Definitions	Dzhuraev's operators	Local Type Projection	Singularities in the poly-Bergman space

The Essential Boundary in Hilbert Spaces of Polyanalytic Functions. Universidade de Lisboa, Instituto Superior Técnico Lisboa, Portugal

Luís V. Pessoa

9th International ISAAC Congress

5-9 of August 9, 2013 in Krakow, Poland

Definitions ●○○	Dzhuraev's operators 00000	Local Type Projection	Singularities in the poly-Bergman space
Abstract			

A Fredholm symbolic calculus is constructed for poly-Toeplitz operators with continuous symbol and I will explain how such symbol requires the notion of j-essential boundary. The symbol calculus is well known for Bergman-Toeplitz operators, in which setting the removal boundary is a subset of the boundary having zero transfinite diameter. Some surprising differences between the analytical and the poly-analytical case will be presented.

I ∃ →

Definitions	Dzhuraev's operators	Local Type Projection	Singularities in the poly-Bergman space
000			

Poly-Bergman spaces

 $U \subset \mathbb{C}$ open connected set ; $\mathit{dA}(z) = \mathit{dxdy}$ Lebesgue area measure

$$\partial_{\overline{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right), \quad \partial_z := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

Definition (Poly-Bergman spaces)

 $f \in \mathcal{A}_{i}^{2}(U)$ if $f \in L^{2}(U, dA)$, f is smooth and

$$\partial_{\overline{z}}^j f = 0$$
 and $\partial_{\overline{z}}^{-j} f = 0$, respectively if $j \in \mathbb{Z}_+$ and $j \in \mathbb{Z}_-$ (1.1)

f is *j*-analytic function if is smooth and satisfies (1.1)

Definitions Dzhura	ev's operators Loca	al Type Projection S	Singularities in the poly-Bergman space
•••			

Poly-Bergman spaces

Poly-Bergman spaces are reproducing kernel Hilbert spaces.

$$|f(z)| \leq \frac{|j|}{\sqrt{\pi} d_z} ||f||_{L^2(U)} \quad ; \quad f \in \mathcal{A}_j^2(U), \ j \in \mathbb{Z}_{\pm}, \ d_z := \operatorname{dist}(z; \partial U)$$

Definition (Poly-Bergman kernel and projection)

 $K_{U,j}(z, w), j \in \mathbb{Z}_{\pm}$ is the *j*-Poly-Bergman reproducing kernel for U, i.e. the unique function such that $K_{U,j}(z, w) := \overline{k}_{U,j,z}(w)$ and

$$f(z) = \langle f, k_{U,z} \rangle$$
; $f \in \mathcal{A}_j^2(U), z \in U$.

 $B_{U,j}$ is the **orthogonal projections** from $L^{2}(U, dA)$ onto $\mathcal{A}_{i}^{2}(U)$.

 $B_{U,j}$ is an integral operator with kernel given by $K_{U,j}$, i.e.

$$B_{U,j}f(z) = \int_U K_{U,j}(z,w)f(w)dA(w) \; ; \; f \in L^2(U,dA)$$

イロト イポト イヨト イヨト

Singularities in the poly-Bergman space

Density of Polyanalytic functions on \overline{U}

- Next, the results will focus on bounded domains without constrains on the boundary
- The bounded hypothesis is relevant is the majority of the proofs and is relevant in some results
- Some results in smooth bounded finitely connected domains *U* are important, e.g. to prove the local type property of poly-Bergman projection. This is the aim of the following slides.

イロト イヨト イヨト イヨト

Density of Polyanalytic functions on \overline{U}

- Next, the results will focus on bounded domains without constrains on the boundary
- The bounded hypothesis is relevant is the majority of the proofs and is relevant in some results
- Some results in smooth bounded finitely connected domains *U* are important, e.g. to prove the local type property of poly-Bergman projection. This is the aim of the following slides.

イロト イヨト イヨト イヨト

Density of Polyanalytic functions on \overline{U}

- Next, the results will focus on bounded domains without constrains on the boundary
- The bounded hypothesis is relevant is the majority of the proofs and is relevant in some results
- Some results in smooth bounded finitely connected domains *U* are important, e.g. to prove the local type property of poly-Bergman projection. This is the aim of the following slides.

- 4 回 2 - 4 回 2 - 4 回 2

Definitions	Dzhuraev's operators	Local Type Projection	Singularities in the poly-Bergman space
	00000		

Dzhuraev's Formulas

• Beurling transform (unitary on $L^2(\mathbb{C})$) and its compression to $L^2(U)$

$$Sf(z) := -\frac{1}{\pi} \int_{\mathbb{C}} \frac{f(w)}{(w-z)^2} dA(w)$$
 and $S_U := \chi_U S \chi_U$

• Dzhuraev's Operators (for $j \in \mathbb{Z}_+$)

$$D_{U,j} = I - (S_U)^j (S_U^*)^j$$
 and $D_{U,-j} = I - (S_U^*)^j (S_U)^j$

Lemma (Vékua)

 $U \subset \mathbb{C}$ a bounded finitely connected domain; ∂U smooth; $f \in L^2(U)$

• If f is a smooth function on U then $S_U f$ and $S_U^* f$ are smooth and

$$\partial_{\overline{z}} S_U f = \partial_z f \quad , \quad \partial_z S_U^* f = \partial_{\overline{z}} f.$$
 (2.1)

• The space of smooth functions on \overline{U} is invariant under S_U and S_U^* .

・ロン ・回 と ・ ヨン ・ ヨ

Definitions	Dzhuraev's operators	Local Type Projection	Singularities in the poly-Bergman space
	00000		

Dzhuraev's Formulas

• Beurling transform (unitary on $L^2(\mathbb{C})$) and its compression to $L^2(U)$

$$Sf(z) := -\frac{1}{\pi} \int_{\mathbb{C}} \frac{f(w)}{(w-z)^2} dA(w)$$
 and $S_U := \chi_U S \chi_U$

• Dzhuraev's Operators (for $j \in \mathbb{Z}_+$)

$$D_{U,j} = I - (S_U)^j (S_U^*)^j$$
 and $D_{U,-j} = I - (S_U^*)^j (S_U)^j$

Lemma (Vékua)

 $U \subset \mathbb{C}$ a bounded finitely connected domain; ∂U smooth; $f \in L^2(U)$

• If f is a smooth function on U then $S_U f$ and $S_U^* f$ are smooth and

$$\partial_{\overline{z}} S_U f = \partial_z f \quad , \quad \partial_z S_U^* f = \partial_{\overline{z}} f.$$
 (2.1)

• The space of smooth functions on \overline{U} is invariant under S_U and S_U^* .

(D) (A) (A) (A) (A)

Singularities in the poly-Bergman space

Some Remarks on Dzhuraev's Operators

• If U is bounded finitely connected, ∂U is smooth then

 $B_{U,j} - D_{U,j} \in \mathcal{K} \quad (j \in \mathbb{Z}_{\pm}).$

- The exact Dzhuraev's formulas are valid for domains Möbius equivalente to the a disk $(\mathbb{D}, \Pi \text{ and } \Omega)$ ([P-13])
- The existence of Dzhuraev's formulas are strongly dependent on the regularity of the boundary ([KP-08, P-Sub.])

Singularities in the poly-Bergman space

Some Remarks on Dzhuraev's Operators

• If U is bounded finitely connected, ∂U is smooth then

 $B_{U,j} - D_{U,j} \in \mathcal{K} \quad (j \in \mathbb{Z}_{\pm}).$

- The exact Dzhuraev's formulas are valid for domains Möbius equivalente to the a disk $(\mathbb{D}, \Pi \text{ and } \Omega)$ ([P-13])
- The existence of Dzhuraev's formulas are strongly dependent on the regularity of the boundary ([KP-08, P-Sub.])

Singularities in the poly-Bergman space

Some Remarks on Dzhuraev's Operators

• If U is bounded finitely connected, ∂U is smooth then

 $B_{U,j} - D_{U,j} \in \mathcal{K} \quad (j \in \mathbb{Z}_{\pm}).$

- The exact Dzhuraev's formulas are valid for domains Möbius equivalente to the a disk $(\mathbb{D}, \Pi \text{ and } \Omega)$ ([P-13])
- The existence of Dzhuraev's formulas are strongly dependent on the regularity of the boundary ([KP-08, P-Sub.])

イロト イヨト イヨト イヨト

Dzhuraev's operators ○○○●○ Local Type Projection

Singularities in the poly-Bergman space

CNICO

Density of Polyanalytic functions on U

In this slide ${\it U}$ is a smooth bounded finitely connected domain

$$\mathcal{A}_{j}^{2}(\overline{U}):=\mathcal{A}_{j}^{2}(U)\cap\mathcal{C}^{\infty}(\overline{U})\ ,\ j\in\mathbb{Z}_{\pm}.$$

• From Vekua derivation formulas $\operatorname{Im} D_{U,j} \subset \mathcal{A}_i^2(U)$

• from previous Lemma we can prove $\mathcal{A}_{i}^{2}(\overline{U})$ is dense in $\operatorname{Im} D_{U,j}$

• we can also prove that ker $D_{U,j} \cap \mathcal{A}_i^2(U) \subset \mathcal{A}_i^2(\overline{U})$.

Theorem ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded finitely connected domain with smooth boundary. For every $j \in \mathbb{Z}_{\pm}$, one has that $\mathcal{A}_{i}^{2}(\overline{U})$ is dense in $\mathcal{A}_{i}^{2}(U)$.

イロト イポト イヨト イヨト

Dzhuraev's operators ○○○●○ Local Type Projection

Singularities in the poly-Bergman space

CNICO

Density of Polyanalytic functions on U

In this slide ${\it U}$ is a smooth bounded finitely connected domain

$$\mathcal{A}_{j}^{2}(\overline{U}):=\mathcal{A}_{j}^{2}(U)\cap\mathcal{C}^{\infty}(\overline{U})\ ,\ j\in\mathbb{Z}_{\pm}.$$

- From Vekua derivation formulas $\operatorname{Im} D_{U,j} \subset \mathcal{A}_i^2(U)$
- from previous Lemma we can prove $\mathcal{A}_i^2(\overline{U})$ is dense in $\operatorname{Im} D_{U,j}$

• we can also prove that ker $D_{U,i} \cap \mathcal{A}_i^2(U) \subset \mathcal{A}_i^2(\overline{U})$.

Theorem ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded finitely connected domain with smooth boundary. For every $j \in \mathbb{Z}_{\pm}$, one has that $\mathcal{A}_{i}^{2}(\overline{U})$ is dense in $\mathcal{A}_{i}^{2}(U)$.

(D) (A) (A) (A) (A)

Dzhuraev's operators ○○○●○ Local Type Projection

Singularities in the poly-Bergman space

CNICO

Density of Polyanalytic functions on U

In this slide U is a smooth bounded finitely connected domain

$$\mathcal{A}_{j}^{2}(\overline{U}):=\mathcal{A}_{j}^{2}(U)\cap\mathcal{C}^{\infty}(\overline{U})\ ,\ j\in\mathbb{Z}_{\pm}.$$

- From Vekua derivation formulas $\operatorname{Im} D_{U,j} \subset \mathcal{A}_i^2(U)$
- from previous Lemma we can prove $\mathcal{A}_{i}^{2}(\overline{U})$ is dense in $\operatorname{Im} D_{U,j}$
- we can also prove that ker $D_{U,j} \cap \mathcal{A}_j^2(U) \subset \mathcal{A}_j^2(\overline{U})$.

Theorem ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded finitely connected domain with smooth boundary. For every $j \in \mathbb{Z}_{\pm}$, one has that $\mathcal{A}_{i}^{2}(\overline{U})$ is dense in $\mathcal{A}_{i}^{2}(U)$.

(D) (A) (A) (A) (A)

Dzhuraev's operators ○○○○● Local Type Projection

Singularities in the poly-Bergman space

Density of Polyanalytic functions on U

 $\operatorname{Rat}(X)$ the set of rational functions with poles out of $X \subset \mathbb{C}$ compact.

Proposition ([P2-Sub.])

 $U \subset \mathbb{C}$ a bounded finitely connected; ∂U smooth; $j \in \mathbb{Z}_+$. Then

$$\{\sum_{k=0}^{j-1} \overline{z}^k r_k(z) : r_k \in \operatorname{Rat}(\overline{U})\} \text{ and } \{\sum_{k=0}^{j-1} z^k \overline{r}_k(z) : r_k \in \operatorname{Rat}(\overline{U})\}$$

is dense in the poly-Bergman space $\mathcal{A}_{i}^{2}(U)$ and $\mathcal{A}_{-i}^{2}(U)$, respectively.

- Bergman case: classical results of Farrell, Markusevic, Mergeljan
- operator theory in the next slide

Dzhuraev's operators ○○○○● Local Type Projection

Singularities in the poly-Bergman space

Density of Polyanalytic functions on U

 $\operatorname{Rat}(X)$ the set of rational functions with poles out of $X \subset \mathbb{C}$ compact.

Proposition ([P2-Sub.])

 $U \subset \mathbb{C}$ a bounded finitely connected; ∂U smooth; $j \in \mathbb{Z}_+$. Then

$$\{\sum_{k=0}^{j-1} \overline{z}^k r_k(z) : r_k \in \operatorname{Rat}(\overline{U})\} \quad \text{and} \quad \{\sum_{k=0}^{j-1} z^k \overline{r}_k(z) : r_k \in \operatorname{Rat}(\overline{U})\}$$

is dense in the poly-Bergman space $\mathcal{A}_{i}^{2}(U)$ and $\mathcal{A}_{-i}^{2}(U)$, respectively.

- Bergman case: classical results of Farrell, Markusevic, Mergeljan
- operator theory in the next slide

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

Berger-Shaw Theorem

$$\begin{aligned} H_{\phi,j} &: \mathcal{A}_{j}^{2}\left(U\right) \rightarrow \left[\mathcal{A}_{j}^{2}\left(U\right)\right]^{\perp} \quad , \quad H_{\phi,j}(g) = (I - B_{U,j})(\phi g) \\ [B_{U,j}, \phi I] &= H_{\phi,j}^{*}(I - B_{U,j}) - H_{\phi,j}B_{U,j} \quad \text{and} \quad H_{\overline{z},j}^{*}H_{\overline{z},j} = \left[T_{z,j}^{*}, T_{z,j}\right] \\ T_{\phi,j} &: \mathcal{A}_{j}^{2}\left(U\right) \mapsto \mathcal{A}_{j}^{2}\left(U\right) \quad , \quad T_{\phi,j}(g) := B_{U,j}(\phi g). \end{aligned}$$

Proposition

 $U \subset \mathbb{C}$ a bounded domain; $j \in \mathbb{Z}_{\pm}$. Then, $B_{U,j}$ is an operator of local type if and only if the self-commutator of $T_{z,j}$ is compact.

 $T \in \mathcal{B}(\mathcal{H})$ is *j*-multicyclic if $\mathcal{H} = \text{cl span } \{r(T)v_k : r \in \text{Rat}(\sigma(T)); k = 1, \cdots, j\}$ $T \in \mathcal{B}(\mathcal{H})$ is hyponormal if $[T^*, T] \ge 0$

Theorem (Berger-Shaw)

If $T \in \mathcal{B}(\mathcal{H})$ is hyponormal and *j*-multicyclic, then $\operatorname{Tr}[T^*, T] \leq \frac{j}{\pi} |\sigma(T)|$.

If U is a smooth bounded finitely connected domain, then it follows that the self-commutator of $T_{z,j}$ is in the trace class.

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

CNICO

5BOA

Variation of the domain

For an arbitrary bounded domain we consider the variation of the domain technique.

Definition (Inner exhaustive sequence [P-Sub.])

Let $U \subset \mathbb{C}$ be a domain. $\{U_n\}_{n \in \mathbb{N}}$ is a *Inner exhaustive sequence* for U if

 $U_n \subset U_{n+1} \subset U$; $\cup_{n \in \mathbb{N}} U_n = U$.

Theorem (Inner variation of the domain [P-Sub.])

If
$$\{U_n\}_{n\in\mathbb{N}}$$
 is a Inner exhaustive sequence for U then

$$B_{U,j} = \operatorname{s-lim}_n \chi_U B_{U_n,j} \chi_U.$$

Proposition ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain and let j be a non-zero integer. The self-commutator $[T^*_{z,j}, T_{z,j}]$ is a trace class operator and

 $\mathrm{T}r\left[T_{z,j}^*, T_{z,j}\right] \le |j||U|/\pi.$

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

The Allan-Douglas local principle

Corollary ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain and let j be a non-zero integer. The poly-Bergman projection $B_{U,j}$ is an operator of local type.

•
$$\mathfrak{U}_j := \operatorname{alg} \left\{ B_{U,j}, \mathsf{aI} : \mathsf{a} \in C(\overline{U}) \right\} \subset \mathcal{B}(L^2(U))$$

Proposition ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain and let j be a non-zero integer. The C^* -algebra \mathfrak{U}_j is irreducible. Furthermore, \mathfrak{U}_j contains $\mathcal{K}(L^2(U))$.

- \mathfrak{U}_{i}^{π} is a commutative C^{*} -algebra

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

The Allan-Douglas local principle

Corollary ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain and let j be a non-zero integer. The poly-Bergman projection $B_{U,j}$ is an operator of local type.

•
$$\mathfrak{U}_j := \operatorname{alg} \left\{ B_{U,j}, \mathsf{aI} : \mathsf{a} \in C(\overline{U}) \right\} \subset \mathcal{B}(L^2(U))$$

Proposition ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain and let j be a non-zero integer. The C^* -algebra \mathfrak{U}_j is irreducible. Furthermore, \mathfrak{U}_j contains $\mathcal{K}(L^2(U))$.

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

The Allan-Douglas local principle

 \mathcal{A} a C^* -algebra with identity e; $\mathcal{Z} \subset \mathcal{A}$ a central *-subalgebra; $e \in \mathcal{Z}$; $\mathcal{M}(\mathcal{Z})$ the maximal ideal space; l_x the closed two-sided ideal of \mathcal{A} generated by $x \in \mathcal{M}(\mathcal{Z})$; $\mathcal{A}_x := \mathcal{A}/l_x$; $\pi_x : \mathcal{A} \to \mathcal{A}_x$.

Theorem (Allan-Douglas)

- (i) a is invertible in \mathcal{A} iff $a_x := \pi_x(a)$ is invertible in \mathcal{A}_x , for $x \in \mathcal{M}(\mathcal{Z})$.
- (ii) $\mathcal{M}(\mathcal{Z}) \ni x \mapsto ||a_x|| \in \mathbb{R}^+_0$ is USC and $||a|| = \max_{x \in \mathcal{M}(\mathcal{Z})} ||a_x||$.
- $A^{\pi} := A + \mathcal{K}$; the local algebra $\mathfrak{U}_{j,z}^{\pi} := \mathfrak{U}_{j}^{\pi} / I_{U,z}^{\pi}$, for $z \in \overline{U}$; $\pi_{z} : \mathfrak{U}_{j}^{\pi} \to \mathfrak{U}_{j,z}^{\pi}$; $A_{z}^{\pi} := \pi_{z}(A^{\pi})$, for $A \in \mathfrak{U}_{j}$

Proposition

If $U \subset \mathbb{C}$ is a bounded domain then $(B_{U,j})_z^{\pi} = 0$, for $z \in U$ and $j \in \mathbb{Z}_{\pm}$.

Since $K_{U,j}(z, w) \in C^{\infty}(U \times U)$ then the previous Proposition is evident tised.

Definitions	

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

The Bergman removal boundary

Definition (S. Axler, J. B. Conway, G. MacDonald)

- w ∈ ∂_{2-r}U if w ∈ ∂U and every function in A²(U), for some δ > 0, can be extended to an analytic function on U ∪ D(w, δ)
- The essential boundary

$$\partial_{2-e}U:=\partial U\ominus\partial_{2-r}U$$

Theorem (S. Axler, J. B. Conway, G. MacDonald)

Let $U \subset \mathbb{C}$ be a bounded domain and let $w \in \partial U$. Then $w \in \partial_{2-r}U$ iff there exists $\delta > 0$ such that $\partial U \cap \overline{D}(w, \delta)$ as zero transfinite diameter.

イロト イポト イヨト イヨト

Definitions	Dzhuraev's operators	Local Type Projection	Singularities in the poly-Bergman space
		000000000	

Definition of *j*-removal boundary

- K compact set has zero logarithmic capacity iff A²(C\K) = {0}
 (L. Carleson, Selected Problems on Exceptional Sets, 67)
- Different proof in David R. Adams, Lars Inge Hedberg 96 (Potencial Theory); see also Conway, Functions of one Complex Variabel II; Kouchekian 03
- K ⊂ C compact set as zero logarithmic capacity iff as zero transfinite diameter

$$\lim_{n} \max_{z_1,...,z_n \in K} \left(\prod_{z_j \neq z_k} |z_j - z_k| \right)^{\frac{n(n-1)}{2}}$$

 Definition also possible by means of Chebichev polynomials (K infinite) lim max_K |T_{K,n}(z)|^{1/n}

(D) (A) (A) (A) (A)

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

The points at which B_U is locally equivalent to zero

Theorem (S. Axler, J. B. Conway, G. MacDonald)

Let $U \subset \mathbb{C}$ be a bounded domain. If $f \in C(\overline{U})$ then T_f is compact if and only if $f(\partial_{2-e}U) = \{0\}$.

By localization is follows straightforwardly a criterion for the Bergman projection to be locally equivalent to zero at some point $w \in \partial U$.

Theorem ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain and let $w \in \partial U$. Then $w \in \partial_{2-r}U$ if and only if $(B_U)_w^{\pi} = 0$, i.e. $(B_U)_w^{\pi} = 0$, $w \in \partial U$ iff there exists $\delta > 0$ such that $\partial U \cap D(w, \delta)$ as zero transfinite diameter.

Definitions	Dzhuraev's operators	Local Type Projection	Singularities in the poly-Bergman space
Definit	tion of i-remova	al boundarv	

Definition (I-Removal boundary [P2-Sub.])

- $w \in \partial_r^j U$ if $w \in \partial U$ and $(B_{U,j})_w^{\pi} = 0$;
- the *j*-essential boundary is defined by

 $\partial_e^j U := \partial U \ominus \partial_r^j U.$

Proposition ([P2-Sub.])

$$\partial_r^j U = \partial_r^{|j|} U \quad \text{and} \quad \partial_r^j U \subset \partial_r U = \partial_{2-r} U.$$

Proposition ([P2-Sub.])

The set $\partial_e^j U$ is closed, $U \cup \partial_r^j U$ is open and connected and $\partial \overline{U} \subset \partial_e^j U$.

$$U_r^j := U \cup \partial_r^j U.$$

Definitions	Dzhuraev's operators	Local Type Projection	Singularities in the poly-Bergman space
		0000000000	

Local algebras

Proposition

Let $U \subset \mathbb{C}$ be a bounded domain and let $j \in \mathbb{Z}_{\pm}$. If $z \in U_r^j$, then $\mathfrak{U}_{i,z}^{\pi} \cong \mathbb{C}$. For every $a \in C(\overline{U})$, the *-isomorphism $\Phi_{U,z}$ is given by

 $(B_{U,j})_z^{\pi} \mapsto 0$ and $(aI)_z^{\pi} \mapsto a(z)$.

Proposition

Let $U \subset \mathbb{C}$ be a bounded domain and let $j \in \mathbb{Z}_{\pm}$. If $z \in \partial U_e^j$, then $\mathfrak{U}_{j,z}^{\pi} \cong \mathbb{C}^2$. For every $a \in C(\overline{U})$, the *-isomorphism $\Phi_{U,z}$ is given by $(B_{U,j})_z^{\pi} \mapsto (1,0)$ and $(al)_z^{\pi} \mapsto (a(z), a(z))$.

<ロ> (日) (日) (日) (日) (日)

ISB04

Definitions	Dzhuraev's operators	Local Type Projection	Singularities in the poly-Bergman spac

The C
$*$
-algebra \mathfrak{U}^π_i

Theorem ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain and let $j \in \mathbb{Z}_{\pm}$. Then

$$\mathfrak{U}_{j}^{\pi}\cong C(\overline{U})\oplus C(\partial_{e}^{j}U) \quad \text{ by } (aI+bB_{U,j})^{\pi} \stackrel{\Phi_{U}}{\longmapsto} a\oplus (a+b)_{|\partial_{e}^{j}U}.$$

Let $j \in \mathbb{Z}_{\pm}$. The poly-Toeplitz C*-algebra $\mathfrak{T}_j(U)$ is defined as follows $\mathfrak{T}_j(U) := alg \{ T_{f,j} : f \in C(\overline{U}) \}.$

Theorem ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain and let $j \in \mathbb{Z}_{\pm}$. Then

$$\mathfrak{T}_{j}^{\pi}(U) \cong C(\partial_{e}^{j}U) \quad by \quad (T_{f,j})^{\pi} \longmapsto f_{|\partial_{e}^{j}U}.$$

CNICO

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

Structure of the j-removal boundary

U bounded domain; $w \in U$; $U_w := U \setminus \{w\}$

Proposition ([P-13])

Let $U \subset \mathbb{C}$ be a bounded domain, let $w \in U$ and let $j = 2, \dots$. Then

$$\mathcal{A}_{j}^{2}(U_{w}) = \operatorname{span}\left\{\psi, \frac{(\overline{z} - \overline{w})^{k}}{(z - w)^{l}} : \psi \in \mathcal{A}_{j}^{2}(U); \ k = 1, \cdots, j - 1; \ l = 1, \cdots, k\right\}$$

The Hilbert space $\mathcal{A}_{i}^{2}(U_{\xi}) \ominus \mathcal{A}_{i}^{2}(U)$ has finite dimension j(j-1)/2.

Corollary ([P2-Sub.])

Let $j \in \mathbb{Z}_{\pm}$. If w is an isolated point of ∂U then $w \in \partial_r^j U$.

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

Structure of the j-removal boundary

Theorem ([P2-Sub.])

Let U be a bounded domain and let $j \in \mathbb{Z}_{\pm}$. Then $\partial_e^j U = \sigma_e(T_{z,j})$ and $w \in \partial_e^j U$ if and only if $\operatorname{Im} T_{\phi_w, j}$ is not closed. Moreover,

Ind
$$T_{\phi_w,j} = -\operatorname{codim} T_{\phi_w,j} = -j$$
, $w \in U_r^j$.

Theorem ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain, let $j \in \mathbb{Z}_{\pm}$ and let $w \in \partial U$. Then, $w \in \partial_r^j U$ iff there exists $\delta > 0$ such that every function $f \in \mathcal{A}_j^2(U)$ can be extended to a function in the poly-Bergman space over $U \cup D_w(w, \delta)$.

イロト イヨト イヨト イヨト

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

ISBO A

Structure of the j-removal boundary

 $w_n \in \partial U, n \in \mathbb{N}$ such that $w_n \neq w_m, n \neq m$ and $\lim w_n = w$

$$f(z) = \sum_{n} 2^{-n} \frac{\overline{z} - \overline{w}_{n}}{z - w_{n}}$$

Theorem ([P2-Sub.])

Let $U \subset \mathbb{C}$ be a bounded domain. If $j \neq \pm 1$ then the removal boundary $\partial_r^j U$ coincides with the set of all isolated points of ∂U .

Corollary ([P2-Sub.])

Let
$$j, k \in \mathbb{Z}_{\pm}$$
. If $j, k = \pm 1$ or $j, k \neq \pm 1$, then $\partial_r^j U = \partial_r^k U$.

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space ○○○●○○○○○○

Structure of the j-removal boundary

- if $j = \pm 1$ then $w \in \partial_r^j U$ iff $w \in \partial U$ and there exists $\delta > 0$ such that $c(\partial U \cap \overline{D}(w, \delta) = 0;$
- if $j \neq \pm 1$ then $w \in \partial_r^j U$ iff w is isolated point of ∂U .
- if $j = \pm 1$ then $w \in \partial_r^j U$ can be uncountable;
- if $j \neq \pm 1$ then $w \in \partial_r^j U$ is countable;
- It is easily seen that $(U_r)_r = U_r$;
- The equality $(U_r^j)_r^j = U_r^j$ does not necessarily hold.

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

Structure of the *j*-removal boundary

Proposition ([P2-Sub.])

Let U be a bounded domain and let $j \in \mathbb{Z}_{\pm}$. Thus,

 $\mathcal{A}_j^2(U) = \mathcal{A}_j^2(U_r^j) \oplus E_j^2(U).$

The space $E_j^2(U)$ is a separable Hilbert space, which is finite-dimensional space if and only $j = \pm 1$ or if the set $\partial_r^j U$ is finite, in which case

dim
$$E_j^2(U) = \# (\partial_r^j U) |j|(|j|-1)/2.$$

Corollary ([P2-Sub.])

Let U be a bounded domain and let $j = \pm 2, \pm 3, \ldots$. Then $B_{U,j}^{\pi} = B_{U_{r,j}^{j}}^{\pi}$ and $B_{U,j} = B_{U_{r,j}^{j}}$ if and only if $\partial_{r}^{j}U$ is finite and $\partial_{r}^{j}U = \emptyset$, respectively.

・ロト ・日本 ・モート ・モート

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

Classical Cantor-Bendixson rank and ∂U_r^j

Consider the transfinite sequence of domains

$$\mathcal{U}_0 := U$$
 ; $\mathcal{U}_{\alpha+1} := (\mathcal{U}_{\alpha})_r^j$; $\mathcal{U}_{\lambda} := \bigcup_{\alpha < \lambda} \mathcal{U}_{\alpha}$, λ is limit ordinal.

 $X := \partial U$ and let X' denote the set of cluster points of X. The Cantor-Bendixson derivatives X^{α} are defined as follows

$$X^0 := X$$
 ; $X^{\alpha+1} := (X^{\alpha})'$; $X^{\lambda} := \bigcap_{\alpha < \lambda} X^{\alpha}$, if λ is limit ordinal.

 $X^{\alpha} = \partial \mathcal{U}_{\alpha}$. there exists a countable ordinal α_0 such that $X^{\alpha} = X^{\alpha_0}$, for $\alpha \geq \alpha_0$ The least such ordinal α_0 is denoted by $\rho(X)$ and is said to be the Cantor-Bendixson rank of X. Now we define the domain $U^j_{\infty} := \mathcal{U}_{\rho(X)}$.

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space ○○○○○●○○○

Classical Cantor-Bendixson rank and ∂U_r^j

Theorem

Let U be a bounded domain and let $j \in \mathbb{Z}_{\pm}$. Thus,

 $\mathcal{A}_{j}^{2}(U) = \mathcal{A}_{j}^{2}(U_{\infty}^{j}) \oplus \mathcal{E}_{j}^{2}(U).$

If $j = \pm 1$, then $\mathcal{E}_j^2(U) = \{0\}$. If $j \neq \pm 1$, then $\mathcal{E}_j^2(U)$ is a finite dimensional space if and only if $\partial_r^j U$ is finite, in which case dim $\mathcal{E}_j^2(U) = \dim \mathcal{E}_j^2(U)$. Furthermore, the *j*-removal boundary of the domain U_{∞}^j is the empty set.

What can one say about the structure of the spaces $E_i^2(U)$ and $\mathcal{E}_i^2(U)$?

イロト イポト イヨト イヨト

Dzhuraev's operators

Local Type Projection

Singularities in the poly-Bergman space

For Further Reading

M. B. Balk,

Polyanalytic Functions. Akademie Verlag, Berlin, 1991.

A. Dzhuraev,

Methods of Singular Integral Equations.

Longman Scientific Technical, 1992.

Yu. I. Karlovich and L. V. Pessoa, C*-algebras of Bergman type operators with piecewise continuous coefficients. Integral Equations and Operator Theory **57** (2007), 521–565.

- 4 昂 ト 4 臣 ト 4 臣 ト

For Further Reading

- Yu. I. Karlovich and Luís V. Pessoa, *Poly-Bergman projections and orthogonal decompositions of L²-spaces over bounded domains*, Operator Theory: Advances and Applications, **181** (2008), 263-282.
- A.D. Koshelev, On the kernel function of the Hilbert space of functions polyanalytic in a disc, translation from Dokl. Akad. Nauk SSSR, 232 (1977), 277–279.
- Luís V. Pessoa, The Method of Variation of the Domain for Poly-Bergman spaces, Submitted
- Luís V. Pessoa, *Toeplitz Operators and the Essential Boundary on Polyanalytic Functions*, Submitted.

For Further Reading

- Luís V. Pessoa, *Dzhuraev's formulas and poly-Bergman kernels on domains Möbius equivalent to a disk*, Volume 7, Issue 1 (2013), Page 193-220
- Luís V. Pessoa, *Planar Beurling Transform and Bergman Type Spaces*, to appear in Complex Anal. Oper. Theory (DOI 10.1007/s11785-012-0268-0).
- - Luís V. Pessoa, *True Poly-Bergman and Poly-Bergman Kernels for the Complement of a Closed Disk*, to appear in Complex Anal. Oper. Theory (DOI 10.1007/s11785-012-0272-4).
 - Nikolai L. Vasilevski. Commutative Algebras of Toeplitz Operators on the Bergman Space Operator Theory: Advances and Applications, Vol. 185, Birkháuser Verlag, 2008.

