Cálculo Diferencial e Integral I

1º ou 2º Teste ou Exame (v. A) 27 de Janeiro de 2014

LEE, LEGI, LEIC-TP, LETI

Apresente todos os cálculos e justificações relevantes

Para realizar o exame responda a todas as questões.

Para realizar o 1° teste responda aos grupos **I** a **V**. Para realizar o 2° teste responda aos grupos **VI** a **XI**.

1º Teste

(4,5) I. Considere os conjuntos:

$$A = \left\{ x \in \mathbb{R} : \frac{x^2}{x - 2} \ge x \right\}, \qquad B = \left\{ x \in \mathbb{R} : |x| \le x \right\}, \qquad C = A \cap B.$$

- a) Identifique os conjuntos A e B e mostre que $C = \{0\} \cup [2, +\infty[$.
- b) Determine, se existirem, o supremo de C, o mínimo de C, o ínfimo de $C \setminus \mathbb{Q}$ e o máximo de $C \cap \mathbb{Z}$.
- c) Decida, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - (i) Qualquer sucessão estritamente decrescente de termos em ${\cal C}$ tem limite 2.
 - (ii) Qualquer sucessão crescente de termos em C é divergente (em \mathbb{R}).
 - (iii) Toda a função definida e contínua em C tem mínimo.

(3,5) II. Seja $c \in [0,1[$ e considere a sucessão (b_n) dada por

$$\begin{cases} b_1 = c, \\ b_{n+1} = \frac{b_n + b_n^5}{2}, & \text{se } n \ge 1. \end{cases}$$

- a) Mostre que $b_n \in [0, 1[$, para todo o $n \in \mathbb{N}_1$.
- b) Mostre que (b_n) é uma sucessão decrescente.
- c) Justifique que (b_n) é uma sucessão convergente e calcule o valor de $\lim b_n$.

(4,5) III. Calcule ou mostre que não existem (em $\overline{\mathbb{R}}$):

a)
$$\lim \frac{n^{1/2} + n^{3/2}}{\sqrt{n^3 + 1}}$$
 b) $\lim \left(\frac{\arctan n}{\pi} + \frac{1}{3}\right)^n$ c) $\lim \frac{1 + n^2 \sin n^2}{3n^3 - 1}$

- (6) **IV.** Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = e^x \arctan x$.
 - a) Calcule $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to -\infty} f(x)$.
 - b) Justifique que f é diferenciável em \mathbb{R} e calcule f'.
 - c) Seja $g(x) = e^{-x} f'(x)$. Justifique que g é uma função crescente.
 - d) Calcule g(0) e $\lim_{x\to-\infty} g(x)$. Mostre que g tem um único zero em $]-\infty,0[$.
 - e) Mostre que a função f possui no intervalo $]-\infty,0[$ um e um só ponto de extremo local. Mostre ainda que se trata de um ponto de mínimo absoluto de f em \mathbb{R} .
- (1,5) V. Seja $h: \mathbb{R} \to \mathbb{R}$ uma função contínua para a qual $\lim_{x \to -\infty} h(x) = -\infty$ e $\lim_{x \to +\infty} h(x) = +\infty$.
 - a) Mostre que existe pelo menos uma solução da equação $h(x) = \operatorname{arctg} x$.
 - b) Supondo ainda que h é diferenciável em \mathbb{R} e

$$\forall_{x \in \mathbb{R}} \qquad h'(x) > 1,$$

mostre que a equação $h(x) = \operatorname{arctg} x$ tem uma e uma só solução.

2º Teste

(4,0) VI. Calcule, se existirem em $\overline{\mathbb{R}}$, os seguintes limites:

$$\text{a) } \lim_{x \to 0} \frac{e^{1/x^2}}{\sin^2 x}, \qquad \text{b) } \lim_{x \to 1^+} x^{2/(x-1)}, \qquad \text{c) } \lim_{x \to \pi} \frac{1}{x-\pi} \int_1^{\cos 2x} e^{-t^2} \, dt.$$

(2,0) VII. Determine a função $g: \mathbb{R} \to \mathbb{R}$ que satisfaz as condições seguintes:

$$\begin{cases} g'(x) = \frac{4x}{x^2 + 2} & \forall x \in \mathbb{R}, \\ g(0) = 2. \end{cases}$$

(4,5) **VIII.** Calcule

a)
$$\int_0^1 \frac{3x}{1+x} dx$$
, b) $\int_{\log 2}^{\log 3} \frac{e^x}{4+e^{2x}} dx$, c) $\int_1^2 \frac{1}{x(1-\log x)^2} dx$.

(3,0) IX. Calcule a área da região plana definida por

$$\{(x,y) \in \mathbb{R}^2 : 1 - e^x \le y \le 2x, \ x \le 1\}.$$

(4,5) X. a) Estude quanto à natureza (convergência simples, absoluta ou divergência) e, se possível, calcule a soma da série

$$\sum_{n=1}^{+\infty} \frac{((-1)^n + 1) \, 3^{n+1}}{\pi^n}.$$

b) Determine os valores de $x \in \mathbb{R}$ para os quais a série seguinte é absolutamente convergente, simplesmente convergente e divergente

$$\sum_{n=1}^{+\infty} \frac{(-2)^n x^n}{(2n+1)! + 1}.$$

(2,0) XI. Seja $\phi: \mathbb{R} \to \mathbb{R}$ uma função definida por

$$\phi(t) = \begin{cases} \frac{\sin t}{t}, & \text{se } t \neq 0, \\ 0, & \text{se } t = 0. \end{cases}$$

Considere ainda uma função ${\cal F}$ definida por

$$F(x) = \int_0^1 x \, \phi(xt) \, dt.$$

a) Mostre que F é diferenciável em $\mathbb{R} \setminus \{0\}$ e determine F'.

b) Decida se F é diferenciável em 0 e, na afirmativa, calcule F'(0).