Lina Oliveira

Lina Oliveira

Phone (351) 218 417 127
Office Mathematics Building, 4th floor, room 4.31
Postal Address   Departamento de Matemática
Instituto Superior Técnico
Av. Rovisco Pais
1049-001 Lisboa, Portugal


Professor Auxiliar

Member of the Center for Mathematical Analysis, Geometry and Dynamical Systems


DPhil in Mathematics, 2000, University of Oxford

Research Interests

Functional Analysis, Operator Algebras, Operator Theory

Research Publications

Bimodules of Banach space nest algebras (joint with L. Duarte) arXiv:2006.01134

Kernel maps and operator decomposition (joint with G. Matos), Banach J. Math. Anal. (2) 14 (2020) 361-379.

A note on the uniqueness of Hahn-Banach extensions, Math. Proc. Ir. Acad. (2) 119A (2019) 157-171.

When is a finite sum of box operators on a JB*-triple a Hermitian projection? (joint with D. Ilisevic), Recent Trends in Operator Theory and Applications, Contemp. Math. 737 (2019) 107-117.

Q-measures on the unit dual ball of a JB*-triple (joint with C.M. Edwards), J. Korean Math. Soc. (1) 56 (2019) 197-224.

Tits-Kantor-Koecher Lie algebras of JB*-triples (joint with com C-H. Chu), J. Algebra 512 (2018), 465-492.

Image reconstruction based on circulant matrices (joint with E. Carrasquinha, C. Amado e A. Pires), Signal Process-Image 63 (2018) 72-80.

A characterization of reflexive spaces of operators (joint with J. Bracic), Czech. Math. J. 68 (143) (2018) 257-266.

Weakly closed Lie modules of nest algebras (joint with M. Santos), Oper. Matrices (1) 11 (2017) 23-35.

Decomposability of bimodule maps (joint with C. Le Merdy), Math. Scand. (2) 119 (2016) 283-292.

Local facial structure and norm-exposed faces of the unit ball in a JB*-triple (joint with C.M. Edwards), J. Math. Anal. Appl. 421 (2015) no. 2, 1315-1333.

Normalisers of operator algebras and tensor product formulas (joint with M. McGarvey and I.G. Todorov), Rev. Mat. Iberoam. (4) 29 (2013) 1373-1395.

A decomposition theorem for Lie ideals in nest algebras (joint with J. Almeida), Arch. Math. (6) 97 (2011) 549-558.

Finite rank operators in Lie ideals of nest algebras, Houston J. Math. (2) 37 (2011) 519-536.

Range tripotents and order in JBW*-triples, Banach Algebras 2009, Banach Center Publications 91 (2010) 233-246.

On range tripotents in JBW*-triples, Arch. Math. (6) 91 (2008) 544-553.

On the structure of inner ideals of nest algebras, Rend. Circ. Mat. Palermo (2) 52 (2003) 224-240.

Weak*-closed Jordan ideals of nest algebras, Math. Nachr. 248-249 (2003) 129-143.

Partial Jordan *-triples, DPhil Thesis, University of Oxford, 2000.

Local Activities

Mathematics Colloquium (2016/17, 2017/18, 2018/19, 2019/20)

Mathematics Symposium (2017/18)

Mathematics Winter School (EIM 2016)

Mathematics Winter School (EIM 2015)



Academic Year 2019/2020

2º Semester Seminário e Monografia (LMAC)

1º Semester Álgebra Linear (LENO, MEMec)

Academic Year 2018/2019

2º Semester

Tópicos de Álgebras de Operadores - Álgebras de Jordan Normadas (DMat)

Projecto em Matemática (LMAC)

1º Semester Álgebra Linear (LENO, MEMec)

Academic Year 2016/2017

2º Semester Análise Funcional (LMAC, MMA)

1º Semester Álgebra Linear (MEEC)

Past teaching



Rodrigo Serrão (2019/20)

Eduardo Mendes (2018/19)

Luís Duarte (2017/18)

Gulbenkian program "Novos Talentos em Matemática"

Ana Reis (2018/19)

Pedro Capitão (2017/18)

Gabriel Matos (2015/16)

Miguel Santos (2014/15)

Research grant in Mathematics (CAMGSD)

Ana Reis (2020/21)

Luís Duarte (2016/17)

Projeto em Matemática

Pedro Capitão (2018/19)

Seminário e Monografia

Elisabete Barros (2019/20)

Valid XHTML 1.0! Valid CSS!