electronic contracts, and system initialisation. In addition, we coded a translation from asyn-
chronous pi calculus processes into local processes, using termschan(n) to represent channels.
(The scope of namen represents the scope of the channel, and channel-based communications
is implemented by pattern matching on channel terms.) We also coded distributed communica-
tions for the authenticated join-calculus channels of [AFG00], using certificatesa{chan(n)} to
represent output capabilities of channels.

3.4.1 Anonymous Forwarders

We consider a (simplified, synchronous) anonymising mix hosted by principalc. This principal
receives a single messageV from every participanta ∈ A, then forwards all those messages to
some sender-designated addressb. The forwarded message does not echo the sender identity—
however this identity may be included as a certificate in the messageV . We study a single round,
and assume that, for this round, the participants trustc but do not trust one another. We use the
following local processes (indexed by principal) and systems:

Pc =
∏

a∈A(a:c〈?b, ?V 〉).(tick |(go).c:b〈forward(V )〉)
Qc = (tick).for eacha∈A ∏

a∈A go

P σ
a = a:c〈baσ, Vaσ〉 |P ′

a

Sσ = c[Pc |Qc] |
∏

a∈A′ a[P σ
a ]
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The processPc receives a single message from everya ∈ A, then it emits a localtick message
and wait for a localgo message. The processQc runs in parallel withPc and provides synchro-
nisation; it waits for atick message for every participant, then sendsgo messages to trigger the
forwarding of all messages.

Let A′ ⊆ A be a subset of participants that comply with the protocol. We setH = A′ ] {c}.
Anonymity for this round may be stated as follows: no coalition of principals inA\A′ should be
able to distinguish between two systems that differ only by a permutation of the messages sent by
the participants inA′. Formally, for any such permutationsσ andσ′, we verify the equivalence
Sσ ' Sσ′. Hence, even if the environment knows all theV messages, the attacker gains no
information onσ. (Conversely, the equivalence fails, due to traffic analysis, if we use instead a
naive mix that does not wait for all messages before forwarding, or that accepts messages from
any sender.)

3.4.2 Electronic Payment Protocol

As a benchmark for our framework, we consider the electronic payment protocol presented by
Backes and D̈urmuth [BD05] that is a simplified version of the 3KP payment system [BGH+95,
BGH+00]. We refer to their work for a detailed presentation of the protocol and its proper-
ties. The authors provide a computationally sound implementation of the protocol on top of an
idealised cryptographic library [BPW03]. We obtain essentially the same security properties,
but our coding of the protocol is more abstract and shorter than theirs (by a factor of 10) and
yields simpler proofs, essentially because it does not have to deal with the details of signatures,
marshalling, and local state—coded once and for all as part of our language implementation.

We adapt their notations, e.g.d, p 7→ t. Our calculus is more abstract and formally conve-
nient, but less expressive than machines running on top of their library. Arguably, our low-level
machine description factors out (and clarifies) most of their coding on top of the library.

The protocol has four roles, a clientc, a vendorv, an acquirerac, and a trusted third party
ttp. For simplicity, we assume thatac andttp are unique and well-known. In addition, we use
a distinct, abstract principalU that sends or receives all events considered in trace properties.
Initially, the client, vendor, and acquirer tentatively agree on their respective identities and a
(unique) transaction descriptort that describes the goods and their price. The protocol essentially
relies on the forwarding of certificates. We letx :{y, V } abbreviates a message with a certified
contentx:y〈x{y, V }〉, and useas sig to bind the corresponding certificatex{y, V }.

A systemS consists of any number of principals (potentially) running the three roles, plus a
unique principalttp runningPttp. The system should not defineU , which represents an arbitrary,
abstract environment that controls the actions of the other principals. For a given normal traceϕ,
we say that the paymentt, c, v, ac is completewhenϕ includes the following input labels:

(i) if c ∈ H, thenU :c〈pay(t, v)〉;

(ii) if v ∈ H, thenU :v〈receive(t, c)〉; and

(iii) if ac ∈ H, thenU :ac〈allow(t, c, v)〉.
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Client c Vendor v Acquirer ac

U :c〈pay(t, v)〉

²²

U :v〈receive(t, c)〉

²²

U :ac〈allow(t, c, v)〉

²²

sigv = v{c, invoice(t)}
oo

sigc = c{v, payment(t)}
//

v:ac〈request(sigv, sigc)〉
//

sigac = ac{v, response(t, c)}
oo

v:c〈confirm(sigac)〉
oo

²² ²² ²²

c:U〈paid(t, v)〉 v:U〈received(t, c)〉 ac:U〈transfer(t, c, v)〉

Figure 3.1:Diagram of the Electronic Payment Protocol [BD05]

We can now state the following properties:

• Weak atomicityis a trace property expressed as follows: ifϕ includes any output of the
form c:U〈paid(t, v)〉, v:U〈received(t, c)〉, orac:U〈transfer(t, c, v)〉, then the payment
t, c, v, ac is complete.

• Correct client disputestates that an honest client—who starts a dispute for transaction
t only after completing the protocol fort, as coded in the last line ofClientc—always
wins his dispute: that is, for any traceϕ, if c ∈ H and c:U〈paid(t, v)〉 is in ϕ, then
ttp:U〈reject(t, c, v)〉 is not inϕ. (This property is rather weak, as the vendor and acquirer
complete the protocol before the client.)

• Correct vendor disputeandCorrect acquirer disputeare similar to the previous property
and we omit it here.

• No framingstates that thettp does not wrongly involve parties that have not initiated the
protocol with matching parameters. It is a variant of weak atomicity: outputs of the form
ttp:U〈accept(t, c, v)〉 only occur for complete payments.

These properties are directly established by induction on the high-level transitions ofS.

Sketch of the Proof.By induction on the traceϕ. We show that the state of the system is de-
termined byϕ, and that every enabled input in this state yields outputs that meet the claimed
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Clientc = ∗(U :c〈pay(?t, ?v)〉).
(v :{c, invoice(t)} as sigv).

(c :{v, payment(t)} |
(v:c〈confirm(ac{v, response(t, c)} as sigac)〉).

(c:U〈paid(t, v)〉 |
(U :c〈dispute(t)〉).c:ttp〈client dispute(sigv, sigac)〉))

Vendorv = ∗(U :v〈receive(?t, ?c)〉).
(v :{c, invoice(t)} as sigv |
(c :{v, payment(t)} as sigc).

(v:ac〈request(sigv, sigc)〉 |
(ac :{v, response(t, c)} as sigac).

(v:c〈confirm(sigac)〉 | v:U〈received(t, c)〉 |
(U :v〈dispute(t)〉).v:ttp〈vendor dispute(sigc, sigac)〉)))

Acquirerac = ∗(U :ac〈allow(?t, ?c, ?v)〉).
(v:ac〈request(v{c, invoice(t)} as sigv,

c{v, payment(t)} as sigc)〉).
(ac :{v, response(t, c)} | ac:U〈transfer(t, c, v)〉 |
(U :ac〈dispute(t)〉).ac:ttp〈acquirer dispute(sigc, sigv)〉)

Pttp = ∗(?c:ttp〈client dispute(?d)〉).
match d with ?v{c, invoice(?t)}, ac{v, response(t, c)} in

ttp:U〈accept client(t, c, v)〉 else
ttp:U〈reject client(t, c, v)〉 |

∗(?v:ttp〈vendor dispute(?d)〉).
match d with ?c{v, payment(?t)}, ac{v, response(t, c)} in

ttp:U〈accept vendor(t, c, v)〉 else
ttp:U〈reject vendor(t, c, v)〉 |

∗(ac:ttp〈acquirer dispute(?d)〉).
match d with ?c{?v, payment(?t)}, v{c, invoice(t)} in

ttp:U〈accept acquirer(t, c, v)〉 else
ttp:U〈reject acquirer(t, c, v)〉

Figure 3.2:Encoding of the Electronic Payment Protocol [BD05]
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properties. (In contrast with [BD05], we don’t have to define complex, auxiliary invariants; the
invariant directly follows from our definition of labelled transitions.)

3.4.3 Initialisation

This technical example shows that, without loss of generality, it suffices to develop concrete
implementations forinitial systemsthat do not share any names, certificates, or intercepted mes-
sages between principals and the environment. Up to structural equivalence, every system is of
the formS = Φ ` νñ.(

∏
a∈H a[Pa] |

∏
i∈I M/i). The sharing of names and certificates between

principals and the environment can be quite complex, and is best handled using an ad hoc (but
high-level) “bootstrapping” protocol, outlined below:

1. Free names ofS and restricted non-local namesñ are partitioned between honest princi-
pals; let(na,1, . . . , na,ka)a∈H be those names.

2. Free names and non-self-issued certificates that occur in the local processesPa are ex-
changed using a series of initialisation messagesMab,r of the form

Mab,r = a:b〈initab,r(na,1, . . . , na,kar
, a{Vab,1}, . . . , a{Vab,mr})〉,

carrying names and certificates issued bya that occur inPb. Similarly, initialization mes-
sages sent to a fixed principale /∈ H export the free names ofS and the certificates ofΦ,
whereas initialization messages frome import certificates issued by principals not inH.

Each principala ∈ H thus sends a series of initialisation messages, and sequentially re-
ceives and checks all initialisation messages addressed to him, using input patterns of the
form (Tba,r) whereTba,r is Mba,r with binding variables?n1, . . . , ?nk instead of the names
and aliasesb{Vba,r} as ?x for checking and binding certificates. The whole local initiali-
sation process is guarded by a dummy input with patternTea,0 = e:a〈 〉, so that the initial
system be stable.

3. Finally, each principala sends a messageM for every intercepted messageM/i from a
defined inS, then startsPa.

For instance, in caseH = {a, b} with neither nested certificates nor intercepted messages, the
local initialisation process fora is

P ◦
a = (Tea,0).νn1, . . . , nka .(Mab,1 |Mae,1 |(Tba,1).(Tea,1).Pa)

In the general case, several rounds of initialisation messages may be needed to exchange certifi-
cates whose contents include names and certificates, and to emit messages with the same shape
one at a time.

Intuitively, the attacker may preventPa from running at all by not forwarding messages, or
provide a message whose certificates do not match the certificates expected byPa, but it could
block all of a’s communications anyway. IfPa does start, it does so with the right names and
certificates.

The next lemma states the correctness of the initialisation protocol. The second property of
the lemma states that an environment that follows the protocol always reachesSi.
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Lemma 3.3 (Initialisation). LetSi for i = 0, 1 be safe stable systems with the same principals,
exported certificates, and intercepted-message labels.

There exist initial safe stable systemsS◦i and labelsϕ◦ such that

1. we have normal transitionsS◦i
ϕ◦−→ Si;

2. any normal transitionsS◦i
ϕ◦−→ S ′ imply thatS ′ ≡ Si; and

3. S0 ' S1 if and only ifS◦0 ' S◦1 .

Proof. (Sketch.) We haveS◦i
ϕ◦−→ Si deterministically, soS◦0 ' S◦1 impliesS0 ' S1. Conversely,

we show that the relation

R= {S ′0, S ′1) such thatS0 ' S1, S
◦
i

ϕ−→ S ′i,

andϕ is a prefix of a permutation of the labels ofϕ◦}∪ '

is a labelled bisimulation. (Intuitively,ϕ is the part ofϕ◦ that has already been enabled by the
attacker.)

3.5 A Concrete Implementation

We are now ready to define the machines outlined in Section3.1, relying on translations from
high-level terms and processes to keep track of their runtime state. We systematically map high-
level systemsS to the machines of Section3.1, mapping each principala[Pa] of S to a PPT
machineMa that executesPa. We start by giving an outline of our implementation.

The implementation mechanisms are simple, but they need to be carefully specified and com-
posed. (As a non-trivial example, when a machine outputs several messages, possibly to the same
principals, we must sort the messages after encryption so that their ordering on the wire leaks no
information on the computation that produced them.)

We use two concrete representations for terms: a wire format for (signed, encrypted) mes-
sages between principals, and an internal representation for local terms. Various bitstrings rep-
resent constructors, principal identities, identifiers for names, and certificates. Marshaling and
unmarshaling functions convert between internal and wire representations. When marshaling a
locally restricted name identifierind for the first time, we draw a bitstrings of lengthη uniformly
at random, associate it withind , and use it to representind on the wire. When unmarshaling a
bitstrings into an identifier for a name, ifs is not associated with any local identifier, we create
a new internal identifierind for the name, and also associates with ind .

Signatures are verified as part of unmarshaling. Signatures for self-issued certificates are
generated on-demand, as part of marshaling, and cached, so that the same signature value is used
for any certificate with identical content.

Local processes are represented in normal form for structural equivalence, using internal
terms and multisets of local inputs, local outputs, and outgoing messages. We implement reduc-
tions using an abstract machine that matches inputs and outputs using an arbitrary deterministic,
polynomial-time scheduler.
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Figure 3.3:Local machine for principala connected to the adversary machine

3.5.1 Implementation of Machines

The transition rules of Section3.2.2declare that all communications be authentic and confiden-
tial. In order to meet these requirements, our implementation relies on concrete bitstrings and
cryptographic protocols.

Definition 3.18 (Low-Level State).The runtime state of machineMa consists of the following
data:

• ida, da, andsa are bitstrings that represent the low-level identifier for principala and its
private keys for decryption and signing.

• peers = {(idu, eu, vu) | u ∈ Prin} binds, for every principal, a low-level identifier to
public keys for encryption and signature verification.

• pa is a low-level representation of a local process running ata (defined below).

• keycachea is a set of authentication keys for all received messages.

• signeda is a partial function from certificates issued bya to signature values.

• namesa is a partial function from name identifiers to bitstrings.

The main machine components are depicted in Figure3.3.
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Before detailing the definitions of all the protocols presented if Figure3.3, we describe a
complete run of the machine. Recall thatMa is connected to the environment by two wires,ina

andouta. The wire format for messages is the concatenated bitstringidu id v msg whereu and
v are the (apparent) sender and receivers andmsg is some encrypted, authenticated, marshaled
message. When it receives such a message (withid v = ida), Ma usesidu to dispatchmsg to the
receive protocol (Definition3.23) for remote principalu— there is an instance of thereceive
protocol for each peer principalu. The protocol verifies the freshness, integrity, and authenticity
of the message, updateskeycachea, then returns a decrypted bitstrings. If a verification step
fails, the message is discarded.

At this stage,msg is a genuine message fromu to a, but its content is not necessarily well-
formed. For instanceu may have included a certificate apparently issued byb but with an invalid
signature. Content validation occurs ass is unmarshaled (Definition3.21) from its wire format
into some internal (trusted) representationparsea(s) of a high-level termV . In particular, this
trusted representation embeds a valid signature for every certificate ofV . After successful recep-
tion and unmarshaling, a representationm of the incoming messageu:a〈V 〉 may react with an
input within pa and trigger local computations. To this end, a local interpreter (Definition3.19)
derived from the abstract machine of Section3.2.3runs onpa |m. If the interpreter terminates,
it yields a new stable internal processp′a plus a set of outgoing messagesX to be sent to the
network.

Each messagea:ui〈Vi〉 represented inX is then marshaled (Definition3.20) and passed to
the instance of thesend protocol (Definition3.22) associated with the intended recipientui.
The resulting bitstrings, all in wire format, of the formida idui

msg i, are eventually sorted (by
receiving principal, then encrypted valuemsg i)—to ensure that their ordering leaks no informa-
tion on their payload or their internal production process—and written onouta. A final done
bitstring is issued and the machine terminates. (Hence, for instance, ifp does not react withm,
the machine simply writesdone onouta and terminates.)

Next, we describe in turn each of the components of the local machine.

Low-level Processes Reductions

The internal representation of terms uses the same grammar as in the high-level language except
for atomic subterms: principalsu are boxed, fixed-sized bitstringsprin(idu) (`prin); free names
are boxed, bitstringsname(ind) where ind is an internal identifier for names; and certificate
labels are linear-sized bitstringss such that eithers is a valid signature for the certificate or
s = 0 and the certificate is self-issued. Bound variables and names may still occur in terms
under input guards.

Definition 3.19 (Internal Reductions). The local reduction algorithm refines the abstract ma-
chine of Section3.2as follows:

1. it represents the multisetsX, M , andG using internal terms;

2. it uses a deterministic, polynomial-time, complete scheduler;
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3. instead of lifting new name restrictionνn.Q, it generates a new identifierind (possibly
incrementing an internal counter) and substitutesname(ind) for all bound instances of the
n in Q.

Marshaling and Unmarshaling Protocols

These algorithms are responsible for processing messages that are about to be sent to (that were
received from) the network. The marshaling process transforms each internal term into a bit-
string to be sent over the network, and the unmarshal algorithm attempts to transform a bitstring
received from the network to a (trusted) internal term; it may instead return an error if the mes-
sage is not well-formed, or if the signature of an included certificate cannot be verified. In any
of these cases the entire message is discarded.

We use a fixed, injective function from all constructors plusname andprin to bitstrings of a
given fixed size; we still writef, name, prin for the corresponding bitstrings. We writes s′ for
the bitstring obtained by concatenatings ands′.

Definition 3.20 (Marshaling). Let Σ = (G,S,V) be a signature scheme. The function[[·]] maps
principal’s internal representations of closed terms to bitstrings, as follows:

[[name(ind)]] = name names(ind)
addingnames(ind) = s ←− {0, 1}η when undefined

[[prin(s)]] = prin s
[[f(v1, . . . , vn)]] = f [[v1]] . . . [[vn]] whenf /∈ {name, prin, cert}

[[v1{v2}s]] = cert [[v1]] [[v2]] s whens 6= 0

[[v1{v2}0]] = cert [[v1]] [[v2]] signed(v1{v2}0) whenv1 = prin(id b), b ∈ H
addingsigned(v1{v2}0) = S(sb, [[v2]]b) when undefined

We denote by[[·]]a the marshaling procedure for machineMa that uses only uses tablesnamesa

andsigneda, that is,names = namesa andsigned = signeda.

We prove as an invariant that for all certificates of the formv1{v2}0 in pa, v1 = prin(ida),
hence[[·]]a is defined for all internal representations of terms ofMa.

We assume that after marshalling, and before sending, all our messages are padded to a fixed
length that is given by the polynomialms(η), a parameter of the implementation. We could have
assumed that this was not the case and if so, we needed to consider this difference of length in our
high-level semantics. We could have done it using sorts and sizes for input and output messages.

Definition 3.21 (Unmarshaling). Let Σ = (G,S,V) be a signature scheme. The partial function
parse(·) maps bitstrings to internal representations of closed terms, as follows, and fails in all
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other cases.

parse(name s) = name(ind) when, there isind : names(ind) = s
otherwise if|s| = η then

ind = |dom(names)|+ 1 and
addnames(ind) = s

parse(prin s) = prin(s) when|s| = `prin and(s, es, vs) ∈ peers
parse(f s1 . . . sn) = f(v1, . . . , vn) whenf /∈ {name, prin, cert} has arityn

parse(si) = vi for i = 1..n
parse(cert s1 s2 s3) = v1{v2}s when, for some(idu, eu, vu) ∈ peers,

parse(s1) = prin(idu) = v1,
parse(s2) = v2

V(vu, s2, s3) = 1
s = if signed(v1{v2}0) = s3 then0 elses3

We denote byparsea(·) the unmarshaling procedure for machineMa that uses only uses tables
namesa andsigneda, that is,names = namesa andsigned = signeda.

Unmarshaling includes signature verification for any received certificate, and is otherwise
standard; it is specified here as a partial function from strings to internal representations, and can
easily be implemented as a parser. Our treatment of self-issued certificates with label0 reflects
our choice of internal representations:0 stands for the (unique) signature generated by the local
machine for this certificate content, the first time this certificate is marshaled. (In addition, the
adversary may be able to derive a variant of this certificate with a different signature, unmarshaled
with a non-zero label; such certificates are then treated using the default case for marshaling.)

Although we give a concrete definition of[[·]], parse(·), and message formats, our results only
depend on their generic properties. We only require that, for a given local machine, every string
be unmarshaled to at most one internal term, whose marshaling yields back the original string,
that is,parsea([[pV qa]]a) = pV qa. (pV qa denotes the internal representation ofa for V . We
definepV qa formally in Definition3.25.) For simplicity, we have that the length of the string be
a function of the structure of the internal term and of the security parameter.

Sending and Receiving Protocols

Two important pieces of our systems are thesendb andreceiveb protocols. There are one pair
of these for each other principal. Thesend protocol defined below, ensures that, as abstracted
in the high-level semantics, all communications are opaque for the adversary using public-key
encryption, and that the communication is authentic, using authentication and signature schemes.
This protocol takes a bitstrings (containing a marshaled message froma to u), protects it, and
returns it in wire format. Conversely, the receiving protocol takes a message in wire format
presumably fromu, verifies it, and returns its payload. We also request robustness against replay
attacks; after decryption, we reject any message whose authentication key is already recorded.

These protocols are intended as a simple example; other choices are possible. We may for
instance consider long term shared keys between principals, in order to reduce the overhead of
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public-key cryptography. If we decide to do so, we should introduce a nonce in the message that
is encrypted in Step3.

Definition 3.22 (Sending tou). Let Π = (K, E ,D), Σ = (G,S,V), andΛ = (GΛ,A, C) be
respectively an encryption, signature, and authentication schemes. Given a bitstrings, thesendu

protocol

1. generates a fresh authentication keyk ←− GΛ(1η);

2. computesm = s ida k S(sa, k idu) A(k, s);

3. computesmsg = E(eu,m); and

4. returnsida idu msg .

Definition 3.23 (Receiving fromu). Let Π = (K, E ,D), Σ = (G,S,V), andΛ = (GΛ,A, C) be
respectively an encryption, signature, and authentication schemes. Given a bitstringidu ida msg ,
thereceiveu protocol

1. computess idu k ssig sauth = D(da,msg);

2. checks that there is an entry(idu, eu, vu) ∈ peers with V(vu, k ida, ssig) = 1;

3. checks thatC(k, s, sauth) = 1;

4. checks thatk is not inkeycache, and adds it tokeycache;

5. returnss.

The entire message is discarded if any step of the protocol fails.

Mapping High-Level Systems to Low-Level Machines

In order to systematically relate the runtime state of low-level machines to the abstract state of
high-level systems, we define an associatedshadow state. This structure provides a consistent
interpretation of terms across machines. In combination, a system and its shadow state deter-
mine their implementation, obtained as a compositional translation of terms, local processes,
and configurations. (This state is shadow as it need not be maintained at runtime in the low-level
implementation; it is used solely as an abstraction to reason about the correctness of our imple-
mentations.) We further partition this state into public parts, intended to be part of the attacker’s
knowledge, and private parts.

Definition 3.24 (Shadow State).Let S = Φ ` νñ.C be a system such that the configuration
C =

∏
a∈H a[Pa] |

∏
i∈I M/i is in normal form. Ashadow statefor S, writtenD, consists of the

following data structure:
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• prin ∈ Prin → ({0, 1}η)5 is a function fromu ∈ Prin to bitstringsidu, eu, vu, du, su

such thatu → idu is injective, and for everyu ∈ H, we have(eu, du) ←− K(1η), and
(vu, su) ←− G(1η).

The bitstringsidu, eu, vu are public for allu ∈ Prin; du andsu are public ifu ∈ Prin\H.

• name ∈ Name ⇀ {0, 1}η is a partial injective function defined at least on every name that
occurs free inS, and names that occur inΦ, D.certval or D.wire.

The bitstringname(m) is public for every namem 6∈ ñ.

• ni is a family of partial injective functionsnia : Name ⇀ {0, 1}η for eacha ∈ H, defined
at least for all names ofPa that are not locally-restricted.

• certval is a partial function from certificatesu{V }` to s ∈ {0, 1}η defined at least on
the certificates ofΦ, D.wire, and all certificates ofPa of the form a{V }` with ` 6= 0
or u{V }` with u 6= a. It is also defined for all the certificates inV such thatu{V }` is
defined incertval . certval satisfies the following property: ifcertval(u{V }`) = s, then
V(vu, [[pV qD,u]], s) = 1.

The bitstringcertval(V ) is public whenV ∈M(Φ) or V issued byu 6∈ H.

• wire is a partial function from indicesi to (M, k, s, del) defined at least onI, whereM =
a:b〈V 〉 with a, b ∈ H, anddel = 0 if i ∈ I anddel = 1 otherwise. The bitstringss andk
are the output and the authentication key produced bysendb on input[[pV qD,a]].

The bitstringss anddel are public.

• keycache is a function froma ∈ H to sets of bitstrings such that, if there exists ani with
wire(i) = (M,k, , 1) with M to a, thenk ∈ keycache(a).

• msD(η) is a polynomial that sets the padding-size of the implementations ofS.

Intuitively, wire records all messages sent between honest principals;keycache(a) records
the authentication keys of all messages received bya so far; it contains at least the keys of mes-
sages inwire that were already received bya. WhenD is clear from the context, we writeprin(a)
instead ofD.prin(a), and similarly for the other components ofD. We denote bypublic(D) the
binary representation of the public parts ofD. When we are not interested in the specific bit-
strings, we call itshape ofD.

Definition 3.25 (Concrete Terms and Processes).A shadow stateD and a set of principals
X ⊆ Prin, define a partial map from high-level termsV to internal terms as follows:

• pnqD,X =

{
name(ind) , if ind = niu(n) for all u ∈ X
⊥ , otherwise

• puqD,X = prin(π1(prin(u))) for any principalu ∈ Prin;

• pu{V }0qD,X = puqD,X{pV qD,X}0, if u ∈ X;
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• pu{V }`qD,X = puqD,X{pV qD,X}s wheres = certval(u{V }`) (u ∈ Prin);

• pf(V1, . . . , Vn)qD,X = f(pV1qD,X , . . . , pVnqD,X) for anyf 6= cert with arity n.

We extend this map to translate local processes to low-level processes, as follows: high-level
terms within local processes are translated as above, except for variables and locally-restricted
names (left unchanged); high-level patterns are translated by applying the translation to all high-
level terms in the pattern and leaving the rest unchanged; local processesP are translated to
internal processespPqD,X by translating their high-level terms to internal terms.

As a corollary, we have that ifD is a shadow state forS, anda ∈ Prin thenp·qD,a is defined
for every subterm and subprocess ofS andD (p·qD,a denotesp·qD,{a}). We often writepV q
instead ofpV qD,a whenD anda are clear from the context. Our intent is that, with overwhelming
probability, we haveV = V ′ iff pV qD,a = pV ′qD,a wheneverD defines these representations.

We would like to point out that the previous definition is well-formed. One should first
notice that we do not translate high-level terms (hence, high-level certificates) with variables and
locally-restricted names. Hence, when applyingpu{V }`qD,a, we can be sure that the certificate
was previously generated and hence defined inD.certval .

Definition 3.26 (System Implementations).Let S be a system with shadow stateD. The im-
plementation ofS andD is the collection of machinesM(S, D) = (Ma(S, D))a∈H where each
machineMa(S, D) has the following state:

• ida, da, sa, peersa are read fromD.prin;

• pa = pPaqD,a;

• keycachea = keycache(a);

• signeda(pa{V }0qD,a) = certval(a{V }0) when defined;

• namesa(nia(n)) = name(n) when defined,

and uses[[·]]a andparsea(·) as the marshaling and unmarshaling algorithms, andmsD(·) as the
padding size.

3.6 Main Results

In this section we present the main results of this Chapter. Throughout this section we assume
that the encryption schemeΠ = (K, E ,D) is CCA-2 secure (recalled in DefinitionA.4), and the
signature schemeΣ = (G,S,V) and authentication schemeΛ = (GΛ,A, C) are CMA-secure
(recalled in DefinitionA.6).

Our main theorems are stated in terms of arbitrary systemsS. As it is convenient to have a for-
mulation of these theorems in terms of arbitrary systems, one should not forget that an arbitrary
systemS is obtained starting from an initial systemS◦ that has no shared names or certificates
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and no intercepted messages so, whenever we refer to a systemS, we are in fact referring to its
initial stateS◦ plus its initialisation procedure. The same happens with the implementations and
for that we introduce the notion ofvalid shadow. Intuitively, a shadowD is a valid shadow forS,
if there is an interactive run (Definition3.1) that starts withM(S◦, D◦) and leads the machine to
stateM(S, D), whereD◦ is the shadow obtained fromD by erasing everything exceptD.prin. D◦

is called aninitial shadowfor S. We denote byA◦[M(S◦, D◦)] −→ sr(M(S, D)) such run, where
sr is the bitstring returned byA◦ at the end of the run.

Accordingly, wedefinea low level run starting fromS with (valid) shadowD againstA,
written A[M(S, D)] −→ sr(M), as(A◦; A)[M(S◦, D◦)] −→ sr(M) where(A◦; A) represents an
adversary that first runsA◦ and then runsA.

Definition 3.27 (Valid Shadow). Let S be a safe system with shadowD. We say thatD is
a valid shadowfor S if there exist an initial safe systemS◦ with initial shadowD◦, normal
transitionsS◦

ϕ◦−→ S, and a PPT algorithmA◦ such thatA◦[M(S◦, D◦)] −→ public(D)(M(S, D)),
andmsD(η) ≥ maxdMe≤cd[[pMqD]]e wherec is the constant given by the safety condition and
[[pMqD]] is the result of marshaling the low-level representations ofM .

We say thatD is a valid shadow for two safe systemsS1 ' S2, if the sameA◦ initialises both
M(S1, D) andM(S2, D), andmsD(η) ≥ maxdMe≤max{c1,c2}d[[pMqD]]e, wherec1 andc2 are the
constants given by the safety condition ofS1 andS2 respectively.

Our first theorem expresses the completeness of our high-level transitions: every low-level
attack can be described in terms of high-level transitions. More precisely, the probability that an
interaction with a PPT adversary yields a machine state unexplained by any high-level transitions
is negligible.

Theorem 3.4 (Completeness for Reachable States).Let S be a safe stable system,D a valid
shadow forS, andA a PPT algorithm.

The probability thatA[M(S, D)] completes and leaves the system in stateM′ with M′ 6=
M(S ′, D′) for any normal transitionsS

ϕ−→ S ′ with valid shadowD′ is negligible.

Proof Sketch.We just sketch the proof and refer the reader to AppendixC for the full construc-
tions and proofs of the associated lemmas. The proof is done by tracing the cases when the
behaviour of machineM(S, D) is not in accordance with the high-level semantics and check-
ing that the probability of occurrence of such cases is negligible. A more detailed sketch is the
following:

• We start by defining variants ofM(S, D) called the defensive variantsM(S, D) (Defini-
tion C.1). These machines behave likeM(S, D) but include an extra wire where a failure
signal is sent whenever the low-level interaction is not in accordance with the high-level se-
mantics. The reader should be aware that these machines are just used as a proof technique,
hence there is no need to implement it. All our results are stated in terms ofM(S, D).

• The second step is to create a machineN0̃(S, D) that behaves likeM(S, D) but has a com-
mon state for all machinesMa(S, D) (DefinitionC.5). This is the same as having one single
machine that includes all theMa(S, D) machines, for alla ∈ H. We show thatM(S, D) is
equivalent toN0̃(S, D).
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• The third step is to defineN(S, D). This is the extreme version ofNñ(S, D) where all the
encrypted messages are 0’s and no signing is ever performed.

Then we have two different arguments. The first is the partial completeness ofM(S, D), N(S, D),
and the failure ofN(S, D).

1. We show that all runs ofM(S, D) andN(S, D), where the failure signal is not sent are in
conformance with the high-level semantics (LemmaC.6and LemmaC.7).

2. We show that the probability that the failure signal is issued byN(S, D) machine is negli-
gible by reducing it to the security of the encryption, authentication and signing schemes
(LemmaC.8).

The second argument is thatM(S, D) is indistinguishable fromN(S, D), hence the failure of the
former implies the failure of the latter, which only happens with negligible probability. This is
done as follows:

1. Nñ(S, D) machines are parameterised byñ = (na)a∈H. This parameter defines how many
messages to each honest principal will be “fake” (a fake message is one where we encrypt
0’s instead of the real bitstring). Wheneverna is reached, it starts behaving likeMa(S, D).
For the fake messages we keep an internal table that associates the fake bitstring to the real
message so that we can proceed with the correct value when the fake message is provided
back to the machine. With a standard cryptographic argument we show that distinguishing
Nñ(S, D) from Nñ+1(S, D), whereñ + 1 has all the components equal toñ except forna

that we replace byna + 1 for some principala (LemmaC.12).

2. We show via a cryptographic argument that for all PPT adversaries,M(S, D) is indistin-
guishable fromN(S, D) (LemmaC.13, C.14, andC.15).

This concludes our proof.

Finally, our main result states the soundness of equivalence: to show that the machines that
implement two stable systems are indistinguishable, it suffices to show that they are safe and
bisimilar. We just need an extra condition that the padding size is the same in both cases.

Theorem 3.5 (Soundness for Equivalences).Let S1 andS2 be safe stable systems,D a valid
shadow for bothS1 andS2.

If S1 ' S2, thenM(S1, D) ≈ M(S2, D).

Proof Sketch.For this theorem we also refer the reader to AppendixC for the full proofs of
the associated lemmas. The proof is done reusing some of the previous lemmas, in particular
LemmaC.15and with the special LemmasC.16andC.17. This lemmas state that for equivalent
systemsS1 and S2 the probabilities of failure ofN(S1, D) and N(S2, D) are the same up to
negligible probability.
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3.7 Related Work

Within formal cryptography, process calculi are widely used to model security protocols. For ex-
ample, the spi calculus of Abadi and Gordon [AG99] neatly models secret keys and fresh nonces
using names and their dynamic scopes. Representing active attackers as pi calculus contexts, one
can state (and prove) trace properties and observational equivalences that precisely capture the
security goals for these protocols. Automated provers (e.g. [Bla]) also help verify these goals.

In both of these cases, cryptography is supposed to be perfect, that is, decryption is only
possible if one knows the encryption key, and an adversary is an arbitrary context that runs in
parallel with the specified process. These frameworks provide a formal treatment for the so called
Dolev-Yao model.

Abadi, Fournet, and Gonthier develop distributed implementations for variants of the join
calculus, with high-level security but no cryptography, roughly comparable to our high-level
language. Their implementation is coded within a lower-level calculus with formal cryptography.
They establish full abstraction for observational equivalence [Aba98, AFG02, AFG00]. Our
approach is similar, but our implementation is considerably more concrete. Also, due to the larger
distance between high-level processes and low-level machines, our results are more demanding.
Abadi and Fournet also propose a labelled semantics for traffic analysis, in the context of a pi
calculus model of a fixed protocol for private authentication [AF04].

Another different approach is to supplement process calculi with concrete probabilistic or
polynomial-time semantics. Unavoidably, reasoning on processes becomes more difficult. This
was done by Lincoln, Mitchell, Mitchell, and Scedrov [LMMS98]. They introduce a probabilistic
process algebra for analysing security protocols, such that parallel contexts coincide with proba-
bilistic polynomial-time adversaries. This was later extended by Mitchell, Ramanathan, Scedrov,
and Teague [MRST01, MRST04, MRST06], and Mateus, Mitchell and Scedrov [MMS03]. In
the former they develop an equational theory and bisimulation-based proof techniques, while in
the latter a general simulatability theorem is presented.

3.8 Conclusions and Future Work

We designed a simple, abstract language for secure distributed communications with two forms
of authentication (but no explicit cryptography). Our language provides uniform protection for
all messages; it is expressive enough to program a large class of protocols; it also enables simple
reasoning about security properties in the presence of active attackers, using labelled traces and
equivalences.

We implemented this calculus as a collection of concrete PPT machines embedding stan-
dard cryptographic algorithms, and established that low-level PPT adversaries that control their
scheduling and the network have essentially the same power as (much simpler) high-level envi-
ronments. To the best of our knowledge, these are the first cryptographic soundness and com-
pleteness results for a distributed process calculus.

We also identified and discussed difficulties that stem from the discrepancy between the two
models. Our proofs involve a novel combination of techniques from process calculi and cryptog-
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raphy, but they are less modular than we expected. It would be interesting (and hard) to extend
the expressiveness of our calculus, for instance with secrecy and probabilistic choices.

We refer the reader to [AF06b] for the discussion related to soundness and completeness of
trace equivalence. There we show soundness of the high-level operational semantics, that is,
every series of transitions can be executed (and checked) by a low-level attacker. Said otherwise,
the high-level semantics does not give too much power to the environment. As we can charac-
terise any trace using an adversary, we also obtain completeness for trace equivalence: low-level
equivalence implies high-level trace equivalence. This result is a corollary of the previous result.

Also, it would be interesting to see if the techniques developed to prove the soundness and
completeness results for our calculus can be also applied to similar results for a full-fledge pro-
cess calculus with explicit cryptography.





Chapter 4

A Process Algebra for Reasoning About
Quantum Security

Security protocols are, in general, composed by several agents running in parallel, where each
agent computes information (bounded by polynomial-time on the security parameter) and ex-
change it with other agents. In the context of quantum processes, the computation is bounded by
quantum polynomial-time and the information exchanged is supported by qubits. In this Chapter,
the problem of defining quantum security properties is addressed using a quantum polynomial-
time process algebra. This approach is highly inspired in [MRST01, MMS03].

In Section 2 the process algebra is introduced together with the logarithmic cost random
access machine. Both the syntax and the semantics of the process algebra are clearly established,
and the section is concluded by presenting the notion of observational equivalence. Section 3
is devoted to emulation and its composition theorem, and finally, in Section 4 quantum zero-
knowledge is defined using process emulation.

4.1 Process Algebra

In the context of security protocols it is common to consider a security parameterη ∈ N. In the
case of quantum protocols we will also consider such parameter in order to bound the quantum
complexity of the principals and adversaries. From now on, the symbolη is reserved to designate
such security parameter. The role of this parameter is twofold: it bounds to a polynomial onη
the number of qubits that can be sent through channels, and it bounds all the computation to
quantum polynomial time (onη). We now detail these aspects culminating with the presentation
of the process algebra language.

4.1.1 Quantum polynomial machines

The computational model we adopted to define quantum polynomial machine is based on the
logarithmic cost random access machine [CR73] and it is quite similar to the quantum random
access machine in [Kni96]. We consider a hybrid model using both classic and quantum memory.

111
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In order to cope with a countable set of qubitsqB we adopt the following Hilbert spaceH
(isomorphic to`2(2qB) andL2(2qB, #)) to model the quantum state (see [MS04, MS06] for a
discussion on whyH is the correct Hilbert space for modelling a countable set of qubits):

• each element is a map|ψ〉 : 2qB → C such that:

– supp(|ψ〉) = {v ∈ 2qB : |ψ〉(v) 6= 0} is countable;

–
∑

v∈2qB

||ψ〉(v)|2 =
∑

v∈supp(|ψ〉)
||ψ〉(v)|2 < ∞;

• |ψ1〉+ |ψ2〉 = λv. |ψ1〉(v) + |ψ2〉(v);

• z|ψ〉 = λv. z|ψ〉(v);

• 〈ψ1|ψ2〉 =
∑
v∈V

|ψ1〉(v) |ψ2〉(v).

The inner product induces the norm|||ψ〉|| =
√
〈ψ|ψ〉 and so, the distanced(|ψ1〉, |ψ2〉) =

|||ψ1〉 − |ψ2〉||. Clearly,{|v〉 : v ∈ 2qB} is an orthonormal basis ofH where|v〉(v) = 1 and
|v〉(v′) = 0 for everyv′ 6= v. This basis is called the computational or logic basis ofH.

A configuration of a quantum random access machine (QRAM) is tripleξ = (m, |ψ〉, s)
wherem ∈ NN, |ψ〉 ∈ H ands ∈ N. The first component of the triple represents the classical
memory of the machine—an infinite sequence of natural numbers, the second component repre-
sents the quantum state of the machine, and finally the third component is a counter that indicates
how many (qu)bit operations are allowed.

We associate to each QRAM a positive polynomialq for bounding the number of allowed
(qu)bit operations toq(η). In this way, we force each QRAM to terminate in polynomial-time.
Given a finite set of qubits at state|ϕ〉, the initial configuration of the QRAM is the triple
ξ0(|ϕ〉) = (m0, |ϕ〉⊗|~0〉, q(η)), where the sequencem0 is such thatm0(k) = 0 for all k ∈ N and
|~0〉 is the unit vector inH such that|~0〉(∅) = 1 (note that ifQ is a2n dimension Hilbert space,
then there is a canonical isomorphism betweenH andQ⊗H, and therefore|ϕ〉 ⊗ |~0〉 ∈ Q⊗H
can be seen as a unit vector inH). A QRAM receives as input a finite sequence of qubits, but
since it is always possible to encode classical bits in qubits this is not a limitation.

The set of atomic commandsAC, and their associated cost is presented in the table below1.

1We denote the number of bits required to represent a natural numbern by |n|.
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Number Instruction Computational cost

1 Ri = n |n|
2 Ri = Rj |Rj|
3 Ri = Rj + Rk |Rj|+ |Rk|
4 Ri = Rj −Rk |Rj|+ |Rk|
5 Ri = RjRk |Rj| × |Rk|
6 Ri = Rj/Rk |Rj| × |Rk|
7 Ri = RRj

|Rj|+ |RRj
|

8 RRi
= Rj |Ri|+ |Rj|

9 Pauli X [b] 1
10 Pauli Y [b] 1
11 Pauli Z [b] 1
12 Hadamard [b] 1
13 phase [b] 1
14 π

8
[b] 1

15 c-not [b1, b2] 1
16 measure [b] → Ri 1

Most of the commands above are self-explanatory, but it is worthwhile to notice that all
commands are deterministic with exception ofmeasure . Indeed, according to the measure-
ment postulates of quantum mechanics (see for instance [CTDL77]), when a quantum system
is measured the outcome is stochastic, and moreover the state evolves accordingly to this out-
come. Note that we only consider measurements over the computational basis, nevertheless this
is not a limitation since any other qubit measurement can be performed by applying a unitary
transformation before measuring the qubit over the computational basis.

The set of QRAMcommandsC is obtained inductively as follows:

1. a ∈ C if a ∈ AC;

2. c1; c2 ∈ C if c1, c2 ∈ C;

3. (if (Rn > 0) then c) ∈ C if c ∈ C;

4. (while (Rn > 0) c) ∈ C if c ∈ C.

Theexecutionof a QRAM commandc is a stochastic function between configurations. Let
Ξ = NN × H × N be the set of all configurations, andProbfin(Ξ) be the set of all probability
measures over(Ξ, 2Ξ) such that only a finite set of configurations have probability different
from 0. The execution of a QRAM commandc is a maprunc : Ξ → Probfin(Ξ), and we write
[c] ξ →p ξ′ to denote thatPrrunc(ξ)(ξ

′) = p. The execution of QRAM commands can be defined
using the following rules, which are quite intuitive:

s ≥ |n|
[Ri = n] (m, |ψ〉, s) →1 (m′, |ψ〉, s− |n|) (Ri = n),
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wherem′(k) = m(k) for all k 6= i andm′(i) = n;

s ≥ |Rj|
[Ri = Rj] (m, |ψ〉, s) →1 (m′, |ψ〉, s− |Rj|) (Ri = Rj),

wherem′(k) = m(k) for all k 6= i andm′(i) = m(j);

s ≥ |Rj|+ |Rk|
[Ri = Rj + Rk] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj|+ |Rk|)) (Ri = Rj + Rk),

wherem′(k) = m(k) for all k 6= i andm′(i) = m(j) + m(k);

s ≥ |Rj|+ |Rk|
[Ri = Rj −Rk] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj|+ |Rk|)) (Ri = Rj −Rk),

wherem′(k) = m(k) for all k 6= i andm′(i) = max(m(j)−m(k), 0);

s ≥ |Rj| × |Rk|
[Ri = RjRk] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj| × |Rk|)) (Ri = RjRk),

wherem′(k) = m(k) for all k 6= i andm′(i) = m(j)m(k);

s ≥ |Rj| × |Rk|
[Ri = Rj/Rk] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj| × |Rk|)) (Ri = Rj/Rk),

wherem′(k) = m(k) for all k 6= i andm′(i) = bm(j)/m(k)c;
s ≥ |Rj|+ |RRj

|
[Ri = RRj

] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj|+ |RRj
|)) (Ri = RRj

),

wherem′(k) = m′(k) for all k 6= i andm′(i) = m(m(j));

s ≥ |Ri|+ |Rj|
[RRi

= Rj] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Ri|+ |Rj|)) (RRi
= Rj),

wherem′(k) = m(k) for all k 6= m(i) andm′(m(i)) = m(j);

s ≥ 1

[Pauli X [b]] (m, |ψ〉, s) →1 (m, |ψ′〉, s− 1)
(Pauli X [b]),

where|ψ′〉 is obtained from|ψ〉 by applying the PauliX operator

[
0 1
1 0

]
on qubitb. Similar

rules apply to the following one-qubit operators:

PauliY

[
0 −i
i 0

]
; PauliZ

[
1 0
0 −1

]
;



4.1. Process Algebra 115

Hadamard 1√
2

[
1 1
1 −1

]
; Phase

[
1 0
0 i

]
; π

8

[
1 0
0 eiπ/4

]
;

s ≥ 1

[c-not [b1, b2]] (m, |ψ〉, s) →1 (m, |ψ′〉, s− 1)
(c-not [b1, b2]),

where|ψ′〉 is obtained from|ψ〉 by applying the control-not operator



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




on qubitsb1 andb2;

s ≥ 1

[measure [b] → Ri] (m, |ψ〉, s) →p (m′, |ψ′〉, s− 1))
(measure [b] → Ri = 0),

where|ψ′〉 is equal to P0|ψ〉
|P0|ψ〉| , p = |P0|ψ〉| (P0 is the projector onto the subspace ofH where qubit

b takes value|0〉), m′(i) = 0 andm′(j) = m(j) for all j 6= i;

s ≥ 1

[measure [b] → Ri] (m, |ψ〉, s) →p (m′, |ψ′〉, s− 1))
(measure [b] → Ri = 1),

where|ψ′〉 is equal to P1|ψ〉
|P1|ψ〉| , p = |P1|ψ〉| (P1 is the projector onto the subspace ofH where qubit

b takes value|1〉), m′(i) = 1 andm′(j) = m(j) for all j 6= i;

[c1] (m, |ψ〉, s) →p1 (m′, |ψ′〉, s′) [c2] (m′, |ψ′〉, s′) →p2 (m′′, |ψ′′〉, s′′)
[c1; c2] (m, |ψ〉, s) →p1×p2 (m′′, |ψ′′〉, s′′) (c1; c2);

m(n) > 0 s ≥ |Rn| [c] (m, |ψ〉, s− |Rn|) →p (m′, |ψ′〉, s′)
[(if (Rn > 0) then c)] (m, |ψ〉, s) →p [c] (m′, |ψ′〉, s′) (if >);

m(n) = 0

[(if (Rn > 0) then c)] (m, |ψ〉, s) →1 (m, |ψ〉, s) (if ⊥);

m(n) > 0 s ≥ |Rn|
[c; (while (Rn > 0) c)] (m, |ψ〉, s− |Rn|) →p (m′, |ψ′〉, s′)

[(while (Rn > 0) c)] (m, |ψ〉, s) →p (m′, |ψ′〉, s′) (while >);

m(n) = 0

[(while (Rn > 0) c)] (m, |ψ〉, s) →1 (m, |ψ〉, s− |Rn|) (while ⊥).
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Observe, that the reduction of QRAM commands always terminate, since every computation
is bounded byq(η) (qu)bit steps. The execution of a QRAM command can be seen as a word run
of a quantum automata [MMS05], however a detailed discussion about this subject is out of the
scope of this abstract.

The output of a QRAM is the quantum state of a set of qubits. This output set is determined
by another positive polynomialo associated to the machine. Given a security parameterη, the
set of output qubits is constituted by the firsto(η) qubits.

Definition 4.1. A quantum polynomial machineis a tripleM = (c, q, o) wherec is a QRAM
command,q is a positive step bounding polynomial ando is a positive output polynomial. We
denote the set of all these triples byQPM.

Given a quantum polynomial machineM and a security parameterη, the computation ofM
over state|ψ〉 is the probability distribution over the state of the firsto(η) qubits of|ψ′〉, where
this distribution is defined by the execution rules[c](m0, |ψ〉, q(η)) →p (m′, |ψ′〉, s′). Hence, the
computation of a QRAM is a probability distribution over the state space of the firsto(η) qubits.
It is traditional in quantum algorithms to measure all relevant qubits at the end of the computation
in order to obtain a classical result (see Shor’s and Grover’s algorithms). However, since we use
QRAM to compute quantum information that can be sent through quantum channels, we do
not impose this final measurement since it may be desirable to send a superposition through a
quantum channel.

The following result asserts that the QRAM model is equivalent to the usual quantum circuit
computational model (a careful presentation of this result is out of the scope of this abstract).

Proposition 4.1. For any uniform family of polynomial quantum circuitsQ = {Qη}η∈N, there
exists a quantum polynomial machineMQ such that theMQ computes the same stochastic func-
tion asQ. Moreover, for any quantum polynomial machineM there exists an equivalent uniform
family of polynomial quantum circuitsQM = {Qη}η∈N.

Proof. Proof (Sketch): Note that a uniform circuit uses precisely the gates defined as quantum
atomic commands of the QRAM. The construction of the circuit can be mimicked by a RAM
commandc. Since this construction must be polynomial inη, the program must terminate in
polynomial time and therefore, there is a polynomialq to bound the number of steps, finally
the output must always be a polynomial set of qubits, and therefore we are able to construct an
equivalent QRAM machine.

On the other hand a QRAM program is the realisation of the uniform family construction,
since, for eachη, a circuit can be retrieved by looking at the finite (do not forget that QRAM
programs always terminate) sequence of quantum atomic gates generated by the execution of the
command. The stochastic nature of the execution does not bring a problem, since gates placed
after a measurement can be controlled by the outcome of that measurement. If a measurement
gives the value 1 to a qubit and in that case a gateU is placed at some qubitb, then the circuit
should be constructed by placing a control-U gate controlled by the measured qubit and targeted
at b.
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4.1.2 Process algebra

As stated before, we require to know who possesses a qubit in order to know who can retrieve
some piece of information. In order to deal with this fact, a qubit is considered to belong to some
agent, and therefore, the set of qubitsqB is partitioned among all agents. To make this more
precise, a countable setA = {a1, . . . , ak, . . . } of agents is fixed once and for all, and moreover
the partitionqB = {qBai

}ai∈A of qB is such that each setqBai
is countable and recursively

enumerable.
Note that eachqBai

has a total order (with a bottom element) induced by its recursive enu-
meration. The purpose of this total ordering is to reindex the qubits accessed by a QPMM
when an agenta executesM . An obvious desideratum of the system is that an agenta is re-
stricted to compute over its own qubitsqBa, and therefore, when agenta executes a quantum
polynomial machineM , this machine must have access only to the qubits inqBa (note that if
the qubits ofa are entangled with other qubits, then when the former are modified so can be the
latter). Therefore, if, for instance, an agenta executes a machine that consists of the command
Pauli X [b], and if qBa is recursively enumerated byγ, then the command effectively executed
is Pauli X [γ(b)]. The same procedure applies to the input and output qubits, so when a ma-
chine executed bya outputs the firsto(η) qubits, the machine is in fact outputting the qubits
{γ(o(1)), . . . , γ(o(η))} ⊂ qBa ⊆ qB.

Communication between agents is achieved via public channels, allowing qubits to be ex-
changed. Clearly, this process is modelled by modifying the partition ofqB. It is also convenient
to allow parallelism inside an agent (that is, an agent may be constituted by several processes
in parallel), for this purpose, private channels (that cannot be intercepted) allowing communi-
cation between the agent local processes are introduced. To make this assumptions clear, two
countable disjoint sets ofquantum channelsare considered, the set ofglobal or public channels
G = {g1, g2, . . . , gk, . . . }, and the set oflocal or private channelsL = {l1, l2, . . . , lk, . . . }. We
denote byC the setG ∪ L. All global channels can be read and written by an adversary while
local channels correspond to private communication from one agent to itself. One role of the
security parameter is to bound the bandwidth of the channels. Hence, we introduce abandwidth
mapbw : C → q, whereq is the set of all polynomials taking positive values. Given a valueη
for the security parameter, a channelc can send at mostbw(c)(η) qubits.

We also consider a countable set of variablesVar = {x1, x2, . . . , xk, . . . }, which are required
to define qubit terms. A qubit termt is either a finite subset ofqB or a variablex ∈ Var.

Finally, we present the language of processes, which is a fragment ofπ-calculus. Mind that
the overall computation must be quantum polynomial onη and therefore we do not cope with
recursion nor mobility. First, we establish the language of an agent, that we call local process
language.

Definition 4.2. The language of local processesL is obtained inductively as follows:

1. 0 ∈ L (termination);

2. c〈M(t)〉 ∈ L whereM ∈ QPM, t is a qubit term, andc ∈ C (output);

3. c(x).Q ∈ L wherec ∈ C, x ∈ Var andQ ∈ L (input);
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4. [M(t) = 0].Q whereM ∈ QPM, t is a qubit term, andQ ∈ L (match);

5. (Q1|Q2) whereQ1, Q2 ∈ L (parallel composition);

6. !qQ whereQ ∈ L andq ∈ q (bounded replication).

Most of the (local) process terms are intuitive. The output termc〈M(qB′)〉 means that the
output of machineM , which received the finite set of qubitsqB′ as input, is sent through channel
c. The input termc(x).Q means that a set of qubits is going to be received onc, and upon
reception,x takes the value of the received qubits.

After fixing the security parameterη, we can get rid of replication by evaluating each process
!qR asq(η) copies ofR in parallel. Therefore, we always assume that a process term has no
replication. Now, as state before, a protocol is constituted by a set o agents running in parallel,
therefore the global language (or protocol language) is quite simple:

Definition 4.3. The language of global processesG over a set of agentsA is defined inductively
as follows:

1. 0 ∈ G (global termination);

2. P‖(a : Q) ∈ G whereP ∈ G, a ∈ A does not occur inP , andQ ∈ L (global parallel
composition).

The following example uses the process language to describe the RSA cryptanalysis using
Shor’s algorithm.

Example 4.1 (Shor’s based RSA cryptanalysis).Let p, q be primes (withη length binary ex-
pansion), ande, d integers such thated ≡ 1 mod φ(pq). Alice is a simple processA that knows
some messagew and outputswe mod pq, wheree is the public key of Bob. This dummy process
can be presented as

(a : A(w)) := (a : g〈we mod pq〉).

Bob receivesx and computesxd mod pq. This procedure can be modelled by the following
process:

(b : B) := (b : g(x).(l〈xd mod pq〉|l(y).0)).

Therefore the RSA protocol is given by the process(a : A(w))‖(b : B). Finally, we can write
the “attacking” process, Eve. She factorisespq, invertse mod φ(pq) (thus, allowing her to find
d), and intercepts the message sent by Alice (on channelg). We write this process as follows:

(c : l1〈Shor(pq)〉|l1(y).l2〈Inv(y, e)〉|g(x).l2(z).(l3〈xz mod pq〉|l3(w).0)).
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4.1.3 Semantics

In order to define the semantics of a local process we need to introduce the notion of local
configuration. Alocal configurationor agent configurationis a triple(|ψ〉, qBa, Q) where|ψ〉 ∈
H, qBa ⊆ qB is a countable, recursive enumerable set andQ ∈ L. The first element of the local
configuration is the global state of the protocol, the second element is the set of qubits the agent
possesses and the last element is the local process term.

The semantics of a local process is a probabilistic transition system where the transitions
are defined by rules. We use(|ψ〉, qBa, Q) →p (|ψ′〉, qBa, Q

′) to state that, at global state|ψ〉,
when agenta possesses qubitsqBa, the local processQ is reduced toQ′ and global state is
modified to|ψ′〉 with probability p. It is also worthwhile to observe that we use the notation
M(|ψ〉, qBa, qB1) →p (|ψ′〉, qB2) to denote that the execution of the QRMM , operating onqBa

(that is, using the recursive enumeration ofqBa to reindex the position of the qubits), and receiv-
ing as inputqB1, outputsqB2 and modifies the global state|ψ〉 to |ψ′〉 with probabilityp. For
the case of local processes, the setsqB1 andqB2 are irrelevant, because the qubits owned by the
agent remain the same when a local communication (LCom rule) is applied. Their functionality
will be clear when we present the global rules.

M(|ψ〉, qBa, qB1) →p (|ψ′〉, qB2) qB1, qB2 ⊆ qBa |qB2| ≤ bw(l)(η)

(|ψ〉, qBa, l(x).Q|l〈M(qB1)〉) →p (|ψ′〉, qBa, Qx
qB2

)
(LCom)

We also introduce the termM ; Meas to denote the machine that, after executingM performs
a measurement on the computational basis of the output qubits ofM . So a match corresponds
to performing a measurement on the output qubits ofM and checking whether the result is the0
word.

(M ; Meas)(|ψ〉, qBa, qB1) →p (|ψ′〉, qB2) |ψ′〉|qB2 = |~0〉
(|ψ〉, qBa, [M(qB1) = 0].Q) →p (|ψ′〉, qBa, Q)

(Match>)

(M ; Meas)(|ψ〉, qBa, qB1) →p (|ψ′〉, qB2) |ψ′〉|qB2 6= |~0〉
(|ψ〉, qBa, [M(qB1) = 0].Q) →p (|ψ′〉, qBa,0)

(Match⊥)

The remaining rules are self-explanatory.

(|ψ〉, qBa, P ) →p (|ψ′〉, qBa, P
′)

(|ψ〉, qBa, P |Q) →p (|ψ′〉, qBa, P ′|Q)
(LLPar)

(|ψ〉, qBa, Q) →p (|ψ′〉, qBa, Q
′)

(|ψ〉, qBa, P |Q) →p (|ψ′〉, qBa, P |Q′)
(LRPar)

We proceed by presenting the global rules. Aglobal configurationis a triple(|ψ〉, qB, P )
where|ψ〉 ∈ H, qB = {qBa}a∈A is a partition ofqB indexed by the set of agentsA (where
eachqBa is countable and r.e.) andP ∈ G. The semantics of a global process is defined by the
following rules:
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(|ψ〉, qBa, Q) →p (|ψ′〉, qBa, Q
′)

(|ψ〉, qB, (a : Q)) →p (|ψ′〉, qB, (a : Q))
(LtoG)

M(|ψ〉, qBb, qB1) →p (|ψ′〉, qB2) qB1, qB2 ⊆ qBb |qB2| ≤ bw(g)(η)

(|ψ〉, qB, (a : g(x).Q)‖(b : g〈M(qB1)〉)) →p (|ψ′〉, qB′, (a : Qx
qB2

))
(GCom)

whereqB′ = {qB′
a}a∈A, qB′

a = qBa ∪ qB2, qB′
b = qBb \ qB2, andqB′

c = qBc for all c 6= a, b.

(|ψ〉, qB, P1) →p (|ψ′〉, qB′, P ′
1)

(|ψ〉, qB, P1‖P2) →p (|ψ′〉, qB′, P ′
1‖P2)

(GLPar)

(|ψ〉, qB, P2) →p (|ψ′〉, qB′, P ′
2)

(|ψ〉, qB, P1‖P2) →p (|ψ′〉, qB′, P1‖P ′
2)

(GRPar).

All the rules are very simple to grasp. The only non trivial rule is global communication
(GCom), that makes qubits to be exchanged from one agent to another, and therefore an adjust-
ment is required in the qubit partition.

Process term reductions are non-deterministic, in the sense that several different reductions
could be chosen at some step. In order to be possible to make a quantitative analysis, this re-
duction should be probabilistic. For the sake of simplicity, we assume a uniform scheduler, that
is, the choice on any possible reduction is done with uniform probability over all possible non-
deterministic reductions. We do not present in detail the scheduler model but, in principle, any
probability distribution modelled by a QPM can be used to model the scheduler policy. Finally,
note that by applying local and global rules, and assuming a uniform scheduler, one can define
the many step reduction→∗

p such that(|ψ1〉, qB1, P1) →∗
p (|ψn〉, qBn, Pn), whenever:

• (|ψ1〉, qB1, P1) →p1 (|ψ2〉, qB2, P2) →p2 · · · →pn−1 (|ψn〉, qBn, Pn);

• p = p1

R1
× p2

R2
× · · · × pn−1

Rn−1
whereRi is the number of possible non-deterministic choices

for (|ψi〉, qBi, Pi) for all i ∈ {1, . . . , n− 1};
• (|ψn〉, qBn, Pn) cannot be reduced any more.

The many step reduction takes into account the scheduler choice, by weighting each stochastic re-
ductionpi with yet another probability1

Ri
, whereRi is the number of possible non-deterministic

choices at stepi.

4.1.4 Observations and observational equivalence

At the end of a protocol, each agenta ∈ A is allowed to measure a polynomial (inη) number of
qubits inqBa to extract information. We can always assume that these qubits are the first, say,
r(η) qubits ofqBa wherer is a positive polynomial. Therefore, the many step reduction of a
process termP induces a probability distribution on2r(η), where2r(η) is the set of all possible
outcomes ofr(η) qubits when measured over the computational basis (that is,2r(η) is the set of
all r(η)-long binary words).
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Definition 4.4. Given a positive polynomialr and a global configuration(|ψ〉, qB, P ), let

Γ(|ψ〉,qB,P ) = {(|ψ′〉, qB′, P ′) : (|ψ〉, qB, P ) →∗
p (|ψ′〉, qB′, P ′) andp > 0}.

We define theobservation of an agenta to be the family of probability measures

Oa
r = {(2r(η), 22r(η)

, Prar(η))}η∈N

where:

• Prar(η)({w}) =
∑

γ∈Γ(|ψ〉,qB,P )
pγ × |〈w|ψγ〉|;

• pγ is such that(|ψ〉, qB, P ) →∗
pγ

γ;

• |ψγ〉 is the first component ofγ;

• |〈w|ψγ〉| is the probability of observing ther(η)-long binary wordw by measuring ther(η)
first qubits ofqBa (qubits in possession of agenta) of |ψγ〉 in the computational basis.

Note that the summation used to computePrar(η)({w}) is well defined, sinceΓ(|ψ〉,qB,P ) is
finite. It is clear at this point,that an observation of an agent is a randomr(η)-long binary word,
with distribution given byPrar(η).

The notion of observational equivalence we adopt is based on computational indistinguisha-
bility as usual in the security community [MRST01]. First, we introduce the concept of context.
The set ofglobal contextsC is defined inductively as follows:[ ] ∈ C; C[ ]‖P andP‖C[ ] ∈ C
provided thatC[ ] ∈ C andP ∈ G. Given a contextC[ ] and a global processP , the notation
C[P ] means that we substitute the processP for the[ ] in C[ ].

Definition 4.5. Let P andP ′ be process terms. We say thatP is computationally indistinguish-
able by agenta from P ′ if and only if for every contextC[ ], polynomialsq andr, |ψ〉 ∈ H,
partitionqB of qB, η sufficiently large and binary wordw ∈ 2r(η),

|Prar(η)(w)− Pr′ar(η)(w)| ≤ 1

q(η)

wherePrar(η) is given by the observation ofa for configuration(|ψ〉, qB, C[P ]) andPr′ar(η) is given
by the observation ofa for configuration(|ψ〉, qB, C[P ′]). In such case we writeP ' P ′.

Two processes are computationally indistinguishable if they are indistinguishable by con-
texts, that is, for any input (here modelled by|ψ〉 andqB), there is no context which can dis-
tinguish, up to a negligible function, the outputs produced. The definition above extends the
classical definition of computational indistinguishability to the quantum case, since processes
can be modelled by quantum polynomial machines and thereforeC[ ] induces the required dis-
tinguishing machine. A detailed proof of this result is out of the scope of this extended abstract.

In order to set up compositionality, the following result is of the utmost importance:

Proposition 4.2. Computational indistinguishability is a congruence relation with respect to the
parallel primitive ofG.

Proof. Both symmetry and reflexivity are trivial to check. Transitivity follows by triangular
inequality, and taking into account that1

2
q(n) is a polynomial. Congruence on the global parallel

operator follows by noticing that for any contextsC[ ] andC ′[ ], C ′[C[ ]] is also a context.
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4.2 Emulation and Composition Theorem

One of the most successful ways for defining secure concurrent cryptographic tasks is via process
emulation [AG99, Can00]. This definitional job boils down to the following: a process realises
a cryptographic task if and only if it emulates an ideal process that is known to realise such
task. In this section, guided by the goal of defining secure functionalities, we detail the notion of
emulation for the quantum process calculus defined in the previous section.

Let I be an ideal protocol that realises (the honest part of) some secure protocol andP a
process that implements the functionality specified byI. The overall goal is to show thatP
realises, without flaws, (part of) the secure functionality specified byI. The goal is achieved if
for any real adversary, say(a : A), the processP ||(a : A) is computationally indistinguishable
by the adversarya from the processI||(a : B) for some ideal adversary(a : B), where an ideal
adversary is an adversary which cannot corruptI and a real adversary is any local process for
agenta. This property asserts that given a real adversary(a : A), agenta cannot distinguish
the information leaked byP ||(a : A) from the information leaked by the well behaved process
I||(a : B) for some ideal adversary(a : B), and therefore, we infer thatP ||(a : A) is also
well behaved. This discussion leads to the concept of emulation with respect to a set of real
adversariesA and ideal adversariesB.

Definition 4.6. Let P andI be process terms andA andB sets of global processes where the
only agent is the adversarya, thenP emulatesI with respect toA andB if and only if for all
processes(a : A) ∈ A there exists a process(a : B) ∈ B such thatP ||(a : A) ' I||(a : B). In
such case we writeP ≡a

A,B I and say thatP is a secure implementation ofI with respect toA
andB.

A desirable property of the emulation relation is the so called Composition Theorem. This
result was first discussed informally for the classical secure computation setting in [MR91], and
states the following: ifP is a secure implementation of partI of an ideal protocol,R andJ
are two protocols which use the ideal protocolI as a component, and finally,R is a secure
implementation ofJ , thenRI

P should be a secure implementation ofJ . This result is captured as
follows:

Theorem 4.3. Let P, I be processes,R[ ] and J [ ] contexts andA,B sets of processes over
agenta and C,D sets of processes over agentb. If R[I||(a : B)] ≡b

C,D J [I||(a : B)] for any
(a : B) ∈ B andP ≡a

A,B I then for any adversary(a : A) ∈ A there exists(a : B) ∈ B such
thatR[Q||(a : A)] ≡b

C,D J [I||(a : B)].

Proof. Let (a : A) ∈ A and(a : B) ∈ B be such thatP ||(a : A) ' I||(a : B). Now choose
some(b : C) ∈ C, clearly, R[Q||(a : A)]||(c : C) ' R[I||(a : B)]||(c : C) since' is a
congruence relation. Moreover, sinceR[I||(a : B)] ≡C,D J [I||(a : B)], there is a(b : D) ∈ D
such thatR[I|(a : B)]|C ' J [I||(a : B)]||(b : D). Finally, by transitivity of', we have that
R[Q||(a : A)]||(b : C) ' J [I||(a : B)]||(b : D) and henceR[Q||(a : A)] ≡C,D J [I||(a : B)].

Observe that ideal protocols are constituted by a honest partI and an ideal adversary(a : B),
and therefore are of the formI||(a : B). This justifies whyR[I||(a : B)] was considered in the
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proposition above instead ofR[I]. Moreover, adversaries for the functionality implemented by
R andJ might be different from those ofI andQ, therefore, two pairs of sets of processesC,D
andA, B are required to model two kinds of adversaries.

4.3 Quantum Zero-Knowledge Proofs

An interactive proof is a two party protocol, where one agent is called theproverand the other
is called theverifier. The main objective of the protocol is to let the prover convince the verifier
of the validity of an assertion, however, this must be done in such a way that the prover cannot
convince the verifier of the validity of some false assertion.

Any interactive proof system fulfills two properties: completeness and soundness. Complete-
ness states that if the assertion the prover wants to convince the verifier is true, then the verifier
should be convinced with probability one. On the other hand, soundness is fulfilled if the verifier
cannot be convinced, up to a negligible probability, of a false assertion. Therefore, completeness
and soundness allow the verifier to check whether the assertion of the prover is true or false.

Zero-knowledge is a property of the prover (strategy). Consider the following informal notion
of (quantum) computational zero-knowledge strategy, which corresponds to the straightforward
lifting to the quantum setting of the classical version:

Definition 4.7. A prover strategyS is said to bequantum computational zero-knowledgeover a
setL if and only if for every quantum polynomial-time verifier strategy,V there exists quantum
polynomial-time algorithmM such that(S, V )(l) is (quantum) computationally indistinguish-
able fromM(l) for all l ∈ L, where(S, V ) denotes the output of the interaction betweenS and
V .

The main application of zero-knowledge proof protocols in the cryptographic setting is in
the context of a userU that has a secret and is supposed to perform some steps, depending on
the secret. The problem is how can other users assure thatU has carried out the correct steps
without U disclosing its secret. Zero-knowledge proof protocols (ZKP) can be used to satisfy
these conflicting requirements.

Zero-knowledge essentially embodies that the verifier cannot gain more knowledge when
interacting with the prover than by running alone a quantum polynomial time program (using the
same input in both cases). That is, running a the verifier in parallel with the prover should be
indistinguishable of some quantum polynomial time program.

Actually, the notion of (quantum computational) zero-knowledge proofs can be captured
through emulation very easily. Assuming that a proof strategyS(x) and verifierV (x) are mod-
elled as terms of the process algebra, it is actually possible to model the interaction betweenp
andv by the process(p : S)||(v : V ). Denote byLv(l) the set of all process terms for the verifier
(v : V )x

l , that is, any process term(v : V ) where the free variablex was replaced by the binary
word l. We have the following characterisation:

Proposition 4.4. A process term(p : S) denoting a proof strategy is computational zero-
knowledge forL if and only if(p : S)x

l ≡v
Lv(l),Lv(l) 0, for all l ∈ L.
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Proof. Proof (Sketch): Notice that the ZKP resumes to impose that for all(v : V )x
l there is

a process(v : V ′)x
l such that(p : S)x

l ||(v : V )x
l ' 0||(v : V ′)x

l . Since the semantics of a
local process can be modelled by a QPM, and moreover0||(v : V ′)x

l can model any QPM, the
characterisation proposed in this proposition is equivalent to Definition4.7.

So, a process(p : S) models a quantum zero-knowledge strategy if, from the point of view of
the verifier, it is impossible to distinguish the final result of the interaction with(p : S) from the
interaction with the0 process. A clear corollary of Theorem4.3is that, quantum zero-knowledge
is compositional.

It is simple to adapt the emulation approach to several other quantum security properties, like
quantum secure computation, authentication and so on.

4.4 Conclusions and Future Work

The contributions of this work are multiple. First, we introduced a process algebra for specify-
ing and reasoning about (quantum) security protocols. To restrict the computation power of the
agents to quantum polynomial-time, we introduced the logarithm cost quantum random access
machine, and incorporated it in the process language. Due to the special aspects of quantum in-
formation, qubits were assumed to be partitioned among agents, and the (quantum) computation
of an agent was restricted to its own qubits.

Second, we defined observational equivalence and quantum computational indistinguishabil-
ity for the process algebra at hand, and showed that the latter is a congruence relation. Moreover,
we obtained a simple corollary of this result: security properties defined via emulation are com-
positional.

Finally, we illustrated the definition of a security property via emulation with the concept of
quantum zero-knowledge. It is however straightforward to adapt this approach to several other
quantum security properties, like quantum secure computation.

As for future work, a research program can be set up by just extending several results of
classical process algebras to the quantum world. For instance, one can assume that adversaries
have quantum polynomial time power and try to find a sound and complete implementation of a
process algebra over such quantum computational model.
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Conclusions and Future Work

To conclude this dissertation we are going to summarise its main contributions and point out
some of the directions in which this work may be extended.

5.1 Summary of Contributions

This dissertation is divided in three main chapters. In Chapter2 we discussed extensions of
the Abadi-Rogaway logics of indistinguishability [AR02]. In more detail, we dealt with two
restrictions of their results, existence of key-cycles in the encrypted expressions, and partial
leakage of information.

Soundness in the presence of key-cycles was never dealt in previous results and seemed to be
a gap between the symbolic and the computational models. In fact, our results show that in order
to bridge this gap we need to perform changes in the computational definitions, in contrast with
the usual practice of changing the symbolic model. We use the notion of KDM-security [BRS02]
and show that, when the encryption scheme is KDM-secure, it is possible to obtain soundness
even in the presence of key-cycles. We also show that the computational soundness property
neither implies nor is implied by type-0 security, and thus the original Abadi-Rogaway result
could not have been demonstrated for key-cycles using the security notions described in their
work. In AppendixB we show similar results for public-key encryption and in particular that
computational soundness property neither implies nor is it implied by security against chosen
ciphertext attack, CCA-2.

The other weakness of the Abadi-Rogaway results that we discuss in this dissertation is the
case of partial leakage of information by an encryption scheme. The original result assumed
a very strong notion of security (type-0) which is not actually achieved by many encryption
schemes. Thus, one might wonder if a similar result might be derived for weaker schemes.
We have showed that for symmetric encryption, subtle differences between security definitions
can be faithfully reflected in the formal symbolic setting. To this end, we introduced a general
probabilistic framework which includes both the computational and the information-theoretic
encryption schemes as special cases. We have established soundness and completeness theorems
of formal encryption in this general framework, as well as new applications to specific settings:

125
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an information-theoretic interpretation of formal expressions in One-Time Pad, and also com-
putational interpretations in type-1 (length-revealing), type-2 (which-key revealing) and type-3
(which-key and length revealing) encryption schemes based on computational complexity.

In Chapter3 we presented an approach for the study of sound abstractions of cryptography
using process algebras. As process algebras have been widely used in the study of security of
concurrent systems, all the existing results are stated in terms of the Dolev-Yao Model, hence
no real cryptographic guarantees are achieved. In more detail, we designed a simple, abstract
language for secure distributed communications with two forms of authentication (but no ex-
plicit cryptography). Our language is expressive enough to program a large class of protocols,
and enables simple reasoning about security properties in the presence of active attackers, using
labelled traces and equivalences. We provide a concrete implementation for this calculus as a col-
lection of concrete PPT machines embedding standard cryptographic algorithms, and established
that low-level PPT adversaries that control their scheduling and the network have essentially the
same power as (much simpler) high-level environments. To the best of our knowledge, this is the
first cryptographic soundness and completeness results for a distributed process calculus.

In Chapter4 we introduced a process algebra for specifying and reasoning about (quantum)
security protocols. To the best of our knowledge, this was the first quantum programming lan-
guage that was fully designed having in mind the specific subtleties of security protocols. In order
to restrict the computation power of the agents to quantum polynomial-time, we introduced the
logarithm cost quantum random access machine, and incorporated it in the process language.
We also defined observational equivalence and quantum computational indistinguishability for
the process algebra at hand, and showed that the latter is a congruence relation. We obtained
a simple corollary that security properties defined via emulation are compositional. As an ap-
plication we illustrated the definition of a security property via emulation with the concept of
quantum zero-knowledge. It is however straightforward to adapt this approach to several other
quantum security properties, like quantum secure computation.

5.2 Limitations of Our Results and Future Work

A limitation of our results of Chapter2 regarding key-cycles is that the only known realisation of
a KDM-encryption scheme is in the Random-Oracle Model. In spite of our results do not depend
upon this realisation (our results only use the KDM-scheme as a black-box scheme) we would
like to design an KDM encryption scheme that is secure in the standard model. In both the cases
of key-cycles and leakage of partial information, we would like to extend our results from the
passive-adversary setting to that of the active adversary.

Also, one might consider various expansions of the formal setting that would allow addi-
tional operations such asxor, pseudorandom permutations, or exponentiation. Soundness and
completeness such richer formal settings would, of course, need exploration. In particular, the
definition of patterns appears to be rather subtle in such richer settings. We would also like to
understand how our methods fit with the methods of [Mau02].

Lastly, one might consider exploring partial leakage in the setting of asymmetric encryp-
tion. One might also extend our methods and investigate formal treatment of other cryptographic
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primitives. It would be interesting to see if our methods could be combined with the methods of
[BPW03, Can01].

As for Chapter3 we would like to extend the expressiveness of our calculus. It would be
interesting to extend it with secrecy and probabilistic choices. Also, it would be interesting to
see if the techniques developed to prove the soundness and completeness results for our calculus
can be also applied to similar results for a full-fledge process calculus with explicit cryptogra-
phy. Similarly to what was done in Chapter2, we are also interested in extending our calculus
to incorporate the notion of length of messages in the terms of the calculus. We envisage its
implementation using types and sorts.

As for Chapter4, one could try to extend the existent results for classical process algebras
to the quantum world. For instance, one can assume that adversaries have quantum polynomial
time power and try to find a sound and complete implementation of a process algebra over such
quantum computational model as we did in Chapter2 for the classical model.





Bibliography

[AB05] Mart́ın Abadi and Bruno Blanchet. Analyzing Security Protocols with Secrecy
Types and Logic Programs.Journal of the ACM, 52(1):102–146, January 2005.

[Aba98] Mart́ın Abadi. Protection in programming-language translations. InProceedings
of the 25th International Colloquium on Automata, Languages and Programming,
volume 1443 ofLecture Notes in Computer Science, pages 868–883. Springer, 1998.
Also Digital Equipment Corporation Systems Research Center report No. 154, April
1998.

[Aba99] M. Abadi. Secrecy by typing in security protocols.Journal of the ACM, 46(5):749–
786, September 1999.

[ABHS05] P. Ad̃ao, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption
in the presence of key-cycles. In S. De Capitani di Vimercati, P. Syverson, and
D. Gollmann, editors,Proceedings of the 10th European Symposium on Research in
Computer Security (ESORICS), volume 3679 ofLecture Notes in Computer Science,
pages 374–396, Milan, Italy, September 12–14 2005. Springer.

[ABS05] P. Ad̃ao, G. Bana, and A. Scedrov. Computational and information-theoretic sound-
ness and completeness of formal encryption. In CSFW05 [CSF05], pages 170–184.
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Appendix A

Cryptographic Definitions

In this chapter we present the summary of the cryptographic primitives used in this dissertation.
Some of these were already presented on previous chapters. We also state and prove the cryp-
tographic results used in the rest of this dissertation. The first security notion is the notion of
negligible function.

Definition A.1 (Negligible Function). A function f : N → R is negligible, written f(n) ≤
neg (n), if for any c > 0 there existsnc such thatn ≥ nc impliesf(n) ≤ n−c.

The notion ofcomputational indistinguishabilitywas introduced by Goldwasser and Mi-
cali [GM84] and is the notion that we used throughout this dissertation when comparing two
computational systems.

Definition A.2 (Computational Indistinguishability). Two families {Dη}η∈N and {D′
η}η∈N,

areindistinguishable, writtenDη ≈ D′
η, if for all PPT adversariesA,

∣∣Pr [d ←− Dη; A(1η, d) = 1]− Pr
[
d ←− D′

η; A(1η, d) = 1
]∣∣ ≤ neg (η)

A.1 Cryptographic Primitives

An encryption scheme is a triple of algorithms(K, E ,D) with key generationK, encryptionE
and decryptionD. Let plaintexts, ciphertexts, publickey and secretkey be nonempty
subsets ofstrings. The setcoins is some probability field that stands for coin-tossing,i.e.,
randomness.

Definition A.3 (Asymmetric Encryption Scheme). An asymmetric encryption scheme is a
triple Π = (K, E ,D) where:

• K : N × coins → publickey × secretkey is a key-generation algorithm with security
parameterη,

• E : publickey × plaintexts× coins → ciphertexts is an encryption function,
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144 Chapter A. Cryptographic Definitions

• D : secretkey × strings → plaintexts is such that for all(e, d) ∈ publickey ×
secretkey andω ∈ coins,D(d, E(e,m, ω)) = m for all m ∈ plaintexts.

All these algorithms must be computable in polynomial-time in the size of the input. We insist
thatdE(e,m, w)e = dE(e,m, w′)e for all e ∈ publickey, m ∈ plaintexts andw,w′ ∈ coins,
wheredxe stands for the binary length ofx.

There are several different notions of security for an encryption scheme. The one that we
adopt here, introduced by [RS91], has been shown to be strictly stronger than almost all other
definitions, including semantic security [BDPR98].

In the following,Pr[A; B : C] is the probability of occurrence of eventC after performing
eventsA andB.

Definition A.4 (IND-CCA2—Adaptive Chosen Ciphertext Security). A public-key encryp-
tion schemeΠ = (K, E ,D) provides indistinguishability under the adaptive chosen-ciphertext
attack if for all PPT adversariesA:

Pr[ (e, d) ←− K(1η);
m0,m1 ←− AD1(·)(1η, e);
b ←− {0, 1} ;
c ←− E(e,mb);
g ←− AD2(·)(1η, e, c) :
b = g ] ≤ 1

2
+ neg (η)

The oracleD1(x) returnsD(d, x), andD2(x) returnsD(d, x) if x 6= c and returns⊥ otherwise.
The adversary is assumed to keep state between the two invocations. It is required thatm0 and
m1 be of the same length.

That is, an adversary should not be able to learn from a ciphertext whether it is the encryption
of the plaintextm0 or the plaintextm1, even if the adversary knows the public key used to
encrypt, the adversary can choose the messagesm0 andm1 itself, so long as the messages have
the same length, and the adversary can request and receive the decryption of anyotherciphertext.

Definition A.5 (Signature Scheme).A signature scheme is a tripleΣ = (G,S,V) where:

• G : N × coins → sigkey × verifykey is a key-generation algorithm with security
parameterη,

• S : sigkey × plaintexts× coins → signedtexts is the signing algorithm, and

• V : verifykey × strings× signedtexts → {0, 1} is such that for every pair(s, v) ←−
G(1η) andω ∈ coins, V(v, m,S(s,m, ω)) = 1 for all m ∈ plaintexts.

All these algorithms must be computable in polynomial-time in the size of the input. We call
(s, v) a pair of signing/verification keys, and the stringS(s, m, ω) a signature of the plaintextm
with the keys.
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Similarly to encryption, there are several different notions of security for signature schemes.
We adopt the notion ofunforgeable signature under chosen message attack[GMR88].

Definition A.6 (Adaptive Chosen Message Security).A signature schemeΣ = (G,S,V) is
secure against forgery under adaptive chosen-message attack if for all PPT adversariesA:

Pr[ (s, v) ←− G(1η);
(m, sig) ←− AS1(·)(1η, v) :
V(v, m, sig) = 1 | m 6∈ Queries ] ≤ neg (η)

The oracleS1(x) returnsS(s, x) and addsx to the setQueries.

This game intuitively says that, after requesting as many signatures as he wants from the
signing oracleS1, an adversary cannot produce a pair(m, sig) such thatsig is the signature of the
messagem. Of course this game is only fair if the produced pair is not one of the pairs obtained
by querying the oracle. Note that the adversary can also access the verification algorithm since
he knows the verification keyv.

How is CMA Security used in Chapter3

Definition A.6 does not state whether the adversary (or even the signer) is able to generate other
valuessig ′ such thatV(v, m, sig ′) = 1 givenv, m, andsig (and evens for the signer). In practice,
this ability may come from the underlying cryptographic algorithms, or simply from the lack of
normalisation for signature values.

Conservatively, our high-level semantics presented in Chapter3 assumes this is always pos-
sible, as specified in Rule (SYSIN), whereas our low-level implementation does not rely on this
ability. Still, for establishing some of our results (e.g. the existence of some adversary in com-
pleteness proofs), we need to be more specific. To this end, we then use a signature scheme
Σ′ = (G,S,V ,M) such that(G,S,V) meets DefinitionA.6 and the fourth algorithmM is such
that, ifV(v, m, sig) = 1, then the valuessign = M(v,m, sig , 1n) for n < η are pairwise distinct
and such thatV(v, m, sign) = 1.

It is straightforward (if not very useful) to build such a signature scheme from any givenΣ, as
follows: for signing, we concatenateη zeros to the signature valuesig ; for signature verification,
we ignore the lastη bits of the signature value; for producing other signature value, we increment
the last bits of the signature value.

As for authentication, we use a symmetric signing scheme. A symmetric authentication
schemeΛ = (GΛ,A, C) is defined in the same way as DefinitionA.5 except thatGΛ generates a
single key, used both for signing and encryption, that verifies the equationC(k, m,A(k, m, ω)) =
1 for all m ∈ plaintexts. The notion of security is the same as in DefinitionA.6, except that
the adversary is not given the verification keyv (which is also the signing key).
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A.2 Cryptographic Results

Proposition A.1. LetΣ = (G,S,V) be a CMA-secure authentication scheme andn any function
bounded above by a polynomial in the security parameterη. Then for all PPT adversariesA:

Pr[ (si, vi)
n
i=1 ←− G(1η);

(m, sig) ←− AS1(·),S2(·),...,Sn(·)(1η, v1, v2, . . . , vn) :
V(vi,m, sig) = 1 for some1 ≤ i ≤ n | m 6∈ Queries i ] ≤ neg (η)

where the oraclesSi(x) returnsS(si, x) and addsx to the setQueries i.

Proof. Suppose that there is an adversaryA that is able to create such signature with non-
negligible probability. We can then create an adversaryAdvCMA that can break CMA-security,
DefinitionA.6. DefineAdvCMA

F(·)(1η, v) as follows:

generate (s2, v2), (s3, v3), . . . , (sn, vn) ←− K(1η)
call adversary A(1η, v, v2, v3, . . . , vn)

on every call of A to S1(x) return the result F(x)
on every call of A to Si(x) return the result S(si, x)
if A outputs (m, sig) then

output (m, sig)

It is immediate to see that if there is an adversaryA that is able to break the property stated in
the proposition with non-negligible probability, then this adversaryA can be used to construct
adversaryAdvCMA

F(·) above that breaks CMA-security.

Proposition A.2 (Equivalent Notion of Negligible Function). Let f : N → R be a function.
f(n) is negligible if and only if

∀q(n)∃n0 : n ≥ n0 =⇒ f(n) ≤ 1

q(n)
.

Proof. Straightforward from DefinitionA.1.

Proposition A.3. Letf : N→ R be anegligiblefunction andp : N→ R a polynomial.
We havep(n)× f(n) is a negligible function.

Proof. By definition,p(n)× f(n) is a negligible function if

∀q(n)∃n0 : n ≥ n0 =⇒ p(n)× f(n) ≤ 1

q(n)
.

Let q(n) be a polynomial. Sincef(n) is negligible, we have that

∀q′(n)∃n0 : n ≥ n0 =⇒ f(n) ≤ 1

q′(n)
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Pick q′(n) = p(n)× q(n), then

∃n0 : n ≥ n0 =⇒ f(n) ≤ 1

p(n)× q(n)

=⇒ p(n)× f(n) ≤ p(n)

p(n)× q(n)
=

1

q(n)
,

hencep(n)× f(n) is a negligible function.





Appendix B

Soundness and KDM Security: the case of
Asymmetric Encryption

In this appendix, we re-examine KDM security and soundness in the presence of key-cycles, but
this time we consider the setting of asymmetric encryption. The material of this appendix is
almost entirely the same as that of Section2.2with the following differences:

• The set of keys are split into encryption (public) keys and decryption (private) keys,

• Type-0 encryption is replaced by chosen-ciphertext secure encryption (CCA-2 in the nota-
tion of [BDPR98]; found in DefinitionA.4).

Our main result is the same: (asymmetric) KDM-secure encryption provides type-3 soundness
in the presence of key-cycles. In the public-key encryption setting, this result has many powerful
implications. Many extensions of the Abadi and Rogaway result simply rely on soundness as a
‘black-box’ assumption, and are not themselves hindered by key-cycles. By removing the key-
cycle restriction from the Abadi-Rogaway result, it is removed from these extensions as well.

Consider, for example, the non-malleability results of Herzog [Her04]. In this setting, the
adversary does not wish to distinguish two expressions but to transform one expressionM into
another expressionM ′. The formal adversary has only a limited power to do this, and can only
produce formal messages in a set called theclosureof M (denotedC[M ]). Soundness for this
non-malleability property is that no computational adversary, given the interpretation ofM , can
produce the interpretation of an expression outsideC[M ]. As Herzog shows, this soundness
for this non-malleability property is directly implied by soundness for indistinguishability of
messages. Because we show the KDM security soundness for message indistinguishability, this
result of Herzog shows that it also provides soundness for non-malleability properties as well.

For the rest of this section, we present those definitions and proofs that differ from their
counterparts in Section2.2. Because this section is independent of and parallel to that section,
we will use the same notation and names found there.

Definition B.1 (Expressions).Let Keys = {K1, K2, K3, ...} be an infinite discrete set of sym-
bols, called the set of encryption keys, andKeys−1 = {K−1

1 , K−1
2 , K−1

3 , ...} the corresponding
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set of decryption keys. LetBlocks be a finite subset of{0, 1}∗. We define theset of expressions,
Exp, by the grammar:

Exp ::= Keys | Keys−1 | Blocks | (Exp, Exp) | {Exp}Keys

We will denote byKeys(M) the set of all encryption keys occurring inM and byKeys−1(M) the
set of decryption keys inM . Expressions of the form{N}K are calledencryption terms.

Definition B.2 (Visible Subterms, Recoverable Decryption Keys).Let vis (M) ⊆ Exp, the
visible subterms ofM , be the smallest set of expressions containingM such that:

1. (N1, N2) ∈ vis (M) =⇒ N1 ∈ vis (M) andN2 ∈ vis (M), and
2. {N}K ∈ vis (M) andK−1 ∈ vis (M) =⇒ N ∈ vis (M).

Let R-Keys(M), the set ofrecoverable decryption keysin M , bevis (M) ∩ Keys−1.

Definition B.3 (Formal Length). We introduce a function symbol with fresh letter` with the
following identities:

• For all blocksB1 andB2, `(B1) = `(B2) iff |B1| = |B2|,
• For all expressionM and key-renaming functionσ, `(M) = `(Mσ),
• If `(M1) = `(N1), `(M2) = `(N2) then`((M1,M2)) = `((N1, N2)), and
• If `(M) = `(N), then for allKi, `({M}Ki

) = `({N}Ki
).

Definition B.4 (Pattern). We define theset of patterns, Pat, by the grammar:

Pat ::= Keys | Keys−1 | Blocks | (Pat, Pat) | {Pat}Keys | 2Keys,`(Exp)

The pattern of an expressionM , denoted bypattern(M), is derived fromM by replacing each
encryption term{M ′}K ∈ vis (M) (whereK−1 /∈ R-Keys(M)) by 2K,`(M ′).

For two patternsP andQ, P =3 Q is defined the following way:

• If P ∈ Blocks∪ Keys∪ Keys−1, thenP =3 Q iff P andQ are identical.
• If P is of the form2K,`(M ′), thenP =3 Q iff Q is of the form2K,`(N ′), and`(M ′) = `(N ′)

in the sense of DefinitionB.3.
• If P is of the form(P1, P2), thenP =3 Q iff Q is of the form(Q1, Q2) whereP1 =3 Q1

andP2 =3 Q2.
• If P is of the form{P ′}K , thenP =3 Q iff Q is of the form{Q′}K whereP ′ =3 Q′.

Definition B.5 (Key-Renaming Function). A bijection σ : Keys → Keys is called akey-
renaming function. For any expression (or pattern)M , Mσ denotes the expression (or pattern)
obtained fromM by replacing all occurrences of keysK in M by σ(K) (including those occur-
rences as indices of2) and all occurrences of keysK−1 in M by (σ(K))−1.

Definition B.6 (Equivalence of Expressions).We say that two expressionsM andN areequiv-
alent, denoted byM ∼= N , if there exists a key-renaming functionσ such thatpattern(M) =3

pattern(Nσ).
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Definition B.7 (Key-Cycles).A formal messageM contains akey-cycleif it contains encryption
terms{M1}K1, {M2}K2, . . . ,{Mn}Kn (where{Mi}Ki

denotes the encryption of the messageMi

with the public keyKi) such thatMi contains the key necessary to decrypt{Mi+1}Ki+1
andMn

contains the key necessary to decrypt{M1}K1. In this case we say that we have a key-cycle of
lengthn.

Definition B.8 (Asymmetric Encryption Scheme). A computational asymmetric encryption
schemeis a tripleΠ = (K, E ,D) where:

• K : N × coins → publickey × secretkey is a key-generation algorithm with security
parameterη,

• E : publickey× plaintexts× coins → ciphertexts is an encryption function, and
• D : secretkey × strings → plaintexts is such that for all(e, d) ∈ publickey ×

secretkey andω ∈ coins

D(d, E(e,m, ω)) = m for all m ∈ plaintexts.

All these algorithms must be computable in polynomial time in the size of the input not counting
thecoins. (For this reason, the setN is usually represented as1∗.) We insist that|E(e,m, w)| =
|E(e,m, w′)| for all e ∈ publickey,m ∈ plaintexts andw,w′ ∈ coins, where|x| stands for
the binary length ofx. We also insist that0∗ ⊆ plaintexts.

The CONVERT function for asymmetric encryption can be found in FigureB.1.

Theorem B.1. CCA-2 security does not imply soundness. That is, if there exists an encryption
scheme secure against the chosen-ciphertext attack, then there exists another encryption scheme
which is secure against the chosen-ciphertext attack but does not provide soundness.

Proof. This proof is exactly analogous to the proof of Theorem2.1. This is shown via a simple
counter-example. Assuming that there exists an encryption scheme secure against the chosen-
ciphertext attack, we will use it to construct another scheme which is also secure against the
chosen-ciphertext attack. However, we will show that this new scheme allows the adversary
to distinguish one particular expressionM from another particular expressionN , even though
M ∼= N .

Let M be {K−1}K . Let N be the expression{K−1
1 }K2. Since these two expressions are

equivalent, an encryption scheme that enforces soundness requires that the family of distributions

{(e, d) ←− K(1η); c ←− E(e, d) : c}η∈N

be indistinguishable from the family of distributions

{(e1, d1) ←− K(1η); (e2, d2) ←− K(1η); c ←− E(e1, d2) : c}η∈N.

However, this is not implied by DefinitionA.4. Let Π = (K, E ,D) be a CCA-2 secure encryp-
tion scheme. Again, we assume that private keys and ciphertexts have different and easily distin-
guished formats. We construct a second CCA-2 secure encryption schemeΠ′ = (K′, E ′,D′) as
follows:
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algorithm INITIALIZE(M)
for K ∈ Keys(M) do (τ(K), τ(K−1)) ←− K(1η)

algorithm CONVERT(M)
if M = K whereK ∈ Keys then

return τ(K)
if M = K−1 whereK ∈ Keys−1 then

return τ(K−1)
if M = B whereB ∈ Blocks then

return B
if M = (M1,M2) then

x ←− CONVET(M1)
y ←− CONVERT(M2)
return [x, y]

if M = {M1}K then
x ←− CONVERT(M1)
y ←− E(τ(K), x)
return y

if M = 2K,`(M ′), then
y ←− E(τ(K), 0|Φη(M ′)|)
return y

Figure B.1:Interpretation algorithm for asymmetric encryption

• LetK′ = K,

• Let E ′ be the following algorithm:

E ′(e,m) =

{
d if m = d
E(e,m) otherwise

.

For many encryption schemes, key-pairs are recognisable as such via number-theoretic
properties. Even when this is not the case, the test that a pair(e, d) corresponds to a pair
encryption/decryption key can be conducted via the sub-algorithm:

– Select a random plaintextr;

– Let c ←− E(e, r);

– Let p ←− D(m, c);

– Test whetherp = r.

• LetD′ be the following algorithm:

D′(d, c) =

{
d if c = d
D(d, c) otherwise

.
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The schemeΠ′ acts exactly likeΠ unless the encryption algorithmE ′ is called on a pair
(e,m) wherem (when used as a decryption key) can decrypt a random value encrypted with
e. However, if such a value form is easy to guess by the adversary, or easy to compute for a
randomly generated public keye, then the schemeΠ could not be CCA-2 secure. Thus, the new
schemeΠ′ must also be CCA-2 secure. However, it does not guarantee indistinguishability for
the two distributions above. The first distribution will output decryption key while the second
outputs a ciphertext, and these two distributions are easily distinguished by form alone.

Since CCA-2 security implies a number of other definitions [BDPR98], we can easily con-
clude that these other definitions also do not imply soundness:

Corollary B.2. Soundness is not implied by any of: NM-CCA-1 security, IND-CCA-1 security,
NM-CPA security, or IND-CPA (semantic) security.

Definition B.9 (Asymmetric KDM Security). Let Π = (K, E ,D) be an asymmetric encryption
scheme. Let the two oraclesReald andFaked be defined as follows:

• Suppose that for a fixed security parameterη ∈ N, a family of keys is given:{(ei, di) ←−
K(1η)}i∈N. The adversary can now query the oracles providing them with a pair(j, g),
wherej ∈ N andg : secretkey∞ → {0, 1}∗ is a constant length, deterministic function
andd is defined as the sequence〈d1, d2, . . .〉:

– The oracleReald when receiving this input returnsc ←− E(ej, g(d));

– The oracleFaked when receiving this same input returnsc ←− E(ej, 0
|g(d)|).

We say that the encryption scheme isKDM-secureif for all PPT adversariesA:

Pr
[
(e,d) ←− K(1η) : AReald(1η, e) = 1

]−
Pr

[
(e,d) ←− K(1η) : AFaked(1η, e) = 1

] ≤ neg (η)

Theorem B.3 (KDM Security Implies Soundness).Let Π = (K, E ,D) be a computational
encryption scheme. IfΠ is KDM-secure, thenΠ provides soundness.

Proof. For an arbitrary keyK, let ι(K) denote the index ofK. For an expressionM , a set
of formal decryption keysS, and a functionτ defined on(Keys ∪ Keys−1) \ S such that
τ |Keys takes values inpublickey and τ |Keys−1 takes values insecretkey, we define a function
fM,S,τ : coinse(M) × secretkey∞ → strings (wheree(M) is the number of encryptions inM )
inductively in the following way:

• ForM = B ∈ Blocks, let fB,S,τ : secretkey∞ → strings be defined asfB,S,τ (d) = B;

• ForM = K ∈ Keys, letfK,S,τ : secretkey∞ → strings be defined asfK,S,τ (d) = τ(K);

• For M = K−1 ∈ Keys−1 ∩ S, let fK−1,S,τ : secretkey∞ → strings be defined as
fK−1,S,τ (d) = dι(K);
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• For M = K−1 ∈ Keys−1 ∩ S, let fK−1,S,τ : secretkey∞ → strings be defined as
fK−1,S,τ (d) = τ(K−1);

• ForM = (M1,M2), let f(M1,M2),S,τ : coinse(M1) × coinse(M2) × secretkey∞ → strings
be defined asf(M1,M2),S,τ (ωM1 , ωM2 ,d) = [fM1,S,τ (ωM1 ,d), fM2,S,τ (ωM2 ,d)];

• ForM = {N}K , let f{N}K ,S,τ : coins× coinse(N) × secretkey∞ → strings be defined
asf{N}K ,S,τ (ω, ωN ,d) = E(τ(K), fN,S,τ (ωN ,d), ω).

We first prove that[[M ]]Φ ≈ [[pattern(M)]]Φ. Suppose that[[M ]]Φ 6≈ [[pattern(M)]]Φ, which
means that there is an adversaryA that distinguishes the two distributions, that is

Pr[x ←− [[M ]]Φη : A(1η, x) = 1]− Pr[x ←− [[pattern(M)]]Φη : A(1η, x) = 1]

is a non-negligible function ofη. We will show that this contradicts the fact that the system is
KDM-secure. To this end, we construct an adversary that can distinguish between the oracles
Reald andFaked . Let F denote either of these oracles. Lete ∈ publickey∞ be the array of
public keys thatF outputs. From now on, letS = Keys−1 \ R-Keys(M), and if K−1 ∈ S, let
thenτ(K) = eι(K). Consider now the following algorithm:

algorithm AF(1η, e,M)
for K−1 ∈ R-Keys(M) do (τ(K), τ(K−1)) ←− K(1η)
y ←− CONVERT2e(M,M)
b ←− A(1η, y)
return b

algorithm CONVERT2e(M
′,M) with M ′ v M

if M ′ = K whereK ∈ Keys then
return τ(K)

if M ′ = K−1 whereK−1 ∈ R-Keys(M) then
return τ(K−1)

if M = B whereB ∈ Blocks then
return B

if M ′ = (M1,M2) then
x ←− CONVERT2e(M1, M)
y ←− CONVERT2e(M2,M)
return [x, y]

if M ′ = {M1}K with K−1 ∈ R-Keys(M) then
x ←− CONVERT2e(M1, M)
y ←− E(τ(K), x)
return y

if M ′ = {M1}K with K−1 /∈ R-Keys(M) then
ω ←− coinse(M1)

y ←− F(ι(K), fM1,S,τ (ω, .))
return y
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This algorithm applies the distinguisherA(1η, ·) on the distribution[[M ]]Φ whenF is Reald ,
and the distribution of[[pattern(M)]]Φ whenF is Faked . So, if A(1η, ·) can distinguish[[M ]]Φ
and [[pattern(M)]]Φ, thenAF(1η, e, ·) can distinguishReald andFaked . But we assumed that
Reald andFaked cannot be distinguished, so[[M ]]Φ ≈ [[pattern(M)]]Φ.

In a similar manner, we can show that[[N ]]Φ ≈ [[pattern(N)]]Φ. It is easy to see that
[[pattern(M)]]Φ = [[pattern(N)]]Φ, because the two patterns differ only by key-renaming. Hence
[[M ]]Φ ≈ [[N ]]Φ.

Corollary B.4. CCA-2 security does not imply KDM-security. If there exists an encryption
scheme secure against the chosen-ciphertext attack, there exists an encryption scheme which
is secure against the chosen-ciphertext attack but not KDM-secure.

Proof. Suppose that there exists a CCA-2 secure encryption scheme. By TheoremB.1 there
is a CCA-2 secure schemeΠ such thatΠ does not satisfy soundness. If all CCA-2 encryp-
tions schemes are KDM-secure, thenΠ is as well. By TheoremB.3, this means thatΠ satisfies
soundness—a contradiction.

Theorem B.5. KDM security does not imply NM-CPA security. That is, there is an encryption
scheme that is KDM-secure, but not NM-CPA secure.

Proof. This is easily seen by inspecting the KDM-secure encryption scheme given by Blacket
al. in the random oracle model [BRS02]. Let F be a trapdoor permutation generator. Then:

• K = F produces pairs(f, f−1) wheref encodes a trapdoor permutation andf−1 encodes
its inverse,

• The encryption algorithmE , on input(f,M), selects a random bit-stringr and returns the
pair (f(r),RO(r)⊕M) (whereRO is the random oracle),

• D, on input(f−1, C = (c1, c2)), returnsRO (f−1(c1))⊕ c2.

This scheme is not NM-CPA secure: it is simple to change the ciphertext associated with a
messageM into the ciphertext of a related message. Note that an encryption ofM provides
confidentiality by essentially applying a randomr as a one-time pad. Thus, changing a single
bit of the (second component of a) ciphertext changes the same bit of the plaintext. That is, if
C = (f(r),RO(r)⊕M) is an encryption ofM , one can easily createC ′ =

(
f(r),RO(r)⊕M

)

(whereM is the bit-wise complement ofM ). C ′ decrypts toM . Thus, this KDM-secure encryp-
tion scheme does not provide non-malleability of ciphertexts.

Corollary B.6. KDM security implies neither NM-CCA1 security nor CCA2 security.

Proof. Suppose that KDM implies NM-CCA1. Since NM-CCA1 implies NM-CPA we have that
KDM implies NM-CPA—contradicting TheoremB.5. Thus, KDM cannot imply NM-CCA1.
Similarly for CCA2.
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We conclude our discussion on the relationships between different notions of security by showing
that soundness does not imply IND-CPA:

Theorem B.7. Soundness does not imply IND-CPA. That is, if there exists an encryption scheme
that provides soundness, there exists a scheme which provides soundness but is not IND-CPA.

Proof. Let Π = (K, E ,D) be a sound encryption scheme. LetΠ′ = (K′, E ′,D′) be the following.
Let K′ = K. Let E ′ do the same on an input of a pair of a public key and a plaintext(k, x) as
E for all plaintext, except whenx is the security parameter given byk, in which caseE ′ outputs
a fixed bit-stringσ of the same length asE(k, x). D′ is the corresponding modified decryption
algorithm.

This encryption scheme is still sound, because the interpretation of any expression with re-
spect toE is indistinguishable from the interpretation of this same expression with respect toE ′.
The reason for this is the following: For each security parameter, there is only one string that
is encrypted differently byE andE ′. Let Φ andΦ′ denote the respective interpretations. For
any K public or private key,[[K]]Φ = [[K]]Φ′ trivially, and also[[B]]Φ = [[B]]Φ′ for any block
B. Moreover these interpretations hit the security parameter with negligible probability. Now,
for any expressionM , if [[M ]]Φ ≈ [[M ]]Φ′ and[[M ]]Φ′ hits the security parameter with negligible
probability, then[[{M}K ]]Φ ≈ [[{M}K ]]Φ′, and[[{M}K ]]Φ′ hits the security parameter with neg-
ligible probability. Similarly for pairing. Therefore, by induction, the two interpretations of a
given expression are indistinguishable.

On the other hand, it is easy to see, thatΠ′ is not IND-CPA secure, because an adversary who
submits as candidate messages the security parameter and0η (that is, outputsm0 = 0η, m1 = 1η)
will certainly be able to determine which of the two messages was encrypted.

All these statements are summarised in FigureB.2.
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Appendix C

Proofs for Theorems3.4and 3.5

In this chapter, we prove Theorems3.4 and3.5, relying on a series of intermediate machines
derived fromM(S, D). We assume that all systemsS are in normal form.

We start by showing that, for all “correct” interactions of an adversaryA and machine
M(S, D), e.g., interactions where the adversary do not create fake keys, or do not create fake
signatures, ifM(S, D) evolves to stateM′, then there is a high-level transitionϕ such thatS

ϕ−→ S ′

andM′ = M(S ′, D′) for some shadowD′ of S ′. This only represents what happens with “correct”
interactions and hence we should also show what happens in the case that things go wrong.

We then define machineM(S, D), which behaves as machineM(S, D) except that it monitors
(decoded) high-level transitions and raises a flag when it detects a transition not enabled by the
high level semantics. Afterwards, we define the family ofNñ(S, D) machines that perform some
encryptions of 0’s instead of the original messages and in the limit do not perform any encryption
or signature,N(S, D) machine. We useNñ(S, D) to prove secrecy for messages andN(S, D) to
reduce the problem of falsifying a key to the security of the signing primitive.

Having these two extra constructions, and knowing that in the case of “correct” interactions,
evolutions ofM(S, D) correspond to high-level transitions, we show thatM(S, D) ≈ N(S, D).
We also show that in the case of “incorrect” interactions, the failure flag is set totrue. We finish
by proving that this flag is set totrue only with negligible probability and hence, except with
negligible probability, transitions ofM(S, D) correspond to high-level transitions.

In bothNñ(S, D) andN(S, D), the interface with the adversary is the same as forM(S, D),
that is a wireina andouta for every principala ∈ H.

C.1 Auxiliary Machines

Our first auxiliary machine has the same runs asM(S, D), but in addition it performs global
(polynomial) checks that can detect runtime failures to implement the high level semantics. The
checks detect, respectively, a fake message fromb ∈ H, a fake certificate in a message from
e ∈ Prin \ H, and a clash in the representation of names (leading to a non-injective shadow).
When a check fails, a flag is set on an additional wire.

159
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Definition C.1 (Defensive Machine).Let M(S, D) beM(S, D) of Definition 3.26modified as
follows:

1. After unmarshaling an input as messagepMqD′,a from u to a ∈ H, with authentication key
k, (D′ is the shadow obtained fromD after unmarshaling) and before calling the interpreter,

(a) if u ∈ H, check thatS includes a messageM/i with D.wire(i) = , k, , , .

(b) if u ∈ Prin \ H, check thatS has an input transition(M).

2. After generating a bitstrings for namen during marshalling, check thats 6= D.name(m)
for anym defined inD.name.

Once a check fails, a flag is set on an additional wire; we then say that the run fails.

We writeA[M(S, D)]
+−→ sr(M) for a particular run that completes without failure. We let

A range over PPT adversaries that can read the flag. Hence, we define a run ofA andM as in
Definition3.1, except thatA may read the flag after every exchange at Step4.

Definition C.2. MachinesM0 andM1 are indistinguishable, writtenM0 ≈ M1, when for every
PPT adversaryA, we have

|Pr[1 ←− A[M0]]− Pr[1 ←− A[M1]]| ≤ neg (η) .

Next, we consider the machines that constitute our system as a single machine that runs all
their components. This change has no observable effect (as the components for each machine are
activated to process messages on different wires, with no direct interaction between machines).
The main difference is that the resulting machine, as well as the intermediate machines used in
the proof below, do not have a natural interpretation as a distributed implementation.

These machines are used to reduce the security of a particular run of our low-level communi-
cation protocol to the security of encryption, by selectively replacing its encrypted payload with
a string of0s. They are parameterised by an indexna for eacha ∈ H that indicates how many
runs of the protocol that sends a message toa are thus modified. First we need to extend the
notion of shadow.

Definition C.3 (Extended Shadow State).Let S = Φ ` νñ.C be a system such that the con-
figurationC =

∏
a∈H a[Pa] |

∏
i∈I M/i is in normal form. Anextended shadow statefor S,

writtenD, consists of the following data structure:

• prin ∈ Prin → ({0, 1}η)5 is a function fromu ∈ Prin to bitstringsidu, eu, vu, du, su

such thatu → idu is injective, and for everyu ∈ H, we have(eu, du) ←− K(1η), and
(vu, su) ←− G(1η).

The bitstringsidu, eu, vu are public for allu ∈ Prin; du andsu are public ifu ∈ Prin\H.

• name ∈ Name ⇀ {0, 1}η is a partial injective function defined at least on every name that
occurs free inS, and names that occur inΦ, D.certval or D.wire for which D.wire(i) =
( , , , , false).

The bitstringname(m) is public for every namem 6∈ ñ.
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• ni is a family of partial injective functionsnia : Name ⇀ {0, 1}η for eacha ∈ H, defined
at least for all names ofPa that are not locally-restricted.

• certval is a partial function from certificatesu{V }` to s ∈ {0, 1}η defined at least on the
certificates ofΦ, D.wire such thatD.wire(i) = ( , , , , false), and all certificates inS of
the formu{V }` with ` 6= 0. It is also defined for all the certificates inV such thatu{V }`

is defined incertval . certval satisfies the following property: ifcertval(u{V }`) = s, then
V(vu, [[pV qD,H]], s) = 1.

The bitstringcertval(V ) is public whenV ∈M(Φ) or V issued byu 6∈ H.

• wire is a partial function from indicesi to (M, k, s, del , b) defined at least onI, where
M = a:b〈V 〉 with a, b ∈ H, anddel = 0 if i ∈ I anddel = 1 otherwise. Ifb = false,
the bitstringss andk are the output and the authentication key produced bysendb on input
[[pV qD,H]]. If b = true, the bitstringss andk are the output and the authentication key
produced by the modifiedsendb protocol of DefinitionC.5 on inputM . (Intuitively, the
boolean flag indicates whether0s are encrypted instead of the message payload. The flag
is set to true only when using step (1b) of DefinitionC.5.)

The bitstringss anddel are public.

• keycache is a function froma ∈ H to sets of bitstrings such that, if there exists ani with
wire(i) = (M,k, , 1, ) with M to a, thenk ∈ keycache(a).

• msD(η) is a polynomial that sets the padding-size of the implementations ofS.

Without loss of generality, we assume that all compliant principals use the same identifiers for
representing the same names, that is, for alla, b ∈ H and all namesn, we havenia(n) = ni b(n)
when defined. (Formally, our machines use name identifiers only for comparisons and table
lookups, so injective renamings on these identifiers do not affect their behaviour.) Also, for
simplicity, we will use the term shadow when referring an extended shadow.

Definition C.4 (NH Machine). Let S be a system with shadow stateD. We defineNH machine
as the collection of machinesNH(S, D) = (NH,a(S, D))a∈H that share two common tablessigned
andnames defined as

• signed(pa{V }0qD,H) = certval(a{V }0) when defined (a ∈ H);

• names(nia(n)) = name(n), if nia(n) is defined for somea ∈ H,

and where eachNH,a(S, D) machine is defined asMa(S, D) in Definition3.26with the following
changes:

• pa = pPaqD,H;

• uses[[·]] andparse(·) as the marshaling and unmarshaling algorithms.

We define the defensive variantNH(S, D) asM(S, D) in Definition C.1 except that in Step1,
pMqD′,a is replaced bypMqD′,H.
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Intuitively these shared tables allow all principals to know which names and certificates were
created by honest principals. These tables are the result of merging allsigneda andnamesa

tables of theMa(S, D) machines. InNH, the internal representation of certificates that were
issued by honest principals always have label0. This can be seen as an extension of the notion of
self-certificates. SinceNH controls all the honest principals, a certificate is self-issued if it was
generated by someone of the group. One should remark that whenever sending a message to the
adversary,NH,b is always able to insert the correct label in a certificate froma since it can find it
in signed . One can easily show the following lemma:

Lemma C.1. LetD be a shadow,a ∈ H, andV a closed term such thatpV qD,a is defined.
We have[[pV qD,a]]a = [[pV qD,H]] and[[parsea(s)]]a = [[parse(s)]].

Proof. The proof is by structural induction onV ; it relies on the definitions of[[·]], parse(·),
p·qD,X , and implementation of systems.

We are now ready to defineNñ machines.

Definition C.5 (Nñ Machine). Let ñ be a function froma ∈ H to na ∈ N ∪ {ω} andS be a
system with extended shadowD.

We extend the state ofNH(S, D) with a tableenctable that associates bitstringsmsg to
pMqD,H, k for everyD.wire(i) = M,k, ida id b msg , , true. Intuitively, msg is decoded by
table lookup instead of decryption. For eacha ∈ H, we let ja be the number of messages to
principala recorded inenctable.

We define machineNñ(S, D) asNH(S, D) of DefinitionC.4modified as follows:

1. For each outgoing messageM from a to b ∈ H, if jb < nb then

(a) marshal the message content as inNH(S, D) then discard the resulting bitstring;

(b) use protocolsendb (Definition3.22) modified as follows:

• Instead of computing the message for encryption (Step2), letm = 0ms(η), where
ms(η) is the size of marshaled messages for security parameterη.

• After encryptingm into msg (Step3), add entry(msg , pMqD′,H, k) to enctable,
whereD′ is an extension ofD.

Otherwise proceed asNH(S, D).

2. Use protocolreceivea (Definition3.23) modified as follows:

For each input bitstringidu ida msg , before decryption (Step1), if enctable associates
msg to pMqD,H, k, then

• check thatM is fromu to a, check thatk /∈ keycachea, addk to keycachea (Step4),
and passpMqD,H to the interpreter (bypassing unmarshaling). If any of the checks
fails, reject the message.

Otherwise proceed asNH(S, D).
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We define two variants ofNω̃ by modifying Step1aabove; these modifications remove the
side effects of marshalling, that is, the generation of signature values and name representations
recorded inD.certval andD.name.

• N? is Nω̃ where marshalling in Step1adoes not marshal certificates;

• N is Nω̃ without marshalling at Step1a.

C.2 Auxiliary Lemmas

In this section we state some auxiliary lemmas that we will use in the next sections.

Lemma C.2 (Correctness of Comparisons).LetD be a shadow such thatD.certval is injective,
a ∈ H, andV andV ′ two closed terms such thatpV qD,a andpV ′qD,a are defined.

We haveV = V ′ if and only ifpV qD,a = pV ′qD,a.

Proof. The proof is by structural induction onV ; it relies on the injectivity ofD.certval , D.nia

andD.prin.id .

Lemma C.3 (Correctness of Pattern Matching).Let D be a shadow such thatD.certval is
injective.

Matching on internal representations ofa with shadowD coincides with high-level matching.

Proof. Immediate from LemmaC.2.

Lemma C.4. Let S be a system where all local processes are stable except for principala, and
D a shadow forS such thatD.certval is injective.

If M(S, D) ;∗ M′, then there existS ′ with shadowD′, that differs fromD at most inD′.nia,
andS →∗ S ′ such thatM′ = M(S ′, D′), andD′.certval is injective.

Proof. This proof is done by induction in the length of the reduction, relying on the deterministic
scheduling, and LemmaC.3.

C.3 Partial Completeness for Low-Level Runs

In this section we show that, for any run with a given adversary, either our defensive machine
correctly implements a series of high-level normal transitions, or it detects a runtime failure.
These lemmas do not depend on probabilities. We also show that the probability of occurrence
of a failure is negligible.

Before doing that, we need to set some notations. Given an arbitrary runA[M(S, D)] −→
sr(M

′), and since all the algorithms running within the local machines always terminate in poly-
nomial time, except possibly for the interpreter, we can decompose any part of the run that
involves one of these machines by assuming that the machine is interrupted just before every call

to the scheduling function. Accordingly, we let low-level steps range overM
(s)
;a M′, M ;a M′,
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andM
s

;a M′ for a bitstring input, an internal interpretation step, and a bitstring output per-
formed by machineMa, respectively.

We also introduce a new rule for our labelled semantics of Section3.2.2. In order to decom-
pose our proofs into small low-level steps, we separate the high-level transitions in two stages.

We letS
(α)•−−→S ′ be the auxiliary input transition defined by the base rule

(CFGIN•)M from c ∈ Prin to a c 6= a

a[P ]
(M)•−−−→ a[M |P ]

plus all the context rules for inputs of Section3.2.2. Intuitively, a transition labelled(α)• repre-
sents the first stage of the input, which does not depend on the local process. With this high-level

semantics, ifS
(α)•−−→ S•, then eitherα is a previously intercepted message between honest prin-

cipals, orα is constructed by the adversary, using only certificates built fromΦ (RuleSYSIN).
Let us now start with the proof of the completeness theorem for the case of a single low-level

exchange.

Lemma C.5. LetS be a safe stable system with shadowD such thatD.name andD.certval are
injective.

For every bitstringinp, one of the following holds:

1. M(S, D)
(inp)
; ;∗ s

; M′ and there existS ′ with shadowD′ and normal transitionsS
αβ̃−→ S ′

such thatM′ = M(S ′, D′) andD′.name andD′.certval are injective; or

2. M(S, D)
(inp)
;

done
; M′ and there existsD′, shadow forS, such thatM′ = M(S, D′) and

D′.name andD′.certval are injective; or

3. M(S, D)
(inp)
; ;∗ s

; M′ and the failure flag is set to true inM′.

Proof. Let inp be a bitstring that is given as an input toM(S, D). Let us suppose without loss of
generality thatinp = idu ida msg , that is, it is addressed to principala. When this message is
received, it is dispatched to thereceiveu protocol ofa. Analysingreceiveu protocol we have
that:

• the receiveu protocol fails, i.e., one of the Steps1–4 of Definition 3.23 fails, inp is
discarded, anddone is output by the machine. In this case, since there were no change in
the state ofM(S, D), we are in Case2 with D′ = D; or

• the message is accepted, i.e.,s idu k ssig sauth = D(da,msg), all the checks in Steps1–4
of Definition 3.23succeed,k is added tokeycachea, ands is returned to the unmarshal
function.

If the message is accepted by thereceiveu protocol, thens is passed to theparsea(·) func-
tion, Definition3.21. In both cases of failure or success ofparsea(s), we have that the internal
state of the machine may have changed as new pairs(ind , s′) may have been added tonamesa.
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• If parsea(s) fails, this message is discarded, anddone is output by the machine. In this
case, definingD′ asD except that

– D′.keycache(a) = D.keycache(a) ∪ {k},
and for each new pair(ind , s′) in namesa

– D′.nia(n) = ind if there is a namen such thatD.name(n) = s′; or

– D′.name(m) = s′ andD′.nia(m) = ind for a fresh new abstract namem,

we are in Case2. D′.name is injective by construction, andD′.certval = D.certval hence
it is injective by hypothesis.

• If parsea(s) succeeds, definingD• asD except that

– D•.keycache(a) = D.keycache(a) ∪ {k},
for each new pair(ind , s′) in namesa

– D•.nia(n) = ind if there is a namen such thatD.name(n) = s′; or

– D•.name(m) = s′ andD•.nia(m) = ind for a fresh new abstract namem,

and for each certificatecert s1 s2 s3 that was successfully unmarshaled tov1{v2}s′,

– D•.certval(v1{v2}`) = s′ if there is nò such thatD.certval(v1{v2}`) = s′,

we have that the messagem passed to the interpreter ispMqD•,a = pu:a〈V 〉qD•,a, for some
high-level termV .

If M(S, D)
(inp)
; M• and the failure flag is set inM•, we are in Case3. If the flag is not set, we

have by DefinitionC.1that

1. if u ∈ H, thenS definesM/i andD.wire(i) = , k, , ; or

2. if u /∈ H, thenS has an input transition(M).

In the first case considerS
(i)•−−→ S•, and updateD• modifying the valuedel of D•.wire(i) to 1. In

the second case considerS
(M)•−−−→ S•. Notice that in this second case names and certificates that

were private, do not become public. In either case there existS• with shadowD•, andα such
thatS

α•−→ S•, M• = M(S•, D•), and bothD•.name andD•.certval are injective by construction.
Suppose now thatM(S•, D•) ;∗ M∗. Applying LemmaC.4 to S•, D•, andM∗ we have that

there existS∗ with shadowD∗ that differs fromD• at most inD∗.nia, andS• ³ S∗ such that
M∗ = M(S∗, D∗) andD∗.certval is injective. Moreover, the number of reduction steps is bound
by pS(dαe) sinceS is safe.

Suppose now thatM(S∗, D∗) s
; M′. While marshaling,namesa andsigneda are updated, so

let D′ = D∗ except that for each new pair(ind , s′) in namesa,
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• D′.name(n) = s′ for the namen such thatD.nia(n) = ind ,

and for each new pair(v1{v2}0, s′) in signeda,

• D′.certval(v1{v2}0) = s′.

If the failure flag is set inM′, we are in Case3. If it is not, we have by DefinitionC.1thatD′.name
is injective as the bitstrings generated for allind do not coincide with any other bitstring in
D∗.name Also, D′.certval is injective by construction. We have thats = pM1qD′,a . . . pMmqD′,a

for some high level messagesM1, . . . ,Mm. Let Mi1 = a:u1〈V1〉, . . . ,Mij = a:uj〈Vj〉 be the
messages ins addressed to honest principals andMij+1

, . . . , Mim the messages addressed to
e /∈ H. We have that

S∗
νi1.a:u1 ... νij .a:uj Mij+1

... Mim−−−−−−−−−−−−−−−−−−−→ S ′

whereS ′ = Φ′ ` S+ |Mii/i1 | · · · |Mij/ij, S+ is obtained fromS∗ by removing fromPa all the
messagesM1, . . . , Mn, andΦ′ = Φ∪⋃m

l=j+1 φ(Mil)H. ExtendD′ such that for eachMil to honest
principalul, D′.wire(il) = (Mil , kl, sil , 0, false), wherekl is the authentication key produced by
sendb on input[[pVjqD′,a]]. We have thatM′ = M(S ′, D′).

Hence, we have shown that ifM(S, D)
(inp)
; ;∗ s

; M′ and the failure flag is not set inM′, there
existS ′ with shadowD′, D′.name andD′.certval injective, and normal transitionsS

αβ̃−→ S ′ such
thatM′ = M(S ′, D′).

We now extend the result by induction to the case of multiple exchanges.

Lemma C.6. LetS◦ be a safe initial system with initial shadowD◦ andA a PPT algorithm.
If A[M(S◦, D◦)] +−→ sr(M), then there existS with shadowD and normal transitionsS◦

ϕ−→ S
such thatM = M(S, D) andD.name andD.certval are injective.

Proof. By Definition 3.1, the runA[M(S◦, D◦)]
+−→ sr(M) can be decomposed as a series ofn

low-level exchanges

M(S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; M (C.1)

that do not set the failure flag. By induction onn, we show the existence ofS with shadowD
and normal transitionsS◦

ϕ−→ S such thatM = M(S, D) andD.name andD.certval are injective.

Base casen = 0: We haveM = M(S◦, D◦). We useS = S◦, D = D◦, andϕ = ε. The partial
functionD◦.name is initially undefined for all names, hence injective, the same forD◦.certval .

Inductive case: Suppose that

M(S◦, D◦)
(inp1)
; ;∗ s1

; . . .
(inpn)
; ;∗ sn

; Mn

(inpn+1)
; ;∗sn+1

; M

and that the failure flag is not set inM. By induction hypothesis forn, there existS ′ with shadow
D′ and normal transitionsS◦

ϕ′−→ S ′ such thatMn = M(S ′, D′) andD′.name andD′.certval are
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injective. MoreoverS ′ is safe (sinceS◦ is) and stable (by definition of normal transitions). By
applying LemmaC.5 to S ′, D′, andinpn+1, then + 1-th exchange is described by one of the
cases below:

1. M(S ′, D′)
(inpn+1)

; ;∗sn+1
; M and there existS with shadowD and normal transitionsS ′

αβ̃−→
S such thatM′ = M(S, D) andD.name andD.certval are injective.

In this case , we conclude withS, D, and transitions with labelsϕ = ϕ′αβ̃.

2. M(S ′, D′)
(inpn+1)

;
done
; M and there existsD, shadow forS ′, such thatM′ = M(S ′, D) and

D.name andD.certval are injective.

In this case, we conclude withS = S ′, D, and transitions with labelsϕ = ϕ′.

3. M(S ′, D′)
(inpn+1)

; ;∗sn+1
; M and the failure flag is set totrue in M′.

This case is excluded by hypothesis.

Lemma C.7 (Partial Completeness for a Run ofN(S◦, D◦)). Let S◦ be a safe initial system
with initial shadowD◦ andA a PPT algorithm.

If A[N(S◦, D◦)]
+−→ sr(N), then there existS with shadowD and normal transitionsS◦

ϕ−→ S
such thatN = N(S, D) andD.name andD.certval injective.

Proof Sketch.The proof is done by induction in the number of exchanges as the proof for
LemmaC.6, using a modified version of LemmaC.5. We briefly sketch the proof pointing
out the differences.

Suppose thatN(S◦, D◦)
(inp1)
; ;∗ s1

; . . .
(inpn)
; ;∗ sn

; N(Sn, Dn)
(inp)
; ;∗ s

; N and the failure
flag is not set inN. We want to show that either

1. there existS with shadowD and normal transitionsSn
αβ̃−→ S such thatN = N(S, D); or

2. there existsD shadow forS such thats = done andN = N(Sn, D).

We should start by pointing out that all messages that are not inenctable will be processed by
receive the same way as in LemmaC.5. As forparse(·) we just have to notice that in the case of
N machines we use the same internal representation for names and certificates for all principals,
that is, there is a common identifierind such thatind = Dn.ni(n) = Dn.nia(n) for all a ∈ H if
defined, all (previously issued) certificates from honest users are always unmarshaled with label
0. Due to these facts, we also have that the resulting shadows are always injective forname and
certval .

For messages inenctable, we should notice that if(msg , pMqDn,H, k) ∈ enctable then,
there is ani such thatDn.wire(i) = (M,k, id b ida msg , b, true) for b = 0 or b = 1. Now,
if k ∈ keycachea, the message is discarded and we are in Case2; if k 6∈ keycachea, then by

definition ofDn, b = 0, which implies thatM/i is defined inSn, hence there existsSn
(i)−→ S•n

and, definingD•
n as in LemmaC.5, we have thatN(Sn, Dn)

(inp)
; N(S•n, D

•
n).
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As for reduction we may as well apply LemmaC.4 sinceD•
n.name andD•

n.certval are in-
jective by construction and the internal behaviour ofM and N is the same, (there is just an
injective renaming on indices and labels for certificates) so there existS∗n and D∗

n such that
N(S•n, D•

n) ;∗ N(S∗n, D
∗
n).

Consider now thatN(S∗n, D
∗
n)

s
; N. Regarding marshaling, marshaling is only performed

when sending messages to the adversary, we have the same as in LemmaC.5 except that, as
N(S◦, D◦) signs messages for all principals using[[·]] instead of[[·]]a, we should now define
D′.certval(v1{v2}0) = s′ for each new pair(v1{v2}0, s′) in signed and not just for certificates
form a.

For sending, letS andD as in LemmaC.5except that we extendD such that for eachMij =
a:uj〈Vj〉 to honest principaluj, D.wire(ij) = (Mij , kj, sij , 0, true), wherekj is the authentication
key produced by the modifiedsendb algorithm of DefinitionC.5on inputMij . We have then that
N = N(S, D).

From this, we can show that there existS with shadowD, and normal transitionsSn
αβ̃−→ S

such thatN = N(S, D). By constructionD.name andD.certval are injective.

Next we show that the probability of failure ofN(S◦, D◦) andN?(S◦, D◦) are negligible func-
tions of the security parameterη. We do this by reducing the problem of failing to the problem
of breaking CMA-security (DefinitionA.6).

Lemma C.8. LetS◦ be a safe initial system with initial shadowD◦ andA a PPT algorithm.
We havePr[A[N(S◦, D◦)] fails] ≤ neg (η).

Proof. We first recall that, for any CMA-secure signature scheme, finite index setH, and PPT
adversariesAdvCMA, we have:

Pr[ (sa, va)a∈H ←− G(1η);

(m, sig) ←− AdvCMA
(Sa(·))a∈H(1η, (va)a∈H) :

V(va,m, sig) = 1 for somea ∈ H andm 6∈ Queriesa ] ≤ neg (η)

where each of the oraclesSa(x) returnsS(sa, x) and addsx to the setQueriesa.
Let S◦ be a safe initial system with initial shadowD◦, andA a PPT algorithm, such that the

probability thatA[N(S◦, D◦)] fails is not a negligible function ofη. We define a CMA adversary
AdvCMA

(Fa(·))a∈H asA[N(S◦, D◦)] with the following changes:

• for eacha ∈ H, instead of generating(sa, va), use parameterva and setsa = 0;

• for eacha ∈ H, instead of signing withsa, call the oracleFa(·);
• if the failure flag is set, stop and outputs the message that was given as input toN(S◦, D◦)

just before the failure.

Game 1:

1. A[N(S◦, D◦)] −→ s.

Game 2:

1. (sa, va)a∈H ←− G(1η);

2. (m, sig) ←− AdvCMA
(Sa(·))a∈H(1η, (va)a∈H).
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It is immediate that Game 2=d A[N(S◦, D◦)], where=d denotes the equality of probability
distributions, until the run fails. For that just suppose that the keys generated in Step1 of Defi-
nition 3.1 are generated in the same order as in Game 2. We have that the verification keys for
each principal in the two games are the same. As for signatures,N(S◦, D◦) performs the signa-
tures by itself, while in Game 2 a signing oracle is used, but the outcome of both is the same as
S(sa, ·) = Sa(·) = Fa(·).

Let us now analyse the behaviour ofAdvCMA until the run fails. By LemmaC.7, there exist
S, D, ϕ such thatS◦

ϕ−→ S is a normal transition,D is a shadow forS, and

N(S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N(S, D)
(inp)
; ;∗ s

; N

such that at the end, the failure flag is set inN, but not inN(S, D).
Suppose that the failure was set upon an input of the formid b ida msg . We will start by

showing that this never occurs if the message was indeed sent byb, and then that in the case that
e is pretending to beb this failure only occurs ife is able to forge a signature.

1. if the message was indeed sent byb thenenctable associatesmsg with pMqD,H, k where
pMqD,H andk are respectively the message passed to the interpreter and the authentication
key used. By definition ofenctable we have that

there existsi such thatD.wire(i) = (M, k, id b ida msg , , true). (C.2)

On the other hand, if the message was accepted bya, by definition ofkeycache, we have
that

there is noj such thatD.wire(j) = (M ′, k, , 1, ), (C.3)

whereM ′ is a message toa. By (C.2) and (C.3) we have that for thei above

D.wire(i) = (M, k, id b ida msg , 0, true). (C.4)

From (C.4), and definition ofwire we have thati ∈ I, henceM/i is defined inS. For this,
a failure can never occur whenever the message was sent by principalb.

2. if the message was not sent byb (i.e.,A is trying to create or modify a message pretending
to beb) then there is no association betweenmsg andpMqD,H, k in enctable. By def-
inition of N(S◦, D◦), this message is accepted only if it is accepted byNH(S◦, D◦), that
is, it has to pass thereceive protocol, and in particularV(vb, k ida, ssig) = 1 for some
authentication keyk. (condition2 of Definition 3.23). Notice that a signature of a tuple
of the formk ida by b is only performed wheneverb is sending a message toa. But, by
definition ofN(S◦, D◦), such keys are never signed byb, henceAdvCMA was able to forge a
signature. From this, the probability thatAdvCMA outputs a signature fromb for a message
that was never asked for signing to the signing oracleFb(·) is a non-negligible function of
η, breaking the CMA security assumption of the signing scheme.
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Suppose that the failure was set upon an input of a messageid e ida msg . By definition of
N(S◦, D◦), these messages are never inenctable, henceid e ida msg was received and unmar-
shaled as inNH(S◦, D◦). In particular, all the certificates form honest principals were verified
during the unmarshaling protocol. If the failure flag was set, this implies that the input transition
(M) is not enabled, hence some of the certificates inM from honest users are not inM(Φ), or
some name generated by the adversary was marshaled to a private name. The latter is not possi-
ble inN(S◦, D◦) as private names are never marshaled, hence no bitstrings sent by the adversary
will ever be unmarshaled to identifiers of private names. Hence, if the run fails, some of the
certificates inM from honest users are not inM(Φ). This implies that these certificates were
never sent to the adversary and, by definition ofN(S◦, D◦), they were never signed, hence the
probability thatAdvCMA outputs a certificate signed byb for which a signature was never per-
formed is a non-negligible function ofη, breaking the CMA security assumption of the signing
scheme.

Another possibility of failure is by condition2 of Definition C.1. It is easy to see that the
probability of failure due to this is a negligible function ofη. For that, notice that by safety ofS◦,
we have that the output ofS◦ has to be polynomial in the size of the input labels, and hence, the
number of generated names,nnames, is bound above by that polynomial. A clash on these names
only occur with negligible probability, more concretely, with probability at most(nnames)

2× 2−η.
We have shown that if a run ofN(S◦, D◦) fails with non-negligible probability, then this

could not have happened due to a clash of generated names (as this only happen with negligible
probability), hence there is an adversaryAdvCMA that is able to break CMA-security assumption.

Lemma C.9. LetS◦ be a safe initial system with initial shadowD◦ andA a PPT algorithm.
We havePr[A[N?(S◦, D◦)] fails] ≤ neg (η).

Proof Sketch.The proof is similar to the proof of LemmaC.8. The only difference lies on the
fact thatN?(S◦, D◦) generates more names, hence more failure cases may occur.

Failure upon an input of the formid b ida msg is equal to the case forN(S◦, D◦). The prob-
ability of failing upon an input of the formid e ida msg , is the probability of producing a fake
certificate (equal to the case forN(S◦, D◦)) plus the probability of capturing a private name. The
probability of the adversary capturing a private name is bound by(n′names)

2 × 2−η, wheren′names

is the total number of names generated byN?(S◦, D◦) (now includes also the names generated to
honest principals) that has to be bound by a polynomial sinceS◦ is safe. Hence this case fails
with negligible probability.

The probability of failing due to condition2 of Definition C.1 remains negligible, and is at
most(n′names)

2 × 2−η.

C.4 Reduction to Cryptographic Primitives

In this section, we letS◦ range over safe initial system with initial shadowD◦.

Lemma C.10. M(S◦, D◦) ≈ NH(S◦, D◦).



C.4. Reduction to Cryptographic Primitives 171

Proof. Relying on DefinitionC.4 we can establish the following invariant between the state of
M(S◦, D◦) andNH(S◦, D◦):

• there is an injective renaming between the name identifiers inMa(S
◦, D◦) and the name

identifiers in NH(S◦, D◦); NH(S◦, D◦) uses the same identifier across machines while
M(S◦, D◦) uses a different identifier for each machine.

• for every certificateprin(ida){v2}0 in NH,a(S
◦, D◦) there is a certificateprin(ida){v2}0

in Ma(S
◦, D◦);

• for every certificateprin(ida){v2}0 there is a signature values such that for allb 6= a, if
prin(ida){v2}0 is in NH,b(S

◦, D◦) thenprin(ida){v2}s is in Mb(S
◦, D◦).

This invariant and LemmaC.1guarantee thatM(S◦, D◦) andNH(S◦, D◦) have the same observ-
able behaviour as the internal processes of each machine are the same up to renaming; renaming
does not affect the internal computation, and LemmaC.1ensures that marshaling a bitstring that
was previously unmarshaled yields the same result regardless the use ofparsea(·) and [[·]]a or
parse(·) and [[·]]. Condition[[pV qD,a]]a = [[pV qD,H]] ensures that the initialisation is consistent
with this procedure aspa = pPaqD,a in M(S◦, D◦) andpa = pPaqD,H in NH(S◦, D◦).

Lemma C.11. NH(S◦, D◦) ≈ N0̃(S◦, D◦).

Proof. Relying on DefinitionC.5 with na = 0 for everya ∈ H, it is immediate that the two
machines are equivalent:ja = 0, so the testja < na always fails,enctable remains empty, hence
there are no modifications in the protocol.

Our next lemma deals with the inductive case, by reduction to CCA-2 security.

Lemma C.12. For somea ∈ H, let ñ + 1 abbreviatẽn with na + 1 instead ofna.
We havePr[ A[Nñ(S◦, D◦)] −→ 1 ]− Pr[ A[Nñ+1(S◦, D◦)] −→ 1 ] ≤ neg (η), whereneg (·)

is a function that only depends upon the encryption scheme.

Proof. Let M0 = Nñ(S◦, D◦) andM1 = Nñ+1(S◦, D◦). Let A be a PPT adversary. We first
rearrange our target property to match the structure of CCA-2 games, and remark that

Pr




b ←− {0, 1} ;

A[Mb] −→ s;
if s = 1 theng = 1 elseg = 0 :
b = g


 ≤ 1

2
+ neg (η) (C.5)

implies thatPr[ A[M0] −→ 1 ]−Pr[ A[M1] −→ 1 ] ≤ neg (η), from which we can conclude that
M0 ≈ M1 by definition of indistinguishability (DefinitionC.2).
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Assume that there existsA that breaks Property (C.5). We then useA andNñ(S◦, D◦) to build
an adversary that breaks CCA-2 security (DefinitionA.4), recalled below:

Pr




b ←− {0, 1} ;
(e, d) ←− K(1η);

m0, m1 ←− AdvCCA2
D1(·)(1η, e);

c∗ ←− E(e,mb);

g ←− AdvCCA2
D2(·)(1η, e, c∗) :

b = g



≤ 1

2
+ neg (η) (C.6)

More precisely, we define our CCA2 adversary so that runs of the two games displayed below
with the same boolean value forb and the same random inputs always yield the same outcome
b = g.

Game 1:

1. A[Mb] −→ s;

2. if s = 1 theng = 1 elseg = 0.

Game 2:

1. (e, d) ←− K(1η);

2. m0, m1 ←− AdvCCA2
D1(·)(1η, e);

3. c∗ ←− E(e,mb);

4. g ←− AdvCCA2
D2(·)(1η, e, c∗).

We letAdvCCA2
F(·) beA[Nñ(S◦, D◦)] with the following changes:

1. In Step1 of Definition3.1, instead of generating(ea, da) for a, let ea = e andda = 0. (e is
the key generated at Step1 of Game 2).

2. Instead of decrypting withda, use the oracleF(·), that isD1(·) andD2(·), respectively
before and after the challenge ciphertextc∗.

3. Change thesenda protocol (Definition3.22) for thena + 1-th message toa as follows: on
inputm′ to thesenda protocol, instead of encrypting messagem at Step3,

(a) let m0 = m andm1 = 0dme (Step2 of Game 2);

(b) passm0 andm1 to the encryption oracle and continue withc∗ = E(e,mb) (Step3 of
Game 2);

(c) record(c∗, parse(m′), k) in enctable; and

(d) resume thesenda protocol at Step4.

4. If A[Nñ(S◦, D◦)] −→ 1, output 1, else output 0 (Step4 of Game 2).

Let G1(b) andG2(b) denote respectively Game 1 and Game 2 when the randomly chosen bit
is b. We show that the outcome ofG1(b) = G2(b), for b ∈ {0, 1}. This is done by induction on
the number of low-level steps, showing that the following state invariants are preserved. Ifb = 0:
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• eitherja ≤ na andG1(0) andG2(0) have the same state, except for the value ofda (set to
0 and never used in the second game).

• or ja = na + 1 andG1(0) andG2(0) have the same state, except for the value ofda and
an extra entry inenctable in the second game, of the form(c∗, parse(m′), k), wherem′, c∗

andk are respectively the input, the ciphertext obtained at Step3b, and the authentication
key, of the modified sending algorithm ofAdvCCA2

F(·).

• Also, a callF(c∗) is never performed.

If b = 1 the following invariant is preserved:

• G1(1) andG2(1) have the same state, except for the value ofda (set to0 and never used in
the second game).

• In addition, a callF(c∗) is never performed.

Before proving that these invariants are preserved, let us remark that in spite of principala
using different decryption oracles, (in Game 1, compliant principala performs decryptions using
D(da, ·), while in Game 2 decryptions are performed by calling decryption oracleF(·), change2
in AdvCCA2

F(·)), the outcome of these decryptions is the same as long asd = da and no callF(c∗)
is made. (This assures, thatda is never used in the second game.) This is true since, by definition,
F(c) = D(da, c) for all c 6= c∗, and⊥ otherwise, hence all messagesc 6= c∗ will be decrypted to
the same values regardless the use ofF(·) orD(da, ·).

Let us start by considering thatb = 0 and let us analyse the behaviour of the two games on
the same random inputs. Suppose that we have a run of lengthn. We will analyse the cases
where the two games have apparent different behaviours.

Base casen = 0: In this case, only initialisation is performed andja = 0 ≤ na. We have to
show that the invariant is preserved.

The initialisation of the two games is different. In Game 1, initialisation is performed as
described in Step1 of Definition 3.1, while in Game 2 we replace the generation of(ea, da) by
(e, 0) where(e, d) ←− K(1η) is the pair generated in Step1 of Game 2 (change1 in AdvCCA2

F(·)).
Since the order of generation of the cryptographic material in Step1 of Definition 3.1 is irrel-
evant, we may assume, without loss of generality, that the pair(ea, da) is the first one to be
generated, hence(ea, da) = (e, d). (This establishes the first part of the invariant, the state of the
two games is the same except forda that is set to 0 in the second game.)

Also, since no more steps were performed,da was never used in the second game. Thus, the
base case establishes the invariant.

Inductive case: Let us now suppose that aftern low-level steps, the state of the two games
satisfy the invariant. Consider first the caseja ≤ na:

1. an input is provided to principala:
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(a) an inputidu id v msg is provided to principala andmsg is associated with somem, k
in enctable. Since the state ofG1(0) andG2(0) is the same, so isenctable, hence the
two games behave the same way. In this case the invariant is preserved.

(b) an inputidu id v msg is provided to principala but msg is not associated with any
m, k in enctable. In this case bothG1(0) andG2(0) behave asNH(S◦, D◦) (Defi-
nition C.5), except thatG2(0) will not useD(da, ·) but insteadF(·). As remarked
above (d = da, andmsg 6= c∗ sinceja ≤ na) the decryptions of these messages will
lead to the same value, henceG1(0) andG2(0) behave the same way. The invariant
is also preserved in this case.

2. an input is provided to compliant principalc:

(a) an inputidu id v msg is provided to compliant principalc andmsg is associated with
somem, k in enctable. This case is equal to Case1a.

(b) an inputidu id v msg is provided to compliant principalc but msg is not associated
with anym, k in enctable. In this case bothG1(0) andG2(0) behave asNH(S◦, D◦)
(DefinitionC.5). The invariant is also preserved in this case.

3. an internal reduction is performed by some principalc. In this case the invariant is trivially
preserved as there is no difference fromG1(0) to G2(0).

4. principal a performs an output. Sincea never sends messages to itself, after this output
ja ≤ na and the invariant is preserved.

5. compliant principalc performs an output: in this case there is no difference betweenG1(0)
andG2(0) except when sending messages toa. Let us analyse the sending proceduresenda

of c:

(a) after sending all messages,ja ≤ na. In this case thena + 1-th message toa was
not sent henceG1(0) and G2(0) behave as in DefinitionC.5, and the invariant is
preserved.

(b) after sending all messages,ja = na + 1. In this case, thena + 1-th message toa was
sent. For this particular messageG1(0) behaves asNH(S◦, D◦), while G2(0) behaves
as provided in change3 of AdvCCA2

F(·), that is, forb = 0 it gets c∗ = E(ea,m)
and records(c∗, parse(m′), k) in enctable, wherem′ andk are respectively the input
and the authentication key, of the modified sending algorithm ofAdvCCA2

F(·). After
sending this message we have thatja = na + 1 and the state ofG2(0) is equal to the
state ofG1(0) with this extra entry inenctable. This satisfies the invariant.

Let us now consider the caseja = na + 1:

1. an input is provided to principala:

(a) an inputidu id v msg is provided to principala andmsg is associated with somem, k
in bothenctable of G1(0) andG2(0). This case is similar to Case1aof ja ≤ na.
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(b) an inputidu id v msg is provided to principala andmsg is associated with somem, k
in enctable of G2(0) but not ofG1(0). The only entry that satisfies such conditions
is (c∗, parse(m′), k). In this caseG2(0) accepts the message if and only ifu is the
sender ofm′, v = a, k /∈ keycachea, and addsk to keycachea returningparse(m′) to
the interpreter.

As for G1(0), it behaves asNH(S◦, D◦), that is, receives the message, decrypts it,
performs the checks of Definition3.22, addsk to keycachea, and returnsm′, that
was the input to the sending algorithm. It then passesparse(m′) to the interpreter,
asG2(0), hence the behaviour of the two games is the same, and the invariant is
preserved.

(c) an inputidu id v msg is provided to principala andmsg is not associated with any
m, k in eitherenctable of G1(0) or G2(0). This case is similar to Case1bof ja ≤ na

noticing thatmsg 6= c∗ as this would imply that the message is inenctable of G2(0).

2. an input is provided to compliant principalc:

(a) an inputidu id v msg is provided to compliant principalc andmsg is associated with
somem, k in enctable. This case is equal to Case2aof ja ≤ na.

(b) an inputidu id v msg is provided to compliant principalc but msg is not associated
with anym, k in enctable. This case is equal to Case2bof ja ≤ na.

It never occurs that an inputidu id v msg is provided to principalc andmsg is associated
with somem, k in enctable of G2(0) but not ofG1(0). This only occur in messages toa.

3. an internal reduction is performed by some principalc. In this case the invariant is trivially
preserved as there is no difference fromG1(0) to G2(0).

4. principal a performs an output. Sincea never sends messages to itself, after this output
ja ≤ na and the invariant is preserved.

5. compliant principalc performs an output: in this case there is no difference betweenG1(0)
andG2(0) except when sending messages toa. Let us analyse the sending proceduresenda

of c:

(a) as ja = na + 1, both G1(0) and G2(0) behave asNH(S◦, D◦), and the state re-
mains the same, with an extra entry inenctable in the second game, of the form
(c∗, parse(m′), k), hence the invariant is preserved.

Let us now consider the caseb = 1 and let us analyse the behaviour of the two games on the
same random inputs. Suppose that we have a run of lengthn.

Base casen = 0: This case is equal to the one proven above forb = 0.
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Inductive case: Let us now suppose that aftern low-level steps, the state of the two games
satisfy the invariant.

1. an input is provided to principala: this case is equal to Case1 of ja ≤ na for b = 0.

2. an input is provided to principalc: this case is equal to Case2 of ja ≤ na for b = 0.

3. an internal reduction is performed by some principalc. In this case the invariant is trivially
preserved as there is no difference fromG1(1) to G2(1).

4. principal a performs an output. Sincea never sends messages to itself, after this output
ja ≤ na and the invariant is preserved.

5. compliant principalc performs an output: in this case there is no difference betweenG1(1)
andG2(1) except when sending messages toa. The sending procedures only differ in the
caseja = na, that is whenever sending thena + 1-th message toa. Let us analyse the
sending proceduresenda of c:

(a) after sending all messages,ja ≤ na. In this case thena + 1-th message toa was
not sent henceG1(0) and G2(0) behave as in DefinitionC.5, and the invariant is
preserved.

(b) after sending all messages,ja = na +1. In this case a message thena +1-th message
to a was sent toa, that is, a message was sent withja = na. In this case,G1(1)
(Nñ+1(S◦, D◦)) behaves as in DefinitionC.5, that is it marshals the content ofm tom′,
encrypts0’s and records(E(ea, 0

dm′′e),m, k) in enctable, wherem′′ is the message
obtained at Step3 of thesenda protocol on inputm′. G2(1) behaves as provided in
change3 of AdvCCA2

F(·), that is, forb = 1, on inputm′ to thesenda protocol, it gets
c∗ = E(ea, 0

dm′′e) and records(c∗, parse(m′), k) in enctable, wherem′ andk are
respectively the input and the authentication key, of the modified sending algorithm
of AdvCCA2

F(·). Sincem = parse(m′) the invariant is preserved.

We now relate machinesNω̃ andN? that differ only in the marshalling of certificates for mes-
sages exchanged between compliant principals.N? does not marshal certificates when sending
messages to honest principals, whileNω̃ generates the certificates but does not send them.

Lemma C.13. Nω̃(S◦, D◦) ≈ N?(S◦, D◦).

Proof. Let A be a PPT adversary. Consider machineN](S◦, D◦) derived fromNω̃(S◦, D◦) as
follows (in the following, we denote bysigned ] the tablesigned of machineN](S◦, D◦)):

• we extend the state ofN](S◦, D◦) with a tablehidden-certthat associates internal repre-
sentations of certificates to signature values;
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• whenever marshaling a message tob ∈ H, for each certificate of the formprin(ida){v2}0
such that bothsigned ](prin(ida){v2}0) andhidden-cert(prin(ida){v2}0) are undefined,
add(prin(ida){v2}0,S(sa, [[v2]])) to hidden-certinstead of adding it tosigned ];

• whenever marshaling a message toe /∈ H, if it contains a certificateprin(ida){v2}0 for
some(prin(ida){v2}0, s) ∈ hidden-cert, marshal ascert [[prin(ida)]] [[v2]] s and add
(prin(ida){v2}0, s) to signed ].

It is easy to see thatN](S◦, D◦) ≈ N?(S◦, D◦) (in fact we even have equality of distributions).
MachineN](S◦, D◦) generates the certificates upfront but it only uses them whenever they are
needed inN?(S◦, D◦), that is, whenever they are part of a message to the adversary. For that,
the two machines have the same distribution. Moreover, since both machines define exactly the
same certificates (the ones generateda priori byN](S◦, D◦) do not interfere with the computation
unless they are added tosigned ]

a) the probability of failure of both machines is also the same.
It remains to show thatNω̃(S◦, D◦) ≈ N](S◦, D◦). We claim that for any run with lengthn

N](S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N]

if the failure flag is not set inN], then

1. there existS with shadowD] and normal transitionsS◦
ϕ−→ S, such thatN] = N](S, D]),

and

2. Nω̃(S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; Nω̃(S, D), the failure flag is not set in
Nω̃(S, D), andD is obtained fromD] by addingD.certval(cert) = s for all certificates
cert such that(cert , s) ∈ hidden-cert.

It follows from our claim that no adversary can distinguish the two machines when the
run of N](S◦, D◦) does not fail; the outputs for successful runs are the same in both cases.
Hence the only way to distinguishNω̃(S◦, D◦) from N](S◦, D◦) is if N](S◦, D◦) fails. But,
N](S◦, D◦) ≈ N?(S◦, D◦) and by LemmaC.9, N?(S◦, D◦) fails with negligible probability. Hence
Nω̃(S◦, D◦) ≈ N](S◦, D◦) as needed.

Let us now prove the claim above.

Base casen = 0: We haveN] = N](S◦, D◦). We useS = S◦, D] = D◦, ϕ = ε, andD = D◦.
Sincehidden-certis empty,D◦ satisfies the condition in Case2.

Inductive case: Suppose that

N](S◦, D◦)
(inp1)
; ;∗ s1

; . . .
(inpn)
; ;∗ sn

; N]
n

(inpn+1)
; ;∗sn+1

; N] (C.7)

and the failure flag is not set inN]. By induction hypothesis forn,

(i) there existSn with shadowD]
n and normal transitionsS◦

ϕ−→ Sn, such thatN]
n = N](Sn, D]

n),
and
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(ii) Nω̃(S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; Nω̃(Sn, Dn), the failure flag is not set in
Nω̃(Sn, Dn), andDn is obtained fromD]

n by addingDn.certval(cert) = s for all certificates
cert such that(cert , s) ∈ hidden-cert.

The proof that there existS with shadowD] and normal transitionsSn
αβ̃−→ S such that

N] = N](S, D]) whenever the flag is not set inN], is similar to the proof of LemmaC.7 so we
omit it here.

To show the second part of Property (C.7) we just need to show that on input(inpn+1) (that
does not set the failure flag inN] by hypothesis)Nω̃(Sn, Dn) will unmarshal the input to the same
value; we need also to show the conditions on the output. Let us start analysing the unmarshaling
procedure.

One should recall thatparse(·) is only applied when receiving messages from the adversary
or when receiving messages from honest users that are not inenctable, i.e., messages that the
adversary is trying to input as messages sent byb. Hence, if(inpn+1) = id b ida msg andmsg is

in enctable associated with somepMqD]
n,H, k, thenN]

n andNω̃(Sn, Dn) behave the same way as
both skip unmarshal and returnpMqD]

n,H to the interpreter. Notice thatpMqD]
n,H = pMqDn,H

asD]
n andDn only differ in certificates with label0 and these, whenever interpreted usingp·qD,H

will have label0 regardless the value defined for it inD.

Suppose thatN]
n andNω̃(Sn, Dn) unmarshal the message to two different internal representa-

tionsm] = pMqD′,H andmω̃, whereD′ is an extension ofD]
n. If these two representations are

different, it implies that there is at least one certificate from an honest principalb such that

signed ω̃(prin(id b){v2}0) = s and prin(id b){v2}0 is in mω̃ (C.8)

signed ](prin(id b){v2}0) = ⊥ and prin(id b){v2}s is in m] (C.9)

as the only difference between the two machines is the content of theirsigned tables.

Let us consider now the case where(inpn+1) = id c ida msg but msg is not associated

with any pMqD]
n,H, k in enctable. Since the failure flag is not set inN], M/i is defined in

Sn (wherem] = pMqD′,H). Let M ′ be the certificate contained inM such thatpM ′qD′,H =
prin(id b){v2}s. By Definition 3.25, M ′ cannot be of the formb{V2}0 otherwisepM ′qD′,H =
prin(id b){v2}0, henceM ′ = b{V2}` for some` 6= 0. SinceD]

n is a shadow forSn, M/i is
defined inSn, andb{V2}` is a subterm ofM with ` 6= 0, we have thatD]

n(b{V2}`) 6= ⊥, which
implies thatDn(b{V2}`) 6= ⊥. By Definition 3.25, pb{V2}`qDn,H = prin(id b){v2}s for some
s 6= 0 which contradicts the hypothesis thatprin(id b){v2}0 is in mω̃ (C.8). HenceN] and
Nω̃(Sn, Dn) cannot unmarshal this input to two different internal representations.

Let us now consider the last case:(inpn+1) = id e ida msg . Since the failure flag is not set
in N], Sn has the input transition(M), henceφ(M){b} ⊆M(Φn), in particularb{V2}0 ∈ Φn for
b{V2}0 such thatpb{V2}`qD′,H = prin(id b){v2}s. But, by definition ofD]

n being a shadow for



C.4. Reduction to Cryptographic Primitives 179

Sn, if b{V2}0 ∈ Φn then all its names and certificates are defined inD]
n, hence

signed ](pb{V2}0qD]
n,H) = signed ](pb{V2}0qD′,H)

= signed ]
a(prin(id b){v2}0) by Definition3.25

= ⊥ by (C.9)

signed ](pb{V2}0qD]
n,H) = D]

n.certval(b{V2}0) by DefinitionC.4
6= ⊥ becauseb{V2}0 ∈ Φn

We derive a contradiction, hence on inputid e ida msg , machinesN]
n andNω̃(Sn, Dn) cannot

unmarshal the message to two different internal representations.
As for internal reductions, since both machines unmarshal the message to the same internal

representation, our deterministic scheduler performs the same reductions in both cases.
As for outputsN]

n andNω̃(Sn, Dn) are also able to produce the same output: either it is a
message tob ∈ H, and in this caseN]

n adds a tuple(cert , sig) to hidden-certwhile Nω̃(Sn, Dn)
adds it tosigned , or it is a message toe /∈ H and in this caseN]

n uses the same certificate
asNω̃(Sn, Dn) either because both generate it or because it was fetched fromhidden-cert. The
condition onD is trivially verified.

Hence the two machines have the same behaviour as the only difference among them does
not generate different behaviour.

Similarly, we relate machinesN? andN that differ only when marshalling names exchanged
between compliant principals.N never generates the names in messages to honest principals
while N? generates the names but do not send them.

Lemma C.14. N?(S◦, D◦) ≈ N(S◦, D◦).

Proof. Let A be a PPT adversary. Consider machineN†(S◦, D◦) derived fromN?(S◦, D◦) as
follows (in the following, we denote bynames† the tablenames of machineN?(S◦, D◦)):

• we extend the state ofN†(S◦, D◦) with a tablehiddenthat associates internal representa-
tions of names to bitstrings;

• whenever marshaling a message toa ∈ H, for eachind such that bothnames†(ind) and
hidden(ind) are undefined, add(ind , s ←− {0, 1}∗) to hiddeninstead of adding itnames†;

• whenever marshaling a message toe /∈ H, if it containsind for some(ind , s) ∈ hidden,
marshal asname s and add(ind , s) to names†.

It is easy to see thatN†(S◦, D◦) ≈ N(S◦, D◦) (in fact, we have=d). MachineN†(S◦, D◦) gener-
ates the names upfront but it only uses them whenever they are needed inN(S◦, D◦). For that,
the two machines have the same distribution. Moreover, since both machines define exactly the
same names (the ones generateda priori by N†(S◦, D◦) do not interfere with the computation
unless they are added tonames†) the probability of failure of both machines is also the same.

It remains to show thatN?(S◦, D◦) ≈ N†(S◦, D◦). We claim that for any run with lengthn

N†(S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N†
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if the failure flag is not set inN†, then there existS with shadowD† and normal transitions
S◦

ϕ−→ S, such thatN† = N†(S, D†), and either:

1. N?(S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N?(S, D?), the failure flag is not set in
N?(S, D?), andD? is obtained fromD† by addingD?.name(n) = s for all the namesn
such that(D†.ni(n), s) ∈ hidden; or

2. N?(S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N?, and the failure flag is set inN?.

It follows from our claim that no adversary can distinguish the two machines when both runs
do not fail; the outputs for successful runs are the same in both cases. Hence the only way to
distinguishN?(S◦, D◦) from N†(S◦, D◦) is if one fails and the other does not. By LemmaC.9,
N?(S◦, D◦) fails with negligible probability. By LemmaC.8 andN†(S◦, D◦) ≈ N(S◦, D◦), we
have thatN†(S◦, D◦) also fails with negligible probability. Hence,N?(S◦, D◦) ≈ N†(S◦, D◦) and
the claim follows.

Let us now prove the claim above.

Base casen = 0: We haveN† = N†(S◦, D◦). We useS = S◦, D† = D◦, ϕ = ε, andD? = D◦.
Sincehiddenis empty,D◦ satisfies the condition in Case1.

Inductive case: Suppose that

N†(S◦, D◦)
(inp1)
; ;∗ s1

; . . .
(inpn)
; ;∗ sn

; N†n
(inpn+1)

; ;∗sn+1
; N†

and the failure flag is not set inN†. By induction hypothesis forn, there existSn with shadow
D†

n and normal transitionsS◦
ϕ−→ Sn, such thatN†n = N†(Sn, D†

n), and either:

(i) N?(S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N?
n = N?(Sn, D

?
n), the failure flag is not

set inN?(Sn, D
?
n), andD?

n is obtained fromD†
n by addingD?

n.name(n) = s for all the
namesn such that(D†

n.ni(n), s) ∈ hidden; or

(ii) N?(S◦, D◦)
(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N?
n, and the failure flag is set inN?

n.

The proof that there existS with shadowD† and normal transitionsSn
αβ̃−→ S such thatN† =

N†(S, D†) whenever the flag is not set inN†, is similar to the proof of LemmaC.7so we omit it
here.

To show the second part of Property (C.10) we just need to show that on input(inpn+1),
machineN?

n will behave the same way asN†n unless it fails. SinceN?
n andN†n only differ in their

names table (N?
n has more names innames?), differences between the two may occur when

unmarshaling an input leads to different internal representations,m? andm†. The other possible
difference is when marshaling a message; clashes occur more often in the case ofN?

n but, as this
implies thatN? has the failure flag set to true, this is included in Case2.
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Let us then analyse what may occur when receiving a message. First, suppose thatinpn+1 =

idu ida msg andmsg is associated withpMqD†n,H, k in enctable. In this case, the two machines
behave the same way as both skip unmarshaling and returnpMqD†n,H to the interpreter. Notice
thatpMqD†n,H = pMqD?

n,H for messages inenctable sinceD†
n andD?

n only differ in name(m)
for names never sent to the adversary, but for messages inenctable, names are represented by
their internal identifiers that are equal inD†

n andD?
n.

Suppose now thatinpn+1 = id b ida msg but msg is not associated with anypMqD†n,H, k in
enctable. Since the failure flag is not set inN† the message is unmarshaled to somepM †qD′,H and
M †/i is defined inSn. Suppose that the message is received and unmarshaled to two different
representations

m† = pM †qD′,H whereD′ extendsD†
n, and

m? = pM?qD′′,H whereD′′ extendsD?
n

by N†n andN?
n. It is easy to see that receive and unmarshaling succeed inN†n if and only if it

succeeds inN?
n (verification of the authentication key is the same and similarly for verification of

certificates during unmarshaling). Hence ifm† 6= m? there is ans′ that during the unmarshaling
procedure

parse(s′) = v1 in the case ofN†n, and (C.10)

parse(s′) = v2 in the case ofN?
n

for v1 6= v2. Besides the tablesnames† andnames?, there is no other difference betweenN†n and
N?

n, hence the unmarshaling ofs′ differ if and only if s′ = name s.
We have either(v1, s) ∈ names† or (v2, s) ∈ names? (we cannot have both undefined

otherwises′ would have been unmarshaled to a commonv). By construction,names† ⊆ names?,
hence(v2, s) ∈ names? and

D?.name(n) = s and D?.ni(n) = v2 for some namen (C.11)

by DefinitionC.4.We have also that

(x, s) /∈ names† for all x (C.12)

by definition ofN†, names† ⊆ names?, hence(x, s) ∈ names† if and only if x = v2; but
parse(name s) = v1 in N†n andv1 6= v2 by hypothesis, hence there is nox such thatnames†(x) =
s.

By (C.10) and (C.12) we have thatv1 is a new name identifier (created by theparse(·) pro-
cedure) that is not defined inD†.ni . We have then that there exists a namen′ 6= n in M † with

D′.name(n′) = s and D′.ni(n′) = v1.

SinceD′ is an extension ofD†
n andD′.name(n′) = s we have that eitherD†

n.name(n′) = s or
D†

n.name(n′) = ⊥; if D†
n.name(n′) = s then by hypothesisD?

n.name(n′) = s. Using (C.11)
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and injectivity ofD?
n.name this implies thatn′ = n which contradicts the fact ofn′ being a new

name; hence
D†

n.name(n′) = ⊥ and D†
n.ni(n′) = ⊥ (C.13)

By definition of shadow,D†
n.ni is undefined at most for locally restricted names, hencen′ is a

locally restricted name or it is a name generated by the adversary. Obviouslyn′ cannot be locally
restricted since it part ofM †/i, hence it has to be generated by the adversary. In this case, it is
free inSn and by definition of shadow,D†

n.name(n′) 6= ⊥ which contradicts (C.13), hence on
input id b ida msg , machinesN†n andN?

n cannot unmarshal the message to two different internal
representations.

As the last case, suppose thatinpn+1 = id e ida msg . Suppose again that the message is
received and unmarshaled to two different representations

m† = pM †qD′,H whereD′ extendsD†
n, and

m? = pM?qD′′,H whereD′′ extendsD?
n

by N†n andN?
n. Similarly to the previous case we obtain that(v2, s) ∈ names? and there is nox

such that(x, s) /∈ names†. We have then that

(v2, s) ∈ names?

=⇒ ∃n : D?
n.name(n) = s ∧ D?

n.ni(n) = v2 (C.14)

=⇒ ∃n : D?
n.name(n) = s ∧ D†

n.ni(n) = v2 (C.15)

=⇒ ∃n : D?
n.name(n) = s ∧ D†

n.ni(n) = v2 ∧
∧ (v2, D

†
n.name(n)) ∈ names† (C.16)

=⇒ ∃n : D?
n.name(n) = s ∧ D†

n.ni(n) = v2 ∧ D†
n.name(n) 6= s (C.17)

=⇒ ∃n : D†
n.name(n) = ⊥ ∧ D†

n.ni(n) = v2 ∧
∧ (D†

n.ni(n), s) ∈ hidden (C.18)

=⇒ (v2, s) ∈ hidden∧
∧ D†

n.name(n) = ⊥ for n such thatD†
n.ni(n) = v2 (C.19)

Step (C.14) follows from DefinitionC.4 applied tonames?. Step (C.15) follows from the
definition ofN† machine; it has the same internal representations for names asN?. Step (C.16)
follows from DefinitionC.4applied tonames†. Step (C.17) follows by hypothesis: there is nox
such that(x, s) ∈ names†. Step (C.18) follows from IH as ifD†.name(n) 6= D?.name(n), then
D†.name(n) = ⊥ and(D†.ni(n), D?.name(n)) ∈ hidden. Step (C.19) follows from the fact that
D†

n.ni is injective, hence there is only onen such thatD†
n.ni(n) = ind .

By definition ofN†(S◦, D◦), if (v2, s) ∈ hiddenand there is nox such that(x, s) ∈ names†,
then no message containingv2 was ever sent to the adversary. Moreover,D†

n.name(n) = ⊥
implies by definition of shadow thatn does not occur free inSn and does not occur inΦn nor
D†

n.certval . Sincen does not occur free inSn nor Φn, andn is a subterm ofM? (v2 is in

pM?qD′′,H andD?
n.ni(n) = v2 implies thatn is a subterm ofM?), we cannot haveSn

(M?)−−−→ S ′,
hence the failure flag is set inN?. We conclude that ifN†n andN?

n unmarshal the message to two
different internal representations,N? has the failure flag set, hence we are in Case2.
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As for internal reductions, since both machines unmarshal the message to the same internal
representation whenever both do not fail, our deterministic scheduler performs the same reduc-
tions in both cases.

As for outputsN†n andN?
n are also able to produce the same output: either it is a message to

b ∈ H, and in this caseN†n adds a tuple(cert , sig) to hiddenwhile N?
n adds it tonames, or it is a

message toe /∈ H and in this caseN†n uses the same bitstring for the name asN?
n either because

both generate it or because it was fetched fromhidden. The condition onD? is trivially verified.
It may also occur a clash on the generation of names. In this case a failure flag is set inN? and
we are in Case2.

By composing these equivalences, we obtain

Lemma C.15. M(S◦, D◦) ≈ N(S◦, D◦).

Proof. Let A be a PPT adversary, with a run-time bounded by the polynomialpA(·). Let

∆i
j(η) = Pr[A[N(i,...,i−1,i−1,...,i−1)(S◦, D◦)] −→ 1]− Pr[A[N(i,...,i,i−1,...,i−1)(S◦, D◦)] −→ 1]

where the tuples differ at positionj, 1 ≤ j ≤ |H|. Let

f(η) =

pA(η)∑
i=1

|H|∑
j=1

∆i
j(η).

By LemmaC.12, ∆i
j(η) is a negligible function ofη for all i, j. It follows thatf(η) ≤ |H| ×

pA(η) ×max1≤i≤pA(η),1≤j≤|H| ∆i
j(η) = |H| × pA(η) × g(η) whereg(η) is a negligible function.

Applying PropositionA.3 to g(η) and|H|×pA(η) we get thatf(η) is a negligible function. Now,
expandingf(η) we obtain that

f(η) = Pr[A[N(0,...,0)(S◦, D◦)] −→ 1]− Pr[A[N(pA(η),...,pA(η))(S◦, D◦)] −→ 1]

that is,

Pr[A[N(0,...,0)(S◦, D◦)] −→ 1]− Pr[A[N(pA(η),...,pA(η))(S◦, D◦)] −→ 1] ≤ neg (η) . (C.20)

By LemmasC.10andC.11,

Pr[A[M(S◦, D◦)] −→ 1]− Pr[A[N(0,...,0)(S◦, D◦)] −→ 1] ≤ neg (η) . (C.21)

Since at mostpA(η) messages are exchanged in any given run and the machinesNp̃A(η)(S◦, D◦)
andNω̃(S◦, D◦) may have different behaviours only afterpA(η) exchanges, we have

Pr[ A[Np̃A(η)(S◦, D◦)] −→ 1 ]− Pr[ A[Nω̃(S◦, D◦)] −→ 1 ] = 0. (C.22)

By LemmasC.13andC.14, we have

Pr[ A[Nω̃(S◦, D◦)] −→ 1 ]− Pr[ A[N(S◦, D◦)] −→ 1 ] ≤ neg (η) . (C.23)

Composing (C.21), (C.20), (C.22), and (C.23), we finally obtain

Pr[ A[M(S◦, D◦)] −→ 1 ]− Pr[ A[N(S◦, D◦)] −→ 1 ] ≤ neg (η) .
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C.5 Main Proofs

We are now ready to complete the proofs for our main theorems.

Restatement of Theorem3.4. Let S be a safe stable system,D a valid shadow forS, andA a
PPT algorithm.

The probability thatA[M(S, D)] completes and leaves the system in stateM′ with M′ 6=
M(S ′, D′) for any normal transitionsS

ϕ−→ S ′ with valid shadowD′ is negligible.

Proof. Let S be a safe stable system with valid shadowD andA a PPT algorithm (with no access
to the failure flag ofM(S, D)). By definition ofD being a valid shadow forS, there exist a safe
initial systemS◦ with initial shadowD◦, normal transitionsS◦

ϕ◦−→ S, and a PPT algorithmA◦
such thatA◦[M(S◦, D◦)] −→ M(S, D).

Let M′ badabbreviate that there are no normal transitionsS
ϕ−→ S ′ and valid shadowD′ for S ′

such thatM′ = M(S ′, D′). Let M′
◦ bad(resp.M′

◦ bad) abbreviate that there are no normal transi-
tionsS◦

ϕ−→ S ′ and valid shadowD′ for S ′ such thatM′
◦ = M(S ′, D′) (resp.M′

◦ = M(S ′, D′)).

Pr [A[M(S, D)] −→ sr(M
′) ∧M′ bad] (C.24)

= Pr [(A◦; A)[M(S◦, D◦)] −→ sr(M
′
◦) ∧M′

◦ bad] (C.25)

= Pr [(A◦; A)[M(S◦, D◦)] −→ sr(M
′
◦) ∧M′

◦ bad] (C.26)

≤ Pr [(A◦; A)[M(S◦, D◦)] fails]

+ Pr
[
(A◦; A)[M(S◦, D◦)]

+−→ sr(M
′
◦) ∧M′

◦ bad
]

(C.27)

≤ Pr [(A◦; A)[M(S◦, D◦)] fails] (C.28)

≤ Pr [(A◦; A)[N(S◦, D◦)] fails] + neg (η) . (C.29)

≤ neg (η) + neg (η) . (C.30)

The probability (C.24) is the target probability of Theorem3.4. Step (C.25) applies the
definition of initialisation ofS with valid shadowD, and Lemma3.3, S◦

ϕ◦−→ S1 implies that
S1 ≡ S. Step (C.26) holds by DefinitionC.1: sinceA does not read the flag, the additional
checks performed byM(S◦, D◦) do not affect the outcome of any given run. Step (C.27) splits
the probability depending on the predicate(A◦; A)[M(S◦, D◦)] fails; the inequality appears as we
ignore(A◦; A)[M(S◦, D◦)] −→ sr(M

′
◦) andM′

◦ bad in case(A◦; A)[M(S◦, D◦)] fails. Step (C.28)
follows from LemmaC.6 applied toS◦, D◦, and(A◦; A): the two predicates within the second
probability are mutually exclusive, so the second probability is zero. Step (C.29) follows from
LemmaC.15applied toS◦, D◦ and indistinguishability (DefinitionC.2) applied to an adversary
A that runs(A◦; A) and then returns the failure flag. Step (C.30) applies LemmaC.8 to S◦, D◦,
and(A◦; A).

Lemma C.16. LetS◦1 andS◦2 be safe initial systems with initial shadowD◦.
If S◦1 ' S◦2 , then for all output messagessr,

Pr
[
A[N(S◦1 , D

◦)]
+−→ sr(N1)

]
= Pr

[
A[N(S◦2 , D

◦)]
+−→ sr(N2)

]
.
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Proof. We first show by induction onn that, for any given run, if

N(S◦1 , D
◦)

(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N1

and the failure flag is not set inN1, then

1. there existS1 with shadowD1 and normal transitionsS◦1
ϕ−→ S1 such thatN1 = N(S1, D1),

and

2. N(S◦2 , D
◦)

(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N2, the failure flag is not set inN2 and
N2 = N(S2, D2) for someS2 : S◦2

ϕ−→ S2, S1 ' S2, andD2 = D1 except for definition of
internal identifiers and the associated messages inenctable (i.e.,D2.ni andπ1(D2.wire)).
Moreover, if we denote byN = {n ∈ Name : D1.name(n) is defined} there is a bijection
betweenD1.ni |N andD2.ni |N wheref |N denotes the restriction off to domainN .

The lemma follows easily from this property (using symmetry) as the outputs of the two runs are
the same, hence all the available information to the adversary is the same in both cases. Let us
then prove the property by induction inn.

Base casen = 0: We haveN1 = N(S◦1 , D
◦). We useS1 = S◦1 , D1 = D◦, andϕ = ε. The

partial functionD◦ is initially undefined soD1.name is trivially injective. As for Condition2,
N2 = N(S◦2 , D

◦). We useS2 = S◦2 , D2 = D◦, andϕ = ε. Trivially D2 = D1.

Inductive case: Suppose that

N(S1, D
◦)

(inp1)
; ;∗ s1

; . . .
(inpn)
; ;∗ sn

; N′1
(inpn+1)

; ;∗sn+1
; N1

and that the failure flag is not set inN1. By induction hypothesis forn,

(a) there existS ′1 with shadowD′
1 and normal transitionsS◦1

ϕ′−→ S ′1 such thatN′1 = N(S ′1, D
′
1),

and

(b) N(S◦2 , D
◦)

(inp1)
; ;∗ s1

;
(inp2)
; ;∗ s2

; . . .
(inpn)
; ;∗ sn

; N′2, the failure flag is not set inN′2 and

N′2 = N(S ′2, D
′
2) for someS ′2 : S◦2

ϕ′−→ S ′2, S ′1 ' S ′2, andD′
2 = D′

1 except for definition of
internal identifiers and the associated messages inenctable. Denoting byN ′ = {n ∈ Name :
D′

1.name(n) is defined} there is a bijection betweenD′
1.ni |N ′ andD′

2.ni |N ′.

We have that bothS ′1 andS ′2 are safe (sinceS◦1 andS◦2 are) and stable (by definition of normal
transitions). Applying LemmaC.7 to our hypothesis we have that there existS1 with shadow

D1 and normal transitionsS◦1
ϕ′−→ S ′1

αβ̃−→ S1 such thatN1 = N(S1, D1) which establishes Condi-
tion 1.

To prove Condition2 one should notice that the keys in the cache ofN′1 and N′2 are the
same (D′

1.keycache = D′
2.keycache) so the same messages will be accepted by the two ma-

chines. Also, since there is a bijection betweenD′
1.ni |N ′ andD′

2.ni |N ′ we have thatnames ′1 =
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names ′2 up to renaming of the internal identifiers (names ′i is thenames table forN′i), and since
D′

1.certval = D′
2.certval we have also thatsigned ′1 = signed ′2 (signed ′i is thesigned table for

N′i).
Now there are two different cases:

(i) if (inpn+1) is a message from the adversary, it will be unmarshaled in both cases to the
same internal representationm up to a renaming of internal identifiers for names, hence

S ′1
(M)−−→ S ′′1 andS ′1 ' S ′2 imply thatS ′2

(M)−−→ S ′′2 (N′2 does not fail); by safety, we know that
the complexity of these internal reductions is bound bypS1(dMe) andpS2(dMe), which

means that both machines terminate and in particularN′2
(inpn+1)

; ;∗ s′
; N2. As for the

outputS ′′1
β̃−→ S1, henceS ′′2

β̃−→ S2 for someS2 andS1 ' S2. As the only marshaled names
are the names in messages to the adversary,D′

1.name = D′
2.name, and the names sent to

the adversary are the same in both cases, the failure flag is not set inN2. As for messages to
honest users, they may differ fromS ′′1 to S ′′2 but by definition bothN′1 andN′2 only encrypt
zero’s which imply thats′ = sn+1. Considering the shadowD2 defined asD2.ni = D′

2.ni
plus all the identifiers generated during the reduction,D2.wire = D1.wire except that the
first component includes the message that was sent byN2 and all the other components of
D2 asD1, we have thatN2 = N(S2, D2), and there exists a bijection betweenD1.ni |N and
D2.ni |N whereN = {n ∈ Name : D1.name(n) is defined}.

(ii) if (inpn+1) is a message from an honest user, andM/i is defined inS ′1 with D′
1.wire(i) =

, k, , , then there is also an input(i) in S ′2 and sinceD′
2.wire = D′

1.wire except for the
first component,N′2 will not fail on this input. Regardless to what this input is unmarshaled,

if S ′1
(i)β̃−−→ S1 thenS ′2

(i)β̃−−→ S2 for some stableS2. The rest of the argument is similar to the
previous case.

Our claim follows directly from this property.

Lemma C.17. LetS◦1 andS◦2 be safe initial systems with initial shadowD◦.
If S◦1 ' S◦2 , thenN(S◦1 , D

◦) ≈ N(S◦2 , D
◦).

Proof. Let A be an arbitrary PPT algorithm. We have that

Pr
[
A[N(S◦1 , D

◦)] −→ sr(N1)
]

(C.31)

≤ Pr
[
A[N(S◦1 , D

◦)] fails
]
+ Pr

[
A[N(S◦1 , D

◦)] +−→ sr(N1)
]

(C.32)

≤ neg (η) + Pr
[
A[N(S◦1 , D

◦)] +−→ sr(N1)
]

(C.33)

= neg (η) + Pr
[
A[N(S◦2 , D

◦)]
+−→ sr(N2)

]
(C.34)

≤ neg (η) + Pr
[
A[N(S◦2 , D

◦)] −→ sr(N2)
]

(C.35)

Step (C.32) splits the probability depending on the predicateA[N(S◦1 , D
◦)] fails; the inequal-

ity appears as we ignoreA[N(S◦1 , D
◦)] −→ sr(N1) whenA[N(S◦1 , D

◦)] fails. Step (C.33) follows
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from LemmaC.8applied toS◦1 , D◦, andA. Step (C.34) follows from LemmaC.16. Step (C.35)
follows from the inclusion of all cases whereA[N(S◦2 , D

◦)] fails in the second probability. By
symmetry, we conclude

|Pr
[
A[N(S◦1 , D

◦)] −→ sr(N1)
]− Pr

[
A[N(S◦2 , D

◦)] −→ sr(N2)
] | ≤ neg (η) .

We are now ready to prove our theorem about soundness of equivalences.

Restatement of Theorem3.5. LetS1 andS2 be safe stable systems,D a valid shadow for both
S1 andS2.

If S1 ' S2, thenM(S1, D) ≈ M(S2, D).

Proof. By Lemma3.3, sinceS1 ' S2, there exist safe initial systemsS◦1 , S
◦
2 and labelsϕ◦ such

thatS◦1 ' S◦2 , S◦1
ϕ◦−→ S1, andS◦2

ϕ◦−→ S2. Applying LemmaC.17to S◦1 andS◦2 we obtain that
N(S◦1 , D

◦) ≈ N(S◦2 , D
◦).

Applying LemmaC.15to S◦1 , S◦2 andD◦, we haveM(S◦1 , D
◦) ≈ N(S◦1 , D

◦) andM(S◦2 , D
◦) ≈

N(S◦2 , D
◦). By transitivity, we obtain

M(S◦1 , D
◦) ≈ M(S◦2 , D

◦). (C.36)

By DefinitionC.1, an adversaryA able to distinguishM(S◦1 , D
◦) from M(S◦2 , D

◦) also distin-
guishesM(S◦1 , D

◦) from M(S◦2 , D
◦), so (C.36) implies

M(S◦1 , D
◦) ≈ M(S◦2 , D

◦). (C.37)

We finally show thatM(S1, D) ≈ M(S2, D) by considering the initialisation protocolA◦. If
there is an adversaryA that can distinguishM(S1, D) from M(S2, D), then the adversary(A◦; A)
is able to distinguishM(S◦1 , D

◦) from M(S◦2 , D
◦), and this contradicts (C.37).


