Categorical Galois Theory, new directions

References

«  Description   ::   Contents

References

  1. A.Grothendieck, (1971), S.G.A.1 - Revetements étales et groupe fondamental, Lecture Notes in Maths. 224, Springer-Verlag.
  2. F.Borceux, G.Janelidze ‘Galois theories’, Cambridge Studies in Adv. Math. 72, 2001
  3. G.Janelidze, ‘Pure Galois theory in categories’, J. Algebra 132 (2), 1990, 270-286

4. G.Janelidze, ‘Precategories and Galois theory’, Proc. Como, Springer Lect. Notes in Math. 1488, 1991, 157-173 6. B.Mesablishvili, ‘Pure morphisms of commutative rings are effective descent morphisms for modules’, Theory and application of Categories, Vol. 7, No.3, 2000, pp. 38-42

  1. J.Stasheff, ‘Parallel Transport in Fiber Spaces’, Bioletin de la Sociedad Metematica Mexicana, 1966, vol. 11, pg.68-84
  2. J.Stasheff, ‘Parallel Transport and classification of fibration’, a conference proceedings
  3. K.Brown, ‘Abstract Homotopy Theory and Generalised Sheaf Cohomology’, Transactions of AMS, Vol. 186, 1973.
  4. P.G.Goers, J.F.Jardine, ‘Simplicial Homotopy Theory’, Modern Birkhäuser Classics, Reprint of the 1999 Edition
  5. G.Böhm, T.Brzezinski, ‘Cleft extensions of Hopf Algebroids’, Appl. Categor. Struc. (2006), 14:431-469
  6. G.Böhm, ‘Hopf algebroids’, arXiv:0805.3806v2, Dec. 2009 (preprint of a chapter for ‘Handbook of Algebra’)
  7. P.Schauenburg, ‘Hopf bi-Galois extensions’, Comm. Algebra, 24 (12): 3797–3825, 1996
  8. P.Schauenburg, ‘Galois correspondences for Hopf bi-Galois extensions’, J. Algebra, 201 (1): 53–70, 1998
  9. T.Brzeziński, R.Wisbauer, ‘Corings and Comodules’, London Mathematical Society, Lecutre Notes Series 309, Cambridge University Press, New York, 2003
  10. M.Szamotulski, ‘Galois Theory of H-extensions’, PhD Thesis, arXiv:1304.7643 [math.QA]

«  Description   ::   Contents