
INEQUALITIES IN NONLINEAR FOURIER ANALYSIS
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Abstract. This note is meant as a gentle introduction to nonlinear Fourier analysis. In
particular, we highlight the parallel with the classical linear theory, describe some recent
developments, and mention some open problems in the field.

1. The Fourier transform

The Fourier transform is an ubiquitous tool in mathematical analysis. Its power stems from
the fact that it reveals certain properties about the function which are not readily apparent
by inspection. One of the first questions that arises concerns its mapping properties on the
scale of Lebesgue spaces Lp. Given a sufficiently nice function f : R → C, we shall define its
Fourier transform as follows:

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξ dx.

One easily checks that the Fourier transform of an integrable function is a uniformly continuous
function which decays at infinity, an observation which is historically attributed to early works
of Riemann and Lebesgue. With the above normalization, a straightforward application of the
triangle inequality shows that the Fourier transform is a contraction from L1 to L∞. It also
extends to an isometry on the Hilbert space L2, as a consequence of Plancherel’s theorem. In
other words, the following hold:

‖f̂‖L∞(R) ≤ ‖f‖L1(R), (1.1)

‖f̂‖L2(R) = ‖f‖L2(R). (1.2)

Estimates (1.1) and (1.2) can be interpolated with the classical convexity theorem of Riesz–
Thörin. As a consequence, we obtain the Hausdorff–Young inequality, which in turn asserts
the following: Given an exponent 1 ≤ p ≤ 2, the inequality

‖f̂‖Lp′ (R) ≤ ‖f‖Lp(R) (1.3)

holds for every f ∈ Lp. Here p′ denotes the exponent conjugate to p, given by 1
p + 1

p′ = 1.

The concept of Lp convergence differs substantially from that of pointwise convergence.
A powerful link between the two is provided by maximal functions, which are in themselves
central objects of study in Fourier analysis. In general terms, one expects Lp-bounds for a
maximal function to imply pointwise almost everywhere convergence of the original operator.
In our setting, we are led to define the maximally truncated Fourier transform,

F∗f(ξ) = sup
y∈R

∣∣∣ ∫ y

−∞
f(x)e−2πixξ dx

∣∣∣.
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The classical Menshov–Paley–Zygmund inequality states that, for every 1 ≤ p < 2, there
exists a constant Mp <∞ such that

‖F∗f‖Lp′ (R) ≤Mp‖f‖Lp(R), (1.4)

for every f ∈ Lp. The case p = 2 of inequality (1.4) is considerably more subtle, and follows
from the celebrated result of Carleson [3] on the pointwise convergence of Fourier series of
square integrable functions. A powerful variational refinement of these results has been re-
cently proved by Oberlin, Seeger, Tao, Thiele and Wright [13]: Given 1 ≤ p ≤ 2 and r > p,
there exists a constant Cp,r <∞ such that∥∥∥∫ y

−∞
f(x)e−2πixξ dx

∥∥∥
Lp

′
ξ (R;Vry (R))

≤ Cp,r‖f‖Lp(R), (1.5)

for every f ∈ Lp. In the case 1 ≤ p < 2 and r = ∞, inequality (1.5) reduces to (1.4).
When p = 2 and 2 < r < ∞, inequality (1.5) strengthens Carleson’s theorem by establishing
L2-estimates for the r-variation1 of the partial sum operator for the Fourier transform.

We conclude this succinct account of linear Fourier analysis by asking the following natural
questions: What is the optimal constant in inequality (1.3)? What are the corresponding
extremizers? By this we mean functions which saturate the sharp inequality, turning it into
an equality. Beckner [2] proved that the inequality

‖f̂‖Lp′ (R) ≤ Bp‖f‖Lp(R) (1.6)

holds with constant Bp := p
1
2p p′

− 1
2p′ , which is strictly less than 1 if 1 < p < 2, and is sharp.

Moreover, equality is attained by Gaussians. Lieb [9] later proved that there exist no other
extremizers besides the Gaussian functions. More recently, Christ [4] further refined inequality
(1.6), establishing the following stable version: There exists a constant cp > 0 such that

‖f̂‖Lp′ (R) ≤
(
Bp − cp

dist2p(f,G)

‖f‖2Lp(R)

)
‖f‖Lp(R), (1.7)

for every nonzero f ∈ Lp. Here distp(f,G) denotes the Lp-distance from f to the set of
all Gaussians, denoted G. Sharp inequalities and stable versions thereof, together with a
characterization of the corresponding sets of extremizers, have a rich history in mathematical
analysis. The brief description given here only scratches the surface of this fascinating topic
for the very particular case of the Hausdorff–Young inequality, which will nonetheless be of
interest to us further along the discussion.

2. The nonlinear Fourier transform

One of the many useful features of the Fourier transform is that it maps a linear partial
differential equation into an algebraic equation, which can be explicitly solved, and then
pulled back to a solution of the original problem via Fourier inversion. There have been many
attempts to find suitable replacements for this mechanism in the world of nonlinear partial
differential equations.

For the remainder of this note, we shall focus on a simple nonlinear model of the Fourier
transform, also known as the Dirac scattering transform, or the SU(1, 1)-scattering transform.
To describe it precisely, let us take a measurable, bounded and compactly supported function

1See §3.2 below for a discussion of variation norms.
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f : R → C, which will generally be referred to as a potential. Given an arbitrary number
ξ ∈ R, consider the initial value problem

∂

∂x

[
a(x, ξ)
b(x, ξ)

]
=

[
0 f(x)e2πixξ

f(x)e−2πixξ 0

] [
a(x, ξ)
b(x, ξ)

]
,

[
a(−∞, ξ)
b(−∞, ξ)

]
=

[
1
0

]
. (2.1)

This system is well known to have unique absolutely continuous solutions a(·, ξ) and b(·, ξ).
Defining functions a, b : R → C via a(ξ) := a(+∞, ξ) and b(ξ) := b(+∞, ξ), one is led to
study properties of the “forward transform” f 7→ (a, b). The differential equation (2.1) forces
|a(ξ)|2 − |b(ξ)|2 = 1, which in particular means that a certain size of the above vector is
controlled by the quantity |a(ξ)| alone. It is sometimes convenient to add an extra column
and turn this vector into a 2× 2 matrix belonging to the classical Lie group

SU(1, 1) =
{(

w z
z w

)
: w, z ∈ C and |w|2 − |z|2 = 1

}
,

which is isomorphic to SL(2,R). It should be emphasized that we are not considering the linear
Fourier transform on the group SU(1, 1), as the map f 7→ (a, b) is highly nonlinear. This is
at the root of several foundational and technical issues, and among other issues prevents
any sort of interpolation scheme from holding in general. On the other hand, the nonlinear
Fourier transform enjoys several symmetries which are shared by its linear counterpart, e.g.
with respect to L1-normalized dilations, translations, and modulations.

Sources of motivation for considering this precise instance of the nonlinear Fourier transform
include the eigenvalue problem for the Dirac operator, the study of completely integrable
systems and scattering theory, and the Riemann–Hilbert problem; see the expository paper
[15] for further information. The Dirac scattering transform is the simplest nonlinear model
that cannot be solved explicitly of a more general transform, the AKNS–ZS nonlinear Fourier
transform; see [1, 17] for details.

We now describe some nonlinear analogues of the classical inequalities for the linear Fourier
transform from the first section. First of all, Grönwall’s inequality from ODE theory implies
the following analogue of the Riemann–Lebesgue estimate (1.1):∥∥(log |a(ξ)|2)

1
2

∥∥
L∞
ξ (R) ≤ ‖f‖L1(R), (2.2)

for every potential f . Secondly, the nonlinear Plancherel’s theorem is a well-known scattering
identity, a variant of which goes back at least to work of Verblunsky from the 1930s. It states
that ∥∥(log |a(ξ)|2)

1
2

∥∥
L2
ξ(R)

= ‖f‖L2(R), (2.3)

for every potential f . Identity (2.3) can be established via a contour integration argument, see
e.g. [11, §6], and it is curious to note that no other proof seems available in the literature. The
reader might wonder about the role of the square root of the logarithm on the left-hand sides
of inequalities (2.2) and (2.3). It helps to notice that both inequalities reduce to their linear
analogues in first order approximation. In particular, the linear Fourier transform coincides
with the linearization of the nonlinear Fourier transform at the origin.

Similarly to the linear case, one would like to use interpolation in order to obtain a nonlinear
Hausdorff–Young inequality but, as previously mentioned, this is not available in the current
nonlinear setting. However, the seminal work of Christ and Kiselev [5, 6] on the spectral
theory of one-dimensional Schrödinger operators implies the following result: If 1 ≤ p < 2,
then there exists a constant Cp <∞ such that∥∥(log |a(ξ)|2)

1
2

∥∥
Lp

′
ξ (R) ≤ Cp‖f‖Lp(R), (2.4)
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for every potential f . The proof produces a family of constants Cp which, contrary to the
linear case, blows up as p→ 2−. Thus it is natural to ask:

Question 2.1. Do the constants Cp from inequality (2.4) remain uniformly bounded, as p
tends to 2?

Question 2.1 was originally asked by Muscalu, Tao and Thiele [11], and was solved in a
particular toy model by Kovač [7], but remains open in its full generality. In §3.1 we shall
describe some recent investigations around this circle of problems. On the other hand, a
variational refinement generalizing the nonlinear analogue of the Menshov–Paley–Zygmund
inequality was established by Oberlin et al. [13]. This has recently been extended to the
discrete setting, and we present some details in §3.2 below.

We close this section by mentioning a nonlinear analogue of Carleson’s theorem on the
pointwise convergence of Fourier series. It was originally formulated in [11, Conjecture 1.2],
and we record it here.

Question 2.2. Does the following inequality hold, for every square integrable function f?∥∥ sup
x∈R

(log |a(x, ξ)|2)
1
2

∥∥
L2
ξ(R)
≤ C‖f‖L2(R)

Question 2.2 was solved in a particular toy model by Muscalu, Tao and Thiele [11], but remains
open in its full generality. It is known [12] that this fundamental question cannot be settled
by estimating the terms in the natural multilinear expansion of the scattering transform.

3. Some recent progress

3.1. Towards Question 2.1. By considering truncated Gaussian potentials and linearizing,
one may check that the constant Cp from (2.4) dominates Beckner’s constant from (1.6),
Cp ≥ Bp. It may be tempting to conjecture that Cp = Bp. While this is still an open
problem, which would immediately provide an affirmative answer to Question 2.1, the main
result from [8] hints at some supporting evidence in this direction. To describe it precisely,
fix an exponent 1 < p < 2, a height H > 0, and a width W > 0. We only consider potentials
f : R → C of controlled height and width, i.e. such that |f | ≤ H and f is supported on an
interval of length at most W .

Theorem 3.1 ([8]). There exist δ, ε > 0, depending on p,H,W , such that∥∥(log |a(ξ)|2)
1
2

∥∥
Lp

′
ξ (R) ≤

(
Bp − ε‖f‖2L1(R)

)
‖f‖Lp(R), (3.1)

for every potential f satisfying the above hypotheses and ‖f‖L1 ≤ δ.

Note that inequality (3.1) implies (2.4) with Cp = Bp, but only for the restricted class of
potentials considered in the theorem. Since this class is allowed to depend on the exponent
p, no uniformity is claimed. The emphasis is rather on the perhaps surprising fact that the
nonlinear Hausdorff–Young ratio beats the linear one for sufficiently small values of ‖f‖L1 .

We briefly describe the main idea behind the proof of Theorem 3.1. The strategy is to
split the analysis into two cases, depending on whether or not the potential f is far from
the set of Gaussians in the relative Lp-distance. In the former case, one invokes Christ’s
sharpened Hausdorff–Young inequality (1.7) in order to absorb the error terms coming from
linearization. In the latter case, one calculates a few terms of the multilinear expansion of
(log |a|2)1/2, and approximates f by a suitable Gaussian. The error terms that appear are
controlled by successive applications of the Menshov–Paley–Zygmund inequality (1.4).



INEQUALITIES IN NONLINEAR FOURIER ANALYSIS 5

3.2. Discrete analogues. There is a close and fruitful connection between the continuous
Fourier transform and discrete Fourier series. In a similar vein, Tao and Thiele [16] introduced
a discrete model for the solution curves of the nonlinear Fourier transform. To define it,
consider a compactly supported, complex-valued sequence F satisfying |Fn| < 1, for every n,
and transfer matrices {Tn} given by

Tn(z) = (1− |Fn|2)−
1
2

(
1 Fnz

n

Fnz
−n 1

)
,

where z ∈ T is a unimodular complex number. Note that Tn(z) ∈ SU(1, 1). The nonlinear
Fourier transform of the sequence F is defined as an SU(1, 1)-valued function on the unit circle
given by the expression

(a, b)(z) = lim
N→∞

N∏
n=−N

Tn(z),

where the ordered product is seen to converge in an appropriate sense provided F ∈ `2.
Discrete analogues of the nonlinear Riemann–Lebesgue, Plancherel and Hausdorff–Young in-
equalities are available, see [16, §1–3]. To describe a variational refinement of latter, consider
the following truncated versions of the linear and the nonlinear Fourier transforms of F , re-
spectively denoted by σ = σ(F ) and γ = γ[F ], and given at level N by

σ(F )(N ; z) =
N∑

n=−∞

(
0 Fnz

n

Fnz
−n 0

)
, and γ[F ](N ; z) =

N∏
n=−∞

Tn(z). (3.2)

For fixed z ∈ T, we shall think of the maps N 7→ γ[F ](N ; z) and N 7→ σ(F )(N ; z) as discrete
curves taking values on the Lie group SU(1, 1) and its Lie algebra su(1, 1), respectively. Endow
the Lie algebra with the operator norm ‖ · ‖op, and the Lie group with the distance

d(X,Y ) = log(1 + ‖X−1Y − I‖op).

Given an exponent r ≥ 1, we are interested in measuring the r-variation in the variable N of
the curves σ and γ. The variation is defined as

Vr(γ)(z) = sup
K

sup
N0<...<NK

(K−1∑
j=0

d(γNj (z), γNj+1(z))r
) 1
r
,

and similarly for Vr(σ). Here the supremum is taken over all strictly increasing finite sequences
of integers N0 < N1 < . . . < NK and over all integers K. We are finally in a position to state
the following discrete, variational, nonlinear Hausdorff–Young inequality.

Theorem 3.2 ([14]). Let 1 ≤ p < 2 and r > p. Then there exists a constant Dp,r < ∞ such
that

‖Vr(γ[F ])‖Lp′ (S) + ‖Vr(γ[F ])‖1/r
Lp

′/r(T\S) ≤ Dp,r

∥∥∥ log
(1 + |Fn|

1− |Fn|

)∥∥∥
`p(Z)

, (3.3)

for every F ∈ `p satisfying |Fn| < 1, for every n. Here, S := {z ∈ T : Vs(γ[F ])(z) ≤ 1}, where
s = r if p < r < 2, and s = (p+ 2)/2 if r ≥ 2.

We briefly describe the proof of Theorem 3.2, which comprises two parts. The first part is
inspired by the adaption of Lyons’ theory of rough paths [10] by Oberlin et al. [13] to study
variation norms on SU(1, 1). In particular, given a potential F , one shows that the r-variation
of the discrete curve γ[F ] can be controlled by the r-variation of the linearized curve σ(F ),
plus an extra term that accounts for the possible presence of large jumps. The second part
amounts to a discrete variational version of the Menshov–Paley–Zygmund inequality (1.4).
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This step requires r > p, and is accomplished via an adaptation of the original argument of
Christ–Kiselev [5] to the variational setting.

We finish by noting that the range of exponents promised by Theorem 3.2 is almost sharp.
Indeed, given p > 1, one easily checks that inequality (3.3) can only hold if r > p. On the
other hand, extending this inequality to p = 2, already in the simplest case r = ∞, would
provide an affirmative answer to a discrete version of Question 2.2. This remains a central
open problem in the area.
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