References¶
- A.Grothendieck, (1971), S.G.A.1 - Revetements étales et groupe fondamental, Lecture Notes in Maths. 224, Springer-Verlag.
- F.Borceux, G.Janelidze ‘Galois theories’, Cambridge Studies in Adv. Math. 72, 2001
- G.Janelidze, ‘Pure Galois theory in categories’, J. Algebra 132 (2), 1990, 270-286
4. G.Janelidze, ‘Precategories and Galois theory’, Proc. Como, Springer Lect. Notes in Math. 1488, 1991, 157-173 6. B.Mesablishvili, ‘Pure morphisms of commutative rings are effective descent morphisms for modules’, Theory and application of Categories, Vol. 7, No.3, 2000, pp. 38-42
- J.Stasheff, ‘Parallel Transport in Fiber Spaces’, Bioletin de la Sociedad Metematica Mexicana, 1966, vol. 11, pg.68-84
- J.Stasheff, ‘Parallel Transport and classification of fibration’, a conference proceedings
- K.Brown, ‘Abstract Homotopy Theory and Generalised Sheaf Cohomology’, Transactions of AMS, Vol. 186, 1973.
- P.G.Goers, J.F.Jardine, ‘Simplicial Homotopy Theory’, Modern Birkhäuser Classics, Reprint of the 1999 Edition
- G.Böhm, T.Brzezinski, ‘Cleft extensions of Hopf Algebroids’, Appl. Categor. Struc. (2006), 14:431-469
- G.Böhm, ‘Hopf algebroids’, arXiv:0805.3806v2, Dec. 2009 (preprint of a chapter for ‘Handbook of Algebra’)
- P.Schauenburg, ‘Hopf bi-Galois extensions’, Comm. Algebra, 24 (12): 3797–3825, 1996
- P.Schauenburg, ‘Galois correspondences for Hopf bi-Galois extensions’, J. Algebra, 201 (1): 53–70, 1998
- T.Brzeziński, R.Wisbauer, ‘Corings and Comodules’, London Mathematical Society, Lecutre Notes Series 309, Cambridge University Press, New York, 2003
- M.Szamotulski, ‘Galois Theory of H-extensions’, PhD Thesis, arXiv:1304.7643 [math.QA]